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Abstract. We investigate the problem of detecting a point set’s deviation from uniformity in the unit
hypercube. High uniformity is for example desirable in Monte Carlo methods for numerical inte-
gration, but also for obtaining a good worst-case bound in global optimization. In high dimensions,
many points are required to get reliable results, so the point sets are preferably generated by fast
methods such as quasirandom sequences. Unfortunately, assessing their uniformity often requires
quadratic time. So, we present several numerical summary characteristics of point sets that can be
computed in linear time. They do not measure uniformity directly, but by comparing them to refer-
ence values for the uniform distribution, deviations from uniformity can be quickly detected. The
necessary reference values are also derived here, if possible exactly, else approximately.
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1. Introduction

Uniform sampling is an important tool in many application areas. For example, in Monte
Carlo methods for numerical integration, a high uniformity of the used point sample is de-
sirable to achieve a low approximation error. For this purpose, deterministic quasirandom
sequences with low discrepancy (i.e. low deviation from uniformity)were developed.They
provide a worst-case error bound for the integration error in numerical integration (Nieder-
reiter, 1992). Corresponding randomized variants provide a variance reduction compared
to random uniform sampling (L’Ecuyer, 2008).

In the following, n depicts the number of points and d the dimension. For quasiran-
dom sequences, the asymptotic discrepancy for n → ∞ is usually known. (Formally, we
speak of low discrepancy sequences when their discrepancy has a convergence order of
O(n−1 logd n), Niederreiter, 1992, p. 32). However, for practical comparisons of (arbi-
trary) finite point sets this information is not sufficient. In this case we ideally want to
calculate the discrepancy explicitly. In certain cases this is possible with a run time of
O(dn2) (Morokoff and Caflisch, 1994). There also exists an asymptotically faster algo-
rithm with run time O(n logd n), which in practice is unfortunately only faster for n > 22d
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(Matous̆ek, 1998). Instead of developing a new algorithm for measuring discrepancy (or
some other uniformity-relatedmeasure), our aim in this work is to investigate on measures
that can be trivially calculated as Monte Carlo estimators in O(dn) time, but which only
tell us something about potential deviations from uniformity.

In the following, the mean distance to the boundary is identified as an important char-
acteristic of point sets. Another potentially useful measure is the distance between the
centre of mass of a point set and the centroid of the region of interest. Both are nothing
more but conventional Monte Carlo estimates. As the expected values of these measures
for random uniform points are useful reference values, they are derived analytically. Al-
though neither characteristic is sufficient for measuring uniformity, they both can quickly
detect certain deviations from it. This way, they can contribute to a richer description of
experimental designs and point sets in general, for example as part of statistical tests for
complete spatial randomness (Illian et al., 2008, pp. 83–98).

Apart from the numerical integration mentioned above, global optimization is another
application area where the worst-case error bound depends on a uniformity measure. This
measure is defined as follows:

Definition 1. (Covering radius) (See Niederreiter, 1992, p. 148.) If (X , ρ) is a bounded
metric space and the point set P consists of x1, . . . ,xn ∈ X , then the covering radius of
P in X is defined by

dn(P,X ) = sup
x∈X

{

min
16i6n

{

ρ(x,xi)
}
}

= sup
x∈X

{

dnn(x,P)
}

.

Niederreiter coined the term dispersion for dn, which “may be viewed as a measure
for the deviation from denseness” (Niederreiter, 1992, p. 149). However, the name did not
become widely accepted, because it does not reflect the intuitive meaning of dn and by
now it is also used differently in other diversity-related research (see, e.g. Erhan, 1990;
Lunacek and Whitley, 2006). Meinl et al. (2011) call this indicator the n-centre measure.
We will use the name covering radius, which is used for example by Damelin et al. (2010),
because dn is the smallest radius for which closed balls around the points of P completely
cover X . We restrict ourself to hypercubes X = [ℓ1, u1] × · · · × [ℓd , ud ] in this work.

Definition 1 is actually also identical to that of the minimax distance design criterion
as defined by Johnson et al. (1990). Based on this definition, Niederreiter (1992, p. 149)
proves an error bound on the estimate f̂ ∗ = f (x̂∗) of the global minimum f (x∗) of a
function f : X → R. In this estimate, x̂∗ = arg min{f (x) | x ∈ P} denotes the point in the
finite approximation set P ⊂X for which the best objective value could be observed.

Theorem 1. (See Niederreiter, 1992, p. 149.) If (X , ρ) is a bounded metric space, then,

for any point set P of n points in X with covering radius dn = dn(P,X ), we have

f̂ ∗ − f
(

x∗)6 ω(f,dn) ,
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where

ω(f, t) = sup
xi ,xj ∈X

ρ(xi ,xj )6t

{∣
∣f (xi) − f (xj )

∣
∣
}

is, for t > 0, the modulus of continuity of f .

This means that the prediction error for the global optimum is bounded by a function
only depending on f and the covering radius of the set P . Unfortunately, it is much more
difficult to create samples with low covering radius than with low discrepancy (Santner
et al., 2003, p. 149). The difficulty in calculating and thus optimizing dn(P,X ) is due
to the involvement of the uncountable X . Although no explicit formula is known for ar-
bitrary X , Pronzato and Müller (2012) give an algorithm for calculating dn(P, [0,1]d)
regarding Euclidean distance with run time O((dn)⌊d/2⌋), based on Delaunay tessella-
tion. (Another resort would be using a Monte Carlo approximation, because if X is fi-
nite with |X | = m, calculation of the indicator becomes straightforward with run time
O(mdn).)

Instead, we are going to take another approach, based on an observation of Johnson et

al. (1990).

2. Distance to the Boundary

A popular approach to generate point sets with a good distribution is to maximize the
minimal distance between points in the set (thus known as maximin approach). Unfortu-
nately, maximin approaches are plagued by a drift towards the boundary (Johnson et al.,
1990), which means that the point density at the boundary is higher than in the interior
of the space X (Illian et al., 2008, p. 145). Johnson et al. (1990) point out that in con-
trast to maximin designs, minimax designs do tend to avoid the boundaries. Therefore, it
would also be interesting to find out more about the boundary behaviour of other sampling
methods. And it would be even more desirable to have sampling methods with control-
lable behaviour. As a first step in this direction, let us define a measure to quantify the
proximity of a point set to the boundary.

Proposition 1. The distance between a point x ∈ X and the nearest neighbour on the

boundary B = {x ∈X | ∃i ∈ {1, . . . , d} : xi = ui ∨ xi = ℓi} is under every Lp norm

dnn(x,B) = min
16i6n

{

min{xi − ℓi, ui − xi}
}

.

Proof. Because the boundaries of X are paraxial, there exists a y ∈ B with ρ(x,y) =
dnn(x,B), which only differs from x in one variable i . As in one-dimensional space all
Lp distances are identical to the absolute difference, the distance must be the smaller one
of xi − ℓi and ui − xi . �
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Proposition 2. The expected distance between a random uniform point X in [0,1]d and

the boundary B is

δd := E
[

dnn(X,B)
]

= 1

2
· 1

1 + d
.

Proof. The expected distance to the lower boundaries is identical to the first order statistic
U1:d (the minimum) of a random sample U1, . . . ,Ud from U(0,1). U1:d has Beta(1, d)

distribution (Arnold et al., 1992, pp. 13–14) with density

fU1:d (x) = d · (1 − x)d−1 · 1[0,1](x) dx (1)

and expectation E[U1:d ] = 1/(1 + d). To account for the upper boundaries, too, it is suffi-
cient to consider Yi ∼ U(0, 1

2
) instead, because 0 6 Yi = min{Ui,1−Ui}6 1

2
. Therefore,

the sought quantity is E[Y1:d ] = E[ 1
2
U1:d ] = 1

2
· E[U1:d ]. �

As we can see, the expected distance to the boundary decreases with increasing di-
mension. This is just another manifestation of the curse of dimensionality and shows us
that in high dimensions, almost all of the space is in the boundary regions (Illian et al.,
2008, p. 183). We can now use the sample mean

d̄B = 1

n

n
∑

i=1

dnn(xi,B) (2)

to estimate how much emphasis a point set puts on the boundary in comparison with the
uniform distribution. The interesting thing about this criterion is that we are using a Monte
Carlo estimate to assess the quality of our point set. Although it alone is not sufficient for
getting the whole picture, it is attractive because it is a necessary condition for uniformity
and can be computed in linear time. Finally, we formalize the observation of Johnson et

al. (1990), regarding the boundary behaviour, in the following conjecture.

Conjecture 1. Point sets with maximal separation distance (maximin designs) possess

d̄B < δd and point sets with minimal covering radius (minimax designs) exhibit d̄B > δd .

This conjecture may be only a rule of thumb, but it is certainly true for the conventional
grid and the Sukharev grid, which are the optimal solutions under the L∞ norm regarding
separation distance and covering radius, respectively, Sukharev (1971), LaValle (2006,
pp. 202–203). The distance to the boundary is shown in Fig. 1, where we can also see
that d̄B , the Monte Carlo estimate for δd , becomes more precise with increasing n, but
this estimate is often less accurate than what we would expect in 95% of the cases with
random uniform points. For other norms, the optimal point sets can in the general case
only be approximated.

Niederreiter (1992, p. 152) shows that every low-discrepancy point set also is a low-
covering-radius point set (but not vice versa). This raises hope that combining discrepancy
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Fig. 1. Distance to the boundary for conventional and Sukharev grids in two (left) and five dimensions (right).
The horizontal black line indicates δd . The gray area represents a 95% confidence interval for δd under the
conditions of Proposition 3.

(or even a maximin criterion) with a side constraint d̄B − δd > ε yields a good criterion
to obtain point sets with a small covering radius. If, on the other hand, an exactly uniform
point set is sought, we can compare the deviation |d̄B − δd | to the expected value for
random uniform point sets. This expected value can be calculated exactly. Note that d̄B
can be rewritten to

d̄B = 1

n

n
∑

i=1

1

2
U

(i)
1:d

where U
(i)
1:d is the ith of n independent and identically distributed r.v.s. representing the

minimum of d independent standard uniform r.v.s. Therefore holds

E[|d̄B − δd |] = E

[∣
∣
∣
∣
∣

1

n

n
∑

i=1

1

2
U

(i)
1:d − δD

∣
∣
∣
∣
∣

]

= 1

2 n
E

[∣
∣
∣
∣
∣

n
∑

i=1

U
(i)
1:d

︸ ︷︷ ︸

=:Sn

− n

d + 1
︸ ︷︷ ︸

=:µn

∣
∣
∣
∣
∣

]

= 1

2 n
E[|Sn − µn|] (3)

where the p.d.f. of Sn is a convolution of the densities of n independent and identically
distributed Beta random variables each with p.d.f. as given in (1). According to Nadarajah
et al. (2015, p. 103), no one has been able to derive the exact distribution of the sum of
more than two independent Beta random variables. Of course, this statement does not
exclude that it might be possible for special cases.

Recall that the p.d.f. of S1 is just the p.d.f. of U1:d and therefore a polynomial of degree
(d −1) ∈ Nwith rational coefficients. As a consequence, the p.d.f. of Sn can be determined
recursively via

fSn(s) =
∫ n

0

fSn−1
(t) · fS1

(s − t) dt
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for n > 2 yielding a polynomial of degree nd − 1 with rational coefficients. Since

E
[

|Sn − µn|
]

=
∫ n

0

|s − µn|fSn(s) ds

=
∫ µn

0

(µn − s) fSn(s) ds +
∫ n

µn

(s − µn) fSn(s) ds

and µn ∈ Q, the value of the expression can be calculated exactly in form of a rational
number. Insertion in (3) leads to the exact value of E[|d̄B − δd |] for given d and n. Admit-
tedly, this is a tedious procedure but it has to be done only once to build a table up to some
limits for d and n. If these limits are large enough, approximations should be sufficient.

Proposition 3. For a set of random uniform points P in X = [0,1]d , |P | = n, with d̄B

computed as in (2), the mean absolute deviation around the mean δd is for large n

E
[

|d̄B − δd |
]

≈ 1√
2 π

· 1√
n

· 1

d + 1
·
√

1 − 2

d + 2
. (4)

Proof. As shown in the proof of Proposition 2, we have dnn(X,B)
d= 1

2
U1:d and hence

(Johnson et al., 1995, p. 217)

V
[

dnn(X,B)
]

= V

[
1

2
U1:d

]

= 1

4
V[U1:d ] = 1

4

d

(d + 2) (d + 1)2
. (5)

As n is typically large, we can now apply the central limit theorem, which says that the
mean of n independent identically distributed random variables with mean µ and variance
σ 2 is asymptotically normally distributed with mean µ and variance σ 2/n (Billingsley,
1995, p. 357). Therefore, the distribution of d̄B is approximately N(δd , σ 2/n) for large n

where σ 2 is the variance given in (5). The mean absolute deviation around the mean then
approximately follows the half-normal distribution, whose expected value in this case is√

2/π · σ/
√

n. Insertion of (5) leads to the result. �

3. Distance Between Centre of Mass and Centroid of the Hypercube

The distance of the sample’s centre of mass (i.e. the sample mean)

c̄P = 1

n

n
∑

i=1

xi

from the centroid c = (l + u)/2 of the hypercube X may be used as an additional quality
measure. It is another Monte Carlo estimate that can be computed in linear time and we
are able to analytically derive the expected value for random uniform sets as a reference.
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Suppose that X = [0,1]d with centroid c = (1/2, . . . ,1/2)T . If the sample of size n

is drawn from a uniform distribution on X , then each component of the sample mean is
built by the sum of n independent uniform random variables with support [0,1] divided
by n. Consequently, all components of the sample mean are independent and identically
distributed with a well known distribution.

Let Sn = U1 + U2 + · · · + Un be the sum of n independent uniform random vari-
ables (r.v.s) with support [0,1]. Then Sn has Irwin-Hall distribution (Johnson et al., 1995,
p. 296) and Bn = 1

n
Sn has Bates1 distribution (Johnson et al., 1995, p. 297) with proba-

bility density function (p.d.f.) fBn(x) = nfSn(nx) given by

fBn(x) = nn

2Ŵ(n)

n
∑

k=0

(−1)k
(

n

k

)(

x − k

n

)n−1
(

1 − 2 · 1[0,k/n)(x)
)

· 1[0,1](x)

with E[Bn] = 1
2
, V[Bn] = 1

12 n
and excess kurtosis K[Bn] = − 6

5 n
.

The next result ensures that the distance between sample mean and expected mean
in L1 norm can be determined from the mean deviation of a single Bates random variable.

Proposition 4. Let c ∈ Rd with ci = c0 for i = 1, . . . , d . If U (i) ∼ U [0,1]d with i =
1, . . . , n are independent and identically distributed (i.i.d.) random vectors, then

E

[∥
∥
∥
∥
∥

1

n

n
∑

i=1

U (i) − c

∥
∥
∥
∥
∥

1

]

= d · E
[

|Bn − c0|
]

(6)

V

[∥
∥
∥
∥
∥

1

n

n
∑

i=1

U (i) − c

∥
∥
∥
∥
∥

1

]

= d · V
[

|Bn − c0|
]

(7)

where Bn is Bates-distributed.

Proof. Since

∥
∥
∥
∥
∥

1

n

n
∑

i=1

U (i) − c

∥
∥
∥
∥
∥

1

=
∥
∥
∥
∥
∥

(

1

n

n
∑

i=1

U
(i)
1 − c0, . . . ,

1

n

n
∑

i=1

U
(i)
d − c0

)′∥
∥
∥
∥
∥

1

=
∥
∥
(

B(1)
n − c0, . . . ,B

(d)
n − c0

)′∥
∥

1

=
d
∑

j=1

∣
∣B

(j)
n − c0

∣
∣ (8)

and the Bates r.v.s B
(j)
n are i.i.d. for j = 1, . . . , d , the result follows by applying standard

rules for expectation and variance in (8). �

1Bates herself (Bates, 1955, p. 713) credits the derivation of this distribution to Pierre Simon de Laplace in
1774.
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The mean absolute deviation E[|Bn − µ|] with µ = E[Bn] can be calculated exactly
according to the following result, provided that the integral in (9) can be determined ex-
actly.

Proposition 5. If B is a continuous r.v. with support [0,1] and E[B] = µ = 1
2

where

fB(µ + x) = fB(µ − x) for all x ∈ R, then

E
[

|B − µ|
]

= µ − 2

∫ µ

0

x fB(x) dx and (9)

V
[

|B − µ|
]

= V[B] − E
[

|B − µ|
]2

. (10)

Proof. Since

E
[

|B − µ|
]

=
∫ 1

0

|x − µ|fB(x) dx

=
∫ µ

0

|x − µ|fB(x) dx +
∫ 1

µ

|x − µ|fB(x) dx

=
∫ µ

0

(µ − x)fB(x) dx +
∫ 1

µ

(x − µ)fB(x) dx

= µ

∫ µ

0

fB(x) dx − µ

∫ 1

µ

fB(x) dx

︸ ︷︷ ︸

=0

+
∫ 1

µ

x fB(x) dx −
∫ µ

0

x fB(x) dx

=
∫ 1

0

x fB(x) dx

︸ ︷︷ ︸

=µ

−2

∫ µ

0

x fB(x) dx,

the result for the expectation (9) has been shown. As for the variance, note that

V
[

|B − µ|
]

= E
[

|B − µ|2
]

− E
[

|B − µ|
]2 = E

[

(B − µ)2
]

︸ ︷︷ ︸

=V[B]

−E
[

|B − µ|
]2

which proves (10). �

If B has Bates distribution, i.e. B = Bn, the p.d.f. fBn in (9) is a polynomial with
rational coefficients so that the integral can be evaluated exactly as a rational number.
Table 1 contains the values for n = 1, . . . ,8.

Exact values for larger n can be obtained and tabulated with the assistance of symbolic
mathematical software. But since tables are inevitably of finite size an appropriate quick

approximation of the mean deviation for large n is desirable.
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Table 1
Exact mean deviation of Bates r.v.s

for n = 1, . . . ,8.

n E[|Bn − µ|]

1 1
4

= 0.2500

2 1
6

≈ 0.1666

3 13
96

≈ 0.1354

4 7
60

≈ 0.1166

5 1199
11520

≈ 0.1040

6 239
2520

≈ 0.0948

7 113149
1290240

≈ 0.0876

8 1487
18144

≈ 0.0819

Proposition 6. The expected L1 distance between c̄P and cX = (0.5, . . . ,0.5)⊤ for a set

of random uniform points P in X = [0,1]d , |P | = n, is for large n

E
[

‖c̄P − cX ‖1

]

≈ d ·
√

2

π
· 1√

12n
=: m̂1. (11)

Proof. First of all, we note that it suffices to regard the one-dimensional distances, because

E
[

‖c̄P − cX ‖1

]

= E

[
d
∑

i=1

|c̄P,i − 0.5|
]

=
d
∑

i=1

E
[

|c̄P,i − 0.5|
]

.

The standard deviation of a random uniform variable on [0,1] is 1/
√

12 (Johnson et al.,
1995, p. 279). Again using the central limit theorem, we obtain that ∀i ∈ {1, . . . , d}, c̄P,i

converges in distribution to N(0.5, σ 2
c̄P,i

), where σc̄P,i
= 1/

√
12n is both the standard

error of the mean and the standard deviation of the estimate c̄P,i . Finally, |c̄P,i − 0.5|
again approximately follows a half-normal distribution with expected value

√
2/π · σc̄P,i

,
which we only have to multiply by d to obtain the expected L1 distance in d dimensions.�

The data depicted in Fig. 2 was generated exactly by symbolic mathematical software
up to n = 300 before subtracting the approximating value (11) with 50 significant digits.
The deviation is less than 10−5 for n > 110 and about 2.2 · 10−6 for n = 300. Thus, the
tabulated values can be used for small values of n whereas the approximation is taken for
larger values.

In the light of the results of Aggarwal et al. (2001), this reference value may be useful
in high dimensions. On the other hand, it seems inappropriate to assess a c̄P with radially
symmetric distribution using the L1 distance, which is not radially symmetric. Luckily,
we can also derive a similar result for the L2 distance:

Proposition 7. Let Bn be Bates-distributed and c ∈ Rd with ci = E[Bn] for i = 1, . . . , d .

If U (i) ∼ U [0,1]d with i = 1, . . . , n are independent and identically distributed (i.i.d.)
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Fig. 2. The development of E[|Bn −µ|] for values of n = 1, . . . ,300 (left) and the corresponding approximation
error of the normality assumption (right).

random vectors, then

E

[∥
∥
∥
∥
∥

1

n

n
∑

i=1

U (i) − c

∥
∥
∥
∥
∥

2

2

]

= d · V[Bn] = d

12 n
(12)

V

[∥
∥
∥
∥
∥

1

n

n
∑

i=1

U (i) − c

∥
∥
∥
∥
∥

2

2

]

= d · V[Bn]2(2 + K[Bn]) = d (5 n − 3)

360 n3
. (13)

Proof. Since analogous to the previous proof

∥
∥
∥
∥
∥

1

n

n
∑

i=1

U (i) − c

∥
∥
∥
∥
∥

2

2

=
∥
∥
(

B(1)
n − c0, . . . ,B

(d)
n − c0

)′∥
∥

2

2
=

d
∑

j=1

(

B
(j)
n − c0

)2
(14)

and the Bates r.v.s B
(j)
n are i.i.d. for j = 1, . . . , d , we obtain d · E[(Bn − c0)

2] = d V[Bn]
for the expectation of (14) and d ·V[(Bn − c0)

2] = d · (E[(Bn − c0)
4]−E[(Bn − c0)

2]2) =
V[Bn]2 (K[Bn] + 3) − V[Bn]2 for the variance of (14) where c0 = E[Bn]. �

Again, note that there is no point in directly optimizing ‖c̄P − cX ‖ or |d̄B − δd |,
because they are not sufficient conditions for uniformity. However, it should be useful to
apply these measures to given point sets to detect potentially undesired deviations from
uniformity.

4. Application

Quasirandom sequences are often analyzed experimentally by plotting discrepancy against
the number of points (Morokoff and Caflisch, 1994). We are going to do the same thing
here and compare the resulting figures with figures for our linear-time estimators. As dis-
crepancy, the measure called Tn by Morokoff and Caflisch (1994) is used. Discrepancy
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is calculated for up to 218 points, while the linear-time measures are applied until 220.
The following quasirandom sequences are used: besides the original Halton sequence,
we employ the generalized (or scrambled) Halton sequence (Faure and Lemieux, 2009),
which arises from inserting certain permutations into the definition of the original Hal-
ton sequence. Concretely, we use the implementation of De Rainville et al. (2012) with
optimized two-dimensional projections.2 As a third representative, we use a state-of-the-
art Sobol’ sequence3 by Joe and Kuo (2008). It, too, offers optimized two-dimensional
projections, but not treating all projections equally.

Figure 3 compares the three sequences regarding discrepancy and the two new mea-
sures |d̄B − δd | and ‖c̄P − cX ‖2 in five and twenty dimensions. (The comparison has also
been carried out for d = 2,3,10,40.) The good news is that a reasonable estimation of cX
seems to be possible with all sequences with as few as 212 to 214 points (see Fig. 3(b)).
This holds even in forty dimensions. However, the Sobol’ sequence seems to have a burn-
in period where the other measures considerably deviate from uniformity (see Fig. 3(a)).
In forty dimensions, an estimated number of 223 points is necessary to even reach the dis-
crepancy of random uniform points (not shown here), although in experiments of Jäckel
(2002, pp. 91–96), Sobol’ sequences with “pattern-breaking” initializations could always
provide at least the same discrepancy as pseudorandomnumbers. Results by Carter (2011)
indicate that this contradiction to Jäckel’s results stems from the different discrepancy for-
mulation and not from the different Sobol’ sequence.

Sobol’ sequences typically exhibit local optima around powers of two if the number
of points is sufficiently high in relation to the dimension (see Fig. 3(a)). These optima can
also be detected in Fig. 3(b) for ‖c̄P − cX ‖.

The Halton sequence initially obtains a suspiciously low discrepancy in high dimen-
sions (see Fig. 3(a)). This may indicate that Tn gives misleading results if n ≪ 2d , because
simultaneously the value of ‖c̄P − cX ‖ of the Halton sequence is bad. In any case this
problem was predicted by Matous̆ek (1998) for a related discrepancy formulation.

Finally, the results regarding |d̄B−δd | are surprising (see Fig. 3(c)). While the absolute
values of d̄B exhibit a nice progression towards δd (not shown), the impression changes
when we put the deviation from δd into relation with the expected deviation for random
uniform point sets. In five dimensions, the results seem noisy, but acceptable. For d = 20,
however, we see a wavy pattern with deep spikes (which is even more pronounced in
forty dimensions), and also the convergence rate seems no better than the random uniform
expectation. Especially the d̄B of the Sobol’ sequence is too large for low n, which causes
the bad performance in Fig. 3(c).

We conclude that our linear-time measures can give additional insights into the be-
haviour of quasirandom sequences, especially for large point sets where discrepancy can-
not be computed conveniently any more. In total, the generalized Halton sequence seems
to have the most stable performance, considering all three measures.

2Available in the ghalton Python library at https://github.com/fmder/ghalton, Version 0.6.
3Generated with the direction numbers “new-joe-kuo-6.21201” and software from http://web.

maths.unsw.edu.au/~fkuo/sobol/, Version from 16 September 2010.
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(a) Relative discrepancy.

(b) Relative squared Euclidean distance between P’s centre of mass and the centroid of the hypercube.

(c) Relative deviation from the expected distance to the boundary.

Fig. 3. Quasirandom points evaluated with three summary characteristics for d = 5 (left) and d = 20 (right).
The horizontal line indicates the reference value for each measure.

5. Conclusion and Outlook

In this work we proposed to gain information about the uniformity of point sets indirectly,
by calculating measures for which we know reference values of the uniform distribution.
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In the future, it may also be promising to incorporate these measures into statistical tests.
For example, we might apply a nonparametric test for the hypothesis that some of the
characteristic values calculated from the sample are equal to the value under uniformity
assumption. If the test rejects the hypothesis, then we have strong evidence that the sample
is nonuniform. Moreover, we could test if the values 2 · dnn(x1,B), . . . ,2 · dnn(xn,B),
corresponding to a sample {x1, . . . ,xn}, are taken from a Beta(1, d) distribution. This
approach provides the ability to detect the nonuniformity of a d-dimensional sample in
linear time and statistically sound manner.

The general idea of our approach might also be transferable to more complicated sets,
e.g. hyperballs. However, it seems difficult to obtain the required reference values for
the uniform distribution in most cases. Especially non-convex objects do not seem to be
tractable. In this case, one would have to revert to direct calculation of uniformity, as, e.g.
shown by Hardin and Saff (2004).

Another important summary characteristic in spatial statistics is the nearest-neighbour
distance (Illian et al., 2008, pp. 126–127).Knowing the expected value for random uniform
points in arbitrary hypercubes would be very useful, although the Monte Carlo estimator
cannot be computed in linear time. Unfortunately, even special cases exhibit considerable
intricacy (Žilinskas, 2003).
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Taškų hiperkube tolygumo įvertinimas tiesiniu laiku

Günter RUDOLPH, Simon WESSING

Nagrinėjamas uždavinys, kaip įvertinti taškų pasiskirstymo hiperkube nuokrypį nuo tolygaus pasi-
skirstymo. Geras tolygumas yra svarbus Monte-Karlo metodų, skirtų integralams skaičiuoti, tiks-
lumui, taip pat globalios optimizacijos algoritmų blogiausio atvejo paklaidoms įvertinti. Didelio
matavimo skaičiaus erdvėje tenka generuoti dideles taškų aibes ir tenka naudoti greitus kvazi atsi-
tiktinius metodus. Deja, tolygumo įvertinimo algoritmų sudėtingumas kvadratinis. Siūlome kelias
tolygumo charakteristikas, kurios gali būti apskaičiuotos tiesinio sudėtingumo algoritmais. Nors
šios charakteristikos nėra tiesioginis tolygumo matas, jos gerai indikuoja nuokrypius nuo tolygumo.
Straipsnyje pateikiamos kritinės šių charakteristikų reikšmės apskaičiuotos, kur įmanoma, tiksliai
arba apytiksliai.


