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Abstract. We propose a new hybrid approach to solve the unbounded integer knapsack problem
(UKP), where valid inequalities are generated based on intermediate solutions of an equivalent
forward dynamic programming formulation. These inequalities help tighten the initial LP relax-
ation of the UKP, and therefore improve the overall computational efficiency. We also extended this
approach to solve the multi-dimensional unbounded knapsack problem (d-UKP). Computational
results demonstrate the effectiveness of our approach on both problems.
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1. Introduction

The unboundedknapsack problem(UKP) describes the followingcombinatorial optimiza-
tion problem: given n types of items, items of type i have profit pi , weight wi , and un-
limited supplies. The object is to determine the number of copies of each type of items
that need to be placed in a knapsack, with capacity of c, to maximize total profit. Here,
n, c,wi and pi , are positive integers. This can be formulated as:

max

{

n
∑

i=1

pixi :

n
∑

i=1

wixi 6 c, xi ∈ Z∗

}

. (1)

The UKP, which was proved to be NP-hard by Lueker (1975), has been studied broadly
in the integer programming literature. Floudas and Pardalos (2009) provided comprehen-
sive overview of this problem. Gilmore and Gomory (1963) and Cabot (1970) proposed
algorithms to solve the UKP based on branch and bound (B&B) method. By deriving up-
per bounds and defining a core problem,Martello and Toth (1990a) presented an algorithm
for large UKP.

Various dynamic programmingapproacheshave also been developed.Classic dynamic
programming algorithms, which provide exact solutions, have been introduced by Dantzig
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(1957), Bellman (1957), and Gilmore and Gomory (1966). In order to reduce the search
space and solution time, several important properties of the UKP have been studied and in-
tegrated into dynamic programming approaches. Gilmore and Gomory (1963, 1966) pro-
posed the notions of dominance and periodicity. Based on partitioning in number theory,
Yanasse and Soma (1987) provided a modified dynamic programming approach. Martello
and Toth (1990b) introduced multiple dominance relations. Andonov et al. (2000) pre-
sented a new dynamic programming algorithm, EDUK, based on a new dominance rela-
tion termed threshold dominance.

By combining branch and bound approach and dynamic programming approach, sev-
eral hybrid algorithms have been introduced to solve the UKP. Poirriez et al. (2009) pro-
vided an algorithm to incorporate information obtained from applying B&B approach to
the core problem into dynamic programming.Martello and Toth (1984) presented a mixed
approach to obtain the exact solution of the subset sum problem (SSP), which is a special
type of the UKP.

The purpose of this paper is to illustrate how valid inequalities can be generated from
solutions of intermediate stages of a dynamic programming algorithm to improve com-
putational efficiency of solving the integer programming formulation of the UKP with
traditional approaches. This approach was proposed by Hartman et al. (2010) for the ca-
pacitated lot-sizing problem. Unlike other hybrid algorithms, utilizing B&B approach to
assist dynamic programming process, we incorporate inequalities derived from dynamic
programming to the root node of branch and bound tree, since dynamic programming pro-
vides useful information to strengthen the integer programming formulation of the UKP.
It is the first time, to the best of our knowledge, that such method has been applied to the
UKP.

Moreover, this approach is adapted to solve the multi-dimensional unbounded knap-
sack problem (d-UKP). In reality, many applications of knapsack problems are consisted
of more than a single constraint. The generalization of the UKP is the d-UKP, which could
be described as follows:

max

{

n
∑

i=1

pixi :

n
∑

i=1

wjixi 6 cj , j ∈ {1, . . . , d}, xi ∈ Z∗

}

. (2)

Instead of a member of knapsack problems, the d-UKP was always considered as a special
case of general integer programming problems, where all coefficients are positive and
variables are non-negative. However, using the concept of knapsack, this particular type
of problem could be handled effectively with our approach.

The rest of this paper is organized as follows. In Section 2, we review the concept
of dominance relations for the UKP. Section 3 describes the classic dynamic program-
ming method for solving the UKP and how we can revise it with dominance relations.
Section 4 introduces our approach to obtain valid inequalities from the dynamic program-
ming method. Section 5 discusses computational experiments design and shows test re-
sults. In Section 6, our approach is extended to solve the d-UKP. Finally, we conclude in
Section 7.
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2. Dominance Relations

Dominance relation is an important structural property for the UKP. Several researchers
have contributed to this topic, such as Martello and Toth (1990a) and Andonov et al.

(2000). We summarize known dominance relations as following:

1. Item type j simply dominates type i , if wj 6 wi and pj > pi .
2. Item type j multiply dominates type i , if βjwj 6 wi and βjpj > pi , where

βj ∈ Z+.
3. A set of item types J collectively dominates type i , if

∑

j∈J βjwj 6 wi and
∑

j∈J βjpj > pi , where βj ∈ Z+. Simple dominance and multiple dominance are
special cases of collective dominance.

4. A set of item types J threshold dominates type i , if
∑

j∈J βjwj 6 αwi and
∑

j∈J βjpj > αpi , where βj ∈ Z+ and α ∈ Z+.

Dominance relations help to simplify the problem. They set an upper bound for the
number of copies of an item type in the optimal solution. If item type i is collectively
dominated, it will generate less profit and consume more capacity compared with a com-
bination of items in set J . Therefore, it will not appear in any optimal solution for any ca-
pacity, and we can discard it. If item type i is threshold dominated, for the similar reason,
the maximum number of copies of type i in optimal solution is α − 1. Detecting domi-
nance relations could be considered as a step of pre-fixing variables and pre-processing to
reduce the size of problem, which will decrease the complexity of following procedures.

3. Dynamic Programming Approach

3.1. General Dynamic Programming

Several dynamic programming approaches have been developed for the UKP. Garfinkel
and Nemhauser (1972) introduced several fundamental dynamic programming ap-
proaches. In the consideration of how valid inequalities could be generated, following
forward dynamic programming recursion is applied to our proposed method: let fi(y) be
the maximum total profit that can be achieved in (1) with knapsack capacity y using only
the first i type items, where y = 0,1, . . . , c and i = 1,2, . . . , n. With initial conditions
fi(0) = 0, ∀i = 1,2, . . . , n and f0(y) = 0, ∀y = 0,1, . . . , c, the dynamic programming
recursion is given by:

fi(y) =

{

fi−1(y), for y < wi .

max{fi−1(y), pi + fi(y − wi)}, for y > wi .
(3)

The UKP could be solved by filling a c × n matrix with recursive equations given
above. Each column i , i ∈ {1,2, . . . , n} represents a stage. While cell (y, i) represents
a state and records the best profit that can be achieved by the first i type objects when
y units of capacity have been used, or fi(y). The value in cell (c, n) shows the objective



436 X. He et al.

value of the optimal solution. The complexity of this dynamic programming algorithm
is O(cn). When solving large-size problems, this algorithm could be time and memory
space consuming.

3.2. Modified Dynamic Programming

Now, we will illustrate how dominance relations could be involved in dynamic program-
ming and benefit the process. The detailed procedure is listed below:

Step 1. Identify the maximum weight among all item types that are in the dynamic pro-
gramming process.

Step 2. Apply the dynamic programming algorithm, which is mentioned above, for all
item types until capacity y reaches the maximum weight.

Step 3. Examine state fi(wi) for each stage i . If fi(wi) > pi , then item type i is col-
lectively dominated. We add the upper bound constraint of xi 6 0 to the integer
programming formulation and remove type i (stage i) from dynamic programming
process.

Step 4. Complete the dynamic programmingprocess on the remaining stages to the knap-
sack capacity c.

4. Valid Inequalities Derivation

Although, from a practical point of view, adjusted dynamic programming process runs
faster than the original one, they have the same complexity O(cn). When the capacity of
a knapsack or the amount of item types is large, it may be cumbersome to execute the
entire adjusted dynamic programming. With partial dynamic programming completed,
information on intermediate solutions can be translated into effective inequalities for the
integer programming formulation (1) of the UKP. To assure meaningful solutions, we sort
items in descending order of profitability, i.e.:

p1

w1

>
p2

w2

> · · ·>
pn

wn

.

It should be clear that an item with higher profitability is more likely to benefit the total
profit of a knapsack when the capacity is fixed. And according to periodicity, another well-
known property of the UKP, the most profitable item plays a different role with other type
items, i.e. it is the only item that continuously contributes to the optimal solution when the
capacity is above a threshold value. Therefore, we would like to place the most profitable
item as the first stage.

Lemma 1 defines a valid inequality for the UKP based on the dynamic programming
solutions.

Lemma 1. For any i = 1,2, . . . , n, the following inequality is valid for all feasible solu-

tions of (1):

p1x1 + p2x2 + · · · + pixi 6 fi(c). (4)
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Proof. By the definition of fi(y), we have

p1x1 + p2x2 + · · · + pixi 6 fi(w1x1 + w2x2 + · · · + wixi).

Because x1, x2, . . . , xi constitute a feasible solution, they should satisfy the problem con-
straint:

w1x1 + w2x2 + · · · + wixi 6 c.

Therefore, together with the fact that fi(y) is a non-decreasing function of capacity y , we
conclude that

p1x1 + p2x2 + · · · + pixi 6 fi(w1x1 + w2x2 + · · · + wixi)6 fi(c).

Thus, (4) is valid to (1). �

This inequality defines an upper bound on the profit that the first i types of items would
contribute to the knapsack in all feasible cases.

Secondly, we introduce another valid inequality which defines an upper bound for
the total profit of the first i types of items as a function of their total weight. Define
Wi =

∑i
k=1

wkxk and Pi =
∑i

k=1
pkxk . There exists a point (Wi,Pi) corresponding to

each feasible solution and all of these points are on or below the step function fi(y) (refer
to Figs. 1–3), because fi(y) can also be interpreted as the highest profit when the total
weight of first i types of items is no more than y . Note that fi(y) is not necessarily a con-
cave function of y . However, we could define the upper concave envelope of fi(y) by
using Ji inequalities. Let aij and bij represent the slope and intercept of j th inequalities
respectively, and these inequalities are in the following form:

fi(y)6 aijy + bij . (5)

Since all feasible solutions (Wi ,Pi) satisfy inequality (5), the upper bound on the total
profit as a function of total weight can be defined as follows:

Pi 6 aijWi + bij , (6)

or

i
∑

k=1

(pk − aijwk)xk 6 bij . (7)

Since the knapsack has a capacity of c, y could be any value between 0 and c. To find
the upper concave envelope of fi(y), we need to examine c points. This process could be
simplified with the following two lemmas.

Lemma 2. If the capacity of a knapsack is large enough such that c > w1, then the first

inequality which defines the concave envelope of fi(y) has slope ai1 =
p1

w1
and intercept
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bi1 = 0, or:

fi(y)6
p1

w1

y. (8)

Proof. Recall that we have ordered the items by decreasing profitability. Because fi(y)

records the best profit under capacity y and the highest profit per unit is given by p1

w1
,

fi(y), as well as the total profit for any feasible solution, should be less or equal to p1

w1
y .

Therefore, inequality (8) holds. Also we could confirm that (8) is tight and defines the
first inequality of the concave envelope of fi(y), since it passes through points (0,0) and
(w1,p1) which are on the function fi(y). �

Lemma 3. If there is no item that has the same profitability as item 1, then the second

inequality segment begins from point (⌊ c
w1

⌋w1, ⌊
c

w1
⌋p1).

Proof. The proof is straightforward. Because all points (kw1, kp1), k = 0, . . . , ⌊ c
w1

⌋ are

on the first inequality segment fi(y) =
p1

w1
y and all other items have smaller profitabil-

ities, the second segment will begin at the last point on (8), i.e. the point (⌊ c
w1

⌋w1,

⌊ c
w1

⌋p1). �

Thus, we could obtain the first inequality directly, and to derive the remaining in-
equalities, only points between ⌊ c

w1
⌋w1 and c, which are less than w1 points, need to be

investigated.
The following example illustrates how we can create the valid inequalities that we

introduced above.

Example 1. Consider the UKP with three items with profits p1 = 15, p2 = 9, p3 = 4,
respectively, and weights w1 = 6, w2 = 4, w3 = 3, respectively, and the knapsack has a
capacity of 15. This problem can be formulated as:

max
{

15x1 + 9x2 + 4x3 : 6x1 + 4x2 + 3x3 6 15, x1, x2, x3 ∈ Z∗
}

.

The optimal solution is x = (2,0,1) with a total profit of 34. Note that no item type is
collectively dominated in this problem.

Solving the first stage, i = 1, with dynamic programming, we find f1(15) = 30, such
that the maximum profit can be achieved if the first item is 30. The valid inequality cor-
responding to (4) is:

15x1 6 30.

Figure 1, which depicts f1(y) as a function of y , illustrates that f1(y) is non-linear and
is an upper bound for all feasible solutions when considering only the first item type. We
can derive the concave envelope inequalities for stage 1 according to (6). Connecting total
weight 0 through 12 defines:

15x1 6
5

2
(6x1),
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Fig. 1. Graph of f1(y) values and envelope inequalities.

Fig. 2. Graph of f2(y) values and envelope inequalities.

while connecting total weight 12 through 15 defines:

15x1 6 30.

For the first stage, the valid inequality obtained according to (6) is either redundant or
a duplication of the valid inequality obtained according to (4). We generate it here to
achieve the completeness of example. However, when solving problems, valid inequalities
corresponding to (6) will not be derived for the first stage.

After solving stage 2, i = 2, we find f2(15) = 33, and the inequality based on (4) is:

15x1 + 9x2 6 33.

Figure 2 includes information of the first two items and the concave envelope is defined
with inequalities:



440 X. He et al.

Fig. 3. Graph of f3(y) values and envelope inequalities.

15x1 + 9x2 6
5

2
(6x1 + 4x2),

15x1 + 9x2 6
3

2
(6x1 + 4x2) + 12,

15x1 + 9x2 6 33.

After stage 3, i = 3, the problem has been solved to optimality with f3(15) = 34. The
inequality described by Eq. (4) is:

15x1 + 9x2 + 4x3 6 34,

and the concave envelope inequalities captured by Fig. 3 are:

15x1 + 9x2 + 4x3 6
5

2
(6x1 + 4x2 + 3x3),

15x1 + 9x2 + 4x3 6
3

2
(6x1 + 4x2 + 3x3) + 12,

15x1 + 9x2 + 4x3 6 6x1 + 4x2 + 3x3 + 19.

5. Computational Results

In this section, several data sets which involve different weight-profit correlation were
generated to demonstrate the effectiveness of our proposed method.

5.1. Instance Generation

Random Cases. In accordance with the relationship of items’ weights and profits, three
types of random data sets were generated and tested with our presented approach: un-
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correlated, weakly correlated and strongly correlated. This testing scheme was sug-
gested by Martello and Toth (1990b). In all three cases, weights are randomly selected
among the interval [wmin,wmax]. In the uncorrelated case, profits are randomly picked
from [pmin,pmax], so that the data sets of weights and profits are independent of each
other. For the weakly correlated case, profit pi is obtained randomly in the range of
[awi −b, awi +b], where a and b are two predetermined numbers. Finally, in the strongly
correlated case, profit pi is fixed as awi + b, which is linearly dependent on wi .

In our experiments, both n = 100 and n = 500 have been examined. The ranges of
items’ weights [wmin,wmax] varied based on the total number of items to allow more
weight choices when n is big. Specifically for all random cases, we set parameters as
follows: wmin = 30,wmax = 200, and c = 0.2 ×

∑n
i=1

wi when n = 100, while wmin =

60,wmax = 800, and c = 0.1×
∑n

i=1
wi when n = 500. For uncorrelated cases, pmin = 50

and pmax = 250 when n = 100, while pmin = 80 and pmax = 850 when n = 500. For
weakly correlated cases and strongly correlated cases, we have a = 1 and b = 20 when
n = 100, while a = 1 and b = 40 when n = 500.

Realistic Cases. Although the above random cases (uncorrelated, weakly correlated
cases) create possible data sets for the UKP, they do not frequently happen in real world
problems, since it is not common for an item with a heavier weight to be less valuable.
Sinha and Zoltners (1979) first introduced a realistic scenario where a heavier item has
more profit. To begin this data generation process, n weights and n profits are selected ran-
domly from their own feasible intervals, [wmin,wmax] and [pmin,pmax]. Then sort them
in the descend order respectively and match sorted weight wi and pi up to become prop-
erties of one item type. At the end, the sequence of item types is reorganized according to
the original order of items’ weights. Hence, if wi 6wj , then pi 6 pj and weights wi are
in random order.

We run tests for realistic cases with the same parameter setting as uncorrelated random
cases.

Hard Cases. Andonov et al. (2000) described three hard cases for the UKP concern-
ing dominance. To construct these data sets, choose weights randomly in the range of
[wmin,wmax] firstly, where wmin and wmax are positive integers and satisfy wmin < wmax <

2wmin. Then sort weights in the increasing order, and apply one of the following three
equations to determine the profits of items. Finally, rearrange items according to the orig-
inal order of weights.

pi = wi , (9)

pi = max

{

1 + pi−1,

⌊

wipi−1

wi−1

⌋}

, p1 is randomly chosen, (10)

pi =

⌊

wipi−1

wi−1

⌋

+ i − 1, p1 is randomly chosen. (11)

Hard cases satisfying (9)–(11) were tested respectively. When n = 100, we set wmin =

200,wmax = 399 and c = 0.2 ×
∑n

i=1
wi , and when n = 500, we set wmin = 650,wmax =
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Table 1
Time consumption for various testing cases (in ms).

Model Uncorrelated Weakly correlated Strongly correlated Realistic Hard with (10) Hard with (11)

n = n = n = n = n = n = n = n = n = n = n = n =

100 500 100 500 100 500 100 500 100 500 100 500

dp 6 187 6 194 5 189 6 202 13 440 13 456

bb 16 30 18 36 19 308 24 67 1488 2585∗ 36 ∗

cplex 20 34 26 28 20 29 24 29 28 57 24 47

profitu10 16 27 15 21 12 20 19 22 12 41 18 31

profitu20 16 25 16 22 14 25 18 24 15 43 16 33

profitu30 12 25 16 23 13 27 18 26 12 52 15 41

envu10 15 21 13 22 13 28 17 22 16 39 17 32

envu20 14 25 13 23 12 26 14 26 19 46 15 34

envu30 14 24 13 21 11 27 15 26 22 56 14 42

envuinc10 16 22 14 19 12 22 17 21 16 37 17 44

envuinc20 15 22 13 22 11 27 14 25 15 48 15 37

envuinc30 15 22 13 22 12 29 15 24 16 58 17 51

∗ Indicates that there are instances that require more than 300 seconds to solve. The average time is calculated
without these instances.

1299 and c = 0.1 ×
∑n

i=1
wi . Also for (10) and (11), we have p1 ∈ [150,250] for n = 100

and p1 ∈ [600,700] for n = 500.
During the test on hard cases with formula (10), we found some special instances that

CPLEX takes extremely long time, more than 20 seconds, to solve comparing with general
instances, where the solving time is less than 0.1 seconds. We also tested our method on
these instances.

5.2. Experimental Results

We tested our proposed approach for each case discussed above. The dynamic program-
ming algorithm was applied to a subset of the reordered items (stages) and inequali-
ties were obtained and added to the original integer programming formulation to solve
the UKP. For comparison, classic dynamic programming approach and basic branch and
bound approach are applied. We tested five random instances for each case. All experi-
ments were conducted on a personal computer running Windows 7 with a 2.60 GHz CPU
and 8.0 GB memory. And CPLEX 12.6 was applied.

We included the following models in experiments and compared the computational
efficiency of solving each of them:
dp: Dynamic programming approach.
bb: Branch and bound approach.
cplex: Formulation (1) solved by CPLEX (default settings).
profitu: Valid inequalities (4) together with cplex.
envu: Concave envelope inequalities (6) derived in the last dynamic programming stage
together with cplex.
envuinc: Concave envelope inequalities (6), which are derived through every stage, added
incrementally to the standard formulation (1).

The integer number after models profitu, envu and envuinc represents the number of
dynamic programming stages executed in the model.

Table 1 summarizes average time consumption for each model on each testing case
except the hard case with (9). This type of problem is also known as subset sum problem
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Strongly correlated case with 100 items Strongly correlated case with 500 items

Realistic case with 100 items Realistic case with 500 items

Fig. 4. Initial gap of cplex and proposed models for partial testing cases.

and can be solved by all models in the experiment in a short time. Result shows that dp

approach is very sensitive to the size of the problem, both the number of items and the
capacity of a knapsack. When there are 100 items with relatively small knapsack capacity,
it has the best performance over all other models. However, when the number of items
increases (as the result of how we decide capacity value, the capacity increases as well),
the time spent on finding optimal solution increased dramatically. The testing result also
shows the advantage of dp approach, i.e. computation times are stable for fixed size of
problems. For bb approach, it is sensitive to the input parameters, such as the relationship
between items’ profits and weights. It has long computation times for hard cases with
equation (10) and (11). For cplex, although it also tends to have longer time when problem
size grows, unlike dp, the time increases moderately. Our proposed models have good
performance on average. For most of cases tested, they solve problems faster than bb and
cplex. And compared to dp, they are less sensitive to the size of problem.

Besides computation time, initial gap is another important measurement. Initial gap
presents the relative difference between the first integer solution explored and the best
upper bound then. A smaller initial gap implies that tighter lower bound or/and tighter up-
per bound has been found to facilitate pruning search space, eliminating candidate nodes.
Therefore, usually less time is spent on exploring nodes of the search tree. For brevity,
we only present the initial gap of cplex and our proposed models in a strongly correlated
case and a realistic case in Fig. 4. Result demonstrates the dynamic-programming-based
inequalities help to improve the initial gap in most of the experimental cases. The envuinc

model, which is close to envu model but derives inequalities incrementally for each stage,
has similar testing result to that of envu.
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Table 2
Special instances solution time (in seconds).

Instance cplex profitu envu envuinc

1 22.45 0.07–5.51 0.07–5.47 0.05–2.05
2 42.18 0.10–0.11 0.06–0.12 0.07–0.09
3 72.84 0.05–0.08 0.07–0.21 0.08–0.16
4 145.95 0.06–0.07 0.07–0.11 0.10–0.20
5 188.87 0.23–1.87 0.23–1.07 0.15–0.24
6 5086.51 0.04–0.07 0.05–0.18 0.07–0.08
7 8095.91 0.19–0.30 0.25–81.66 0.23–26.96

Table 2 illustrates time consumption of cplex model and our proposed models on solv-
ing special instances found during instances generation of hard cases. With valid inequal-
ities added to original integer programming formulation, these problems can be solved in
a very short time.

Note that our experimental results indicate that examining more stages of the dynamic
programming does not always provide better performance. Because there is a potential
trade-off between obtaining computational advantage from a better initial solution caused
by trimming model with more dynamic-programming-based inequalities and computa-
tional cost on calculating these inequalities.

6. Multi-Dimensional Unbounded Knapsack Problem

Most researchers consider the multi-dimensional unbounded knapsack problem as a spe-
cial case of general integer problem with non-negative coefficients. There is little literature
studying this problem based on the concept of knapsack. However, by embedding the no-
tion of knapsack, our approach for single constraint unbounded knapsack problem could
be extended and modified to solve this type of problems.

6.1. Dominance Relations

The concept of dominance relations was originally developed for the UKP. However,
it could be extended to the d-UKP easily with the consideration of d attribute measure-
ments, instead of one weight measurement, for each item type. In the d-UKP, item type j

simply dominates item type k, if pj > pk and wij 6 wik , ∀i . We could define multiple
dominance, collective dominance and threshold dominance for the d-UKP in the same
way. As d , the number of constraints in problem, increases, the efficiency and benefits
of examining items’ dominance relations decrease. Because, firstly, more attribute mea-
surements need to be checked to determine whether they satisfy the requirement of dom-
inance relation, which is time consuming. Taking detection of simple dominance relation
as an example, the time needed to compare attributes’ values among all pairs of items
is O(dn2), which increases linearly with the number of constraints. Secondly, there will
be less dominance relation among items due to more dominance requirements to qual-
ify. In the case of randomly generated coefficients, for two randomly chosen items, the
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Table 3
Percentage of simply dominated items in randomly generated cases.

d = 1 d = 2 d = 5 d = 10 d = 15 d = 20

n = 100 95.8 87.2 42.7 7.3 0.2 0.0
n = 500 99.3 96.4 67.6 11.4 0.7 0.0

probability that one simply dominates the other is (0.5)d , which decrease dramatically as
d increases. Moreover, a test on instances with random coefficients has been conducted
to investigate the percentage of simply dominated items with different numbers of con-
straints. The result is given in Table 3. If there are two constraints, more than 80% of items
are dominated and could be removed from later consideration. Thus, the pre-processing
of dominance relation is efficient in shrinking the size of problem. But as d increases,
the number/percentage of simply dominated items will reduce, hence the size of prob-
lem couldn’t be reduced much by pre-fixing variables of dominated items to zero. When
problem has more than 15 constraints, pre-processing is not beneficial.

In general, with large d , more time is spent on dominance detection, but less dominated
items could be found and removed from problem. Therefore, when it comes to the d-UKP,
we only detect simple dominance relation among items for problems with no more than
10 constraints.

6.2. Dynamic Programming with Lists

For the UKP, we filled up a c × n table to store states. If the same dynamic programming
approach is applied on the d-UKP, time and space required will be O(mc1c2 · · ·cd), which
is computationally expensive even for a medium scale problem with a small number of
constraints. To deal with this issue, list representation is used.

Because the dynamic programming function of the d-UKP is a step function, similar to
that of the UKP, list could be utilized solely to contain states where the dynamic program-
ming function value changes. This idea was applied for single constraint 0–1 knapsack
problems in Horowitz and Sahni (1974) and multi-dimensional 0–1 knapsack problems
in Balev et al. (2008). The following is our proposed generalization of dynamic program-
ming with lists for the d-UKP with accommodation to inequalities derivation process.

During the dynamic programmingprocess, a list of states will be created for each stage.
Every state (β,f ) represents a feasible solution, where β is capacity consumption in d

dimensions and f is corresponding profit. To seek computational efficiency and ease of
generating valid inequalities in next step, states in lists are required to be stored in the
order of increasing total profit.

The first state list, L1, is formed with all feasible non-negative integer multipliers of
item type 1, i.e.

L1 =
{

(a × W̄1, a × p1)
}

, a = 0,1, . . . , min
j=1...d

⌊cj/wj1⌋,

where W̄i is column vector (w1i,w2i, . . . ,wdi).
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For other stages, the generation of Lt (t > 2) is based on states in Lt−1. Given a state
(βk, fk) in Lt−1, new states added to Lt are

{

(βk + a × W̄t , fk + a × pt )
}

,

where multiplier a is any non-negative integer number and new state is kept feasible.
However, with this state generation scheme, an ordered list may not be obtained directly.
To have an ordered list, a sorting process is required which will cost O(mlogm), where
m is the length of the list. To achieve computational efficiency, instead of sorting after
the list is created, we suggest keeping an ordered list all the time during state generation
with assistance of two pointers P1 and P2. P1 indicates the state that currently is in use
to create new state, while P2 points to the location where the new generated state should
be inserted into the list regarding its profit. Both pointers are initialized at the beginning
of the list. New state generated is (βk + W̄t , fk + pt ), where (βk, fk) is the state pointed
by P1. Since states in a list are ordered according to their profits, to find the correct place
to insert new state, P2 needs to move down through the list until the first state with higher
profit comparing with new state’s profit is found. Then the new state is inserted in front
of the state labelled by P2. Afterwards, P1 is moved to the next state and this procedure
is reposted until P1 is at the end of the list and no more feasible state could be produced.
Because both pointers only go through the list once, the complexity of set up list Lt is
O(m).

Similar to the concept of dominance relations among different item types, there are
states considered to be non-promising during dynamic programming process, i.e. state
(βk, fk) is a non-promising state if, for some other state (βt , ft ), βk > βt and fk 6 ft .
These states won’t lead to optimal solution, therefore they could be removed from a list to
keep lists short and reduce the computation time and memory space requirement.

6.3. Valid Inequalities Derivation

We proposed two types of valid inequalities for the UKP in Section 4. Both of them could
be applied to the d-UKP.

First, to derive inequality (4), the upper bound of total profits for the first i types of
items is needed. Since we have ordered lists of states, the upper bound is the profit asso-
ciated with the last state of Li .

Second, to create inequality (6) for the d-UKP, the upper concave envelope of points
in (d + 1) dimensional space needs to be calculated instead of that in 2 dimensional space
for the UKP (Figs. 5 and 6 show points and upper concave envelope for a problem with
two constraints). Each attribute represents one dimension and total profit represents one
additional dimension.

Obtaining the exact upper concave envelope as valid inequalities is computationally
expensive even for low-dimensional problems. To simplify the process, single attribute
dimension will be considered at a time. In other words, envelope is projected to the plane
spanned by selected attribute and total profit (see Fig. 7). Then inequalities could be con-
structed with the same process as that for the UKP. This is repeated for all other attributes.
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Fig. 5. Feasible states for a 2-d knapsack problem. Fig. 6. Upper concave envelope of points in Fig. 5.

Fig. 7. Projection of points to 2-d plane and the upper concave envelope.

6.4. Computational Results

Our approach is tested on random cases of the d-UKP with 100 and 500 item types and
dimension 2, 3, 5, 10 and 15 respectively. Profit and weights of each item type are uni-
formly generated from range (1,100). Capacity limits for all attributes are fixed to 300.
Average results over 5 iterations are shown in Table 4.

Results indicate that our proposedmethod for the d-UKP helps to enhance efficiency by
reducing the initial gap and the computation times for a medium-size problem. However,
as the number of constraints grows, the advantage of this method becomes less obvious.
First, as we mentioned in the previous section, when d becomes larger, fewer items are
dominated by others. Therefore, fewer variables could be fixed during the pre-processing
step. Second, dynamic programming process takes more time to be implemented. Third,
the second type of inequalities for the d-UKP is obtained by relaxing d − 1 dimensions of
the exact envelope, hence these inequalities become less accurate in defining the feasible
region when d is a large number.
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Table 4
Random cases for the d-UKP.

n d initgap (%) Time (ms) Nodes

cplex ours cplex ours cplex ours

100 2 2.32 1.94 147 31.67 0 0

3 4.16 3.90 165.33 31.33 0 0

5 9.17 8.22 191 57 22 0

10 24.34 14.40 287.67 188.33 771.67 747.33

15 20.87 19.84 410.33 322.33 3833.3 3295

500 2 1.46 0.84 175 54 0 0

3 3.09 1.29 208 54 0 0

5 8.15 5.59 180 73 0 0

10 27.1 14.37 1445 1006 11395 9520

15 25.62 21.18 1718 1358 14006 10883

7. Conclusions

In this paper, we present a new approach to solve the UKP and the d-UKP to optimal-
ity by taking advantage of both dynamic programming algorithm and traditional integer
programming algorithm. According to the information obtained from the partial execu-
tion of a dynamic programming recursion, we derive valid inequalities (4) and (6), which
help to tighten the integer programming formulation and obtain better initial bounds of
optimal solution. Therefore, after adding the dynamic-programming-based inequalities,
search space is pruned more efficiently and the time spent on exploring the solution tree
is reduced.
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Dinaminiu programavimu pagrįstos nelygybės neapribotam
sveikaskaitiniam kuprinės uždaviniui spręsti

Xueqi HE, Joseph C. HARTMAN, Panos M. PARDALOS

Siūlome naują hibridinį būdą spręsti neapribotam sveikaskaitiniam kuprinės uždaviniui, kur galio-
jančios nelygybės yra sugeneruotos iš tarpinių ekvivalenčios dinaminio programavimo formuluotės
sprendinių. Šios nelygybės padeda sugriežtinti pirmines tiesiniu programavimu pagrįstas uždavinio
relaksacijas ir pagerinti sprendimo skaičiuojamąjį efektyvumą. Taip pat šis būdas patobulinamas
spręsti daugiamačiam neapribotam kuprinės uždaviniui. Skaičiuojamieji rezultatai rodo šio būdo
veiksmingumą abiem uždaviniams spręsti.


