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Abstract. This is a survey of the main achievements in the methodology and theory of stochas-
tic global optimization. It comprises two complimentary directions: global random search and the
methodology based on the use of stochastic models about the objective function. The main attention
is paid to theoretically substantiated methods and mathematical results proven in the last 25 years.
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1. Introduction

Global optimization (GO) is a broad and active field of research including mathemati-
cal analysis of problems, development of algorithms and software, and applications of
the corresponding software to various real world problems. In the present paper we re-
view those global optimization methods (for continuous problems) which are based on
stochastic methods and stochastic models of the objective function. Let us note that the
founding editor of Informatica Jonas Mockus was one of the originators of these research
directions.

The roots of mathematical treatment of optimization problems can be traced even in
Antiquity. Some basic concepts of optimization theory were proposed by the classics of
calculus: Lagrange, Cauchy and others. However, the global optimization methods are in-
separable from their presentation and analysis as computer algorithms. One of the first
mathematically substantiated method of random search for the global optimum was pro-
posed by Jonas Mockus (1963) in the proceedings of the symposium on multiextremal
problems organized by himself. The original idea to construct a global optimization algo-
rithm using a statistical model of objective functions was proposed in Kushner (1962), and
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later Lithuanian researchers started the active development of the underlying theory and
corresponding algorithms; see Mockus (1972), Žilinskas and Mockus (1972). The other
group of researchers who also actively started the investigation of this approach (using
the title information methods) worked in Nizhnij Novgorod (Neimark and Strongin, 1966;
Strongin, 1969). The results of early development are well presented in several mono-
graphs (Mockus, 1967, 1988; Strongin, 1978; Törn and Žilinskas, 1989; Zhigljavsky,
1985; Žilinskas, 1986), and will not be reviewed here.

Our review covers the period from the nineties of the last century. Then the develop-
ment of global optimization accelerated by the establishment of the Journal of Global
Optimization in 1991. At the same time, in 1990, the journal Informatica was established
where many important results of the considered approaches to global optimization have
been published.

Formally, the problem of global minimization can be stated as follows:

f (x)→ min
x∈A

(1)

where f (·) is the objective function and A is a feasible region. Let x∗ be a global mini-
mizer of f (·); that is, x∗ is a point in A such that f (x∗)= f∗ where f∗ = minx∈Af (x).
Global optimization problems are usually formulated so that the structure of the feasible
region A is relatively simple; this can be done on the expense of increased complexity
of the objective function (for example, using penalty functions). The objective function
f (x) will be assumed continuous; further assumptions about the objective function and
feasible region will be made where appropriate.

A global minimization algorithm is a rule for constructing a sequence of points
x1, x2, . . . in A such that the sequence of record values

yo,k = min
i=1,...,k

f (xi) (2)

approaches the minimum f∗ as k increases (for convenience, we will assume yo,o = +∞).
In addition to approximating the minimal value f∗, one often needs to approximate at least
one of the minimizers x∗.

Deterministic and stochastic global optimization methods constitute two separate
classes of methods (despite the fact that many ideas, like the branch and bound idea, are
shared by many methods in these two classes). For the state of the art in the theory and
methodology of deterministic global optimization we refer to Floudas (2000), Horst et al.
(2000).

Stochastic global optimization methods, which the present paper is devoted to, are
methods for solving the global optimization problem incorporating probabilistic (stochas-
tic) elements, either in the problem data (the objective function, the constraints, etc.), or
in the algorithm itself, or in both.

If the objective function is given as a ‘black box’ computer code, the optimization
problem is especially difficult and stochastic approaches can often deal with problems of
this kind much easier and more efficiently than the deterministic algorithms.

We distinguish the following three classes of stochastic optimization algorithms.
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• Global random search (abbreviatedbelow by GRS). GRS algorithms involve random
decisions in the process of choosing the observationpoints. Theory and methodology
of GRS is reviewed in Section 2.

• Stochastic assumptions about the objective function. Much research have been done
in stochastic global optimization where stochastic assumptions about the objective
function are used in a manner similar to how the Lipschitz condition is used in de-
terministic algorithms. A typical example of a stochastic assumption of this kind is
the postulation that f (·) is a realization of a certain stochastic process. This part of
stochastic optimization is dealt with in Section 3 of this article.

• Heuristics or meta-heuristics. Many stochastic optimization algorithms where ran-
domness is involved have been proposed heuristically. Some of these algorithms are
based on analogies with natural processes; the well-known examples are simulated
annealing and genetic algorithms. Heuristic global optimization algorithms are very
popular in applications, especially in discrete optimization problems. Unfortunately,
there is a large gap between practical efficiency of heuristic optimization algorithms
and their theoretical rigour. There is a lot of literature on heuristic algorithms but
this literature will not be reviewed in this paper.

2. Global Random Search

2.1. Main Concepts

2.1.1. General
A generic GRS algorithm assumes that a sequence of random points x1, x2, . . . , xn is
generated, where for each j > 1 the point xj has some probability distribution Pj (we
write this xj ∼ Pj ). For each j > 2, the distributionPj may depend on the previous points
x1, . . . , xj−1 and on the results of the objective function evaluations at these points (the
function evaluations may not be noise-free). The number of points n (the stopping rule)
can be either deterministic or random and may depend on the results of function evaluation
at the points x1, . . . , xn, see Section 2.3.4. In order for an algorithm to be classified as a
GRS algorithm, at least one of the distributions Pj should be non-degenerate (so that at
least one of xj is a random point in A).

Attractive features of GRS: (a) the structure of GRS algorithms is usually simple;
(b) these algorithms are often rather insensitive to the irregularity of the objective func-
tion behaviour, to the shape of the feasible region, to the presence of noise in the objective
function evaluations, and even to the growth of dimensionality; (c) it is very easy to con-
struct GRS algorithms guaranteeing theoretical convergence.

Drawbacks of GRS: (a) practical efficiency of GRS algorithms often depends on
a number of parameters, but the problem of the choice of these parameters frequently has
little relevance to the theoretical results concerning the convergence of the algorithms;
(b) for many GRS algorithms an analysis on good parameter values is lacking or just im-
possible; (c) the convergence rate can be painfully slow, see Section 2.2.
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Improving the convergence rate (or efficiency of the algorithms) is a problem that much
research in the theory of global random search is devoted to.

Historical remarks. The first theoretical study of properties of the simplest GRS
algorithms was performed in Brooks (1958, 1959). In the sixties, seventies and the be-
ginning of eighties of the last century, the methodology of GRS have been extensively
developed by Leonard Andreevich Rastrigin and his school in Riga; see, for example,
Rastrigin (1964, 1968). Many methodological developments of L.A. Rastrigin have been
reinvented in the West by scholars working on meta-heuristics in GRS years after the death
of L.A. Rastrigin.

The first proper theoretical study of convergenceof a generic GRS algorithm was made
in Solis and Wets (1981); see also Section 2.2. A very comprehensive theoretical inves-
tigation of different probabilistic and statistical schemes related to the GRS was made in
Zhigljavsky (1985, 1991), which are Russian and English (much extended) versions of
the same book. The results published in Zhigljavsky (1991) are still largely unknown to
specialists on global optimization and especially to those working on meta-heuristics.

2.1.2. Main Principles of GRS
A very large number of specific global random search algorithms exist, but only a few
main principles form their basis. These principles can be summarized as follows:

P1: random sampling of points at which f (·) is evaluated,
P2: random covering of the space,
P3: combination with local optimization techniques,
P4: use of different heuristics including cluster-analysis techniques to avoid clumping

of points around a particular local minima,
P5: more frequent selection of new trial points in the vicinity of ‘good’ previous

points,
P6: use of statistical inference, and
P7: decrease of randomness in the selection rules for the trial points.

Principle P1 classifies an optimization algorithm as a GRS algorithm. P2 makes sure
that the search is global while P3 looks after local improvements in the process of search.
Good local solutions improve the record values (2) which work as thresholds for the new
points and are used in many algorithms for defining the prospectiveness of subsets of A
for further search.

Right balance between globality and locality of search is one of the main ingredients
of algorithm’s efficiency. Achieving the right balance depends on the complexity of com-
puting derivatives of f (·) (for performing fast local descent) and on efficient use of all
available information (prior information and information obtained during the process of
search) about f (·) and A. Processing of information about f (·) and A, obtained during
the process of search, can be achieved by the methodologies associated with Principles P4,
P5 and P6. The standard reference for P4 is Kan and Timmer (1987); P6 is considered in
Section 2.3. Principle P7 is discussed in Section 2.1.4. It is argued in that section that, in
a certain sense, any decrease of randomness in the choice of points xj leads to better (that
is, more efficient) optimization algorithms.
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2.1.3. Several Important Classes of GRS Algorithms
Consider a general GRS algorithm with xj ∼ Pj , j = 1,2, . . . . Construction of a par-
ticular GRS algorithm involves construction of a distribution Pj (based on all available
information at time j ) plus a stopping rule. For a general evolutionary GRS algorithm, in
the so-called population-based algorithms the distributions Pj are updated regularly; for
population-based algorithms, this updating is made only after a certain number of points
with previous distribution have been generated. Let us also mention four popular classes
of GRS methods where the updating of the distributions Pj is very simple.

PRS (Pure Random Search). Random points x1, x2, . . . are independent and have the
same distribution: xj ∼ P (so that Pj = P for all j ).

MGS (Markovian Global Search). The distribution Pj depends on xj−1 and the ob-
jective function value at this point but does not depend on the values of f (·)
computed earlier.

PAS (Pure Adaptive Search). Pj is uniform on the set Aj = {x ∈ A : f (x)≦ y0,j−1},
where yo,j−1 is the record value at time j − 1, see (2).

RMS (Random Multi-Start). Local descents are performed from a number of random
points in A.

PBS (Population-Based Search). Similar to MGS but groups (populations) of points
are probabilistically transformed into subsequent groups rather than points to
points in MGS.

Simplicity of PRS allows detailed investigation of this algorithm, see Sections 2.2
and 2.3. Another very attractive feature of PRS is its worst-case optimality (when P is the
uniform distribution on A). Indeed, any sophistication in the way of construction of the
distributionsPj leads to a waste of efforts in the worst-case scenario; this is a probabilistic
version of the celebrated result of A. Sukharev, see Sukharev (1971, 1972) and Chapter 4
in Sukharev (2012).

MGS algorithms, including the celebrated simulated annealing, are more clever than
the primitive PRS. At the same time, MGS algorithms are simple enough (they are simply
Markov Chains) to allow a thorough theoretical investigation. There are very many papers
on simulated annealing and other MGS but the practical efficiency of these algorithms is
rather poor: indeed, MGS algorithms are too myopic and they waste almost all information
about the objective function which is collected in the process of search. Note that some
very advanced theoretical results concerning the so-called monotonous MGS (when the
last observation point is always the point of current record) are contained in basically
unknown papers of Alexey Tikhomirov from Novgorod State University, see, for example
Tikhomirov (2006, 2007), Tikhomirov et al. (2007); see also Section 3.4 in Zhigljavsky
and Žilinskas (2008), where some results of A. Tikhomirov are reviewed. MGS algorithms
can be naturally generalized so that the distributions Pj depend not only on xj−1 and
f (xj−1) but also on the current record yo,j−1 and the point where this record has been
computed. Practically, these algorithms can be much more efficient than the pure MGS
algorithm but the theoretical study of these algorithms is generally very complicated in
view of dependence of Pj on all previous points. An obvious exception is PAS considered
next.
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The idea of PAS is extremely simple and different versions of PAS have been known
long before publication of Patel et al. (1989), where PAS has received the name and high
(but short-lived!) popularity, see for example Zabinsky and Smith (1992), Baritompa et
al. (1995) and the book (Zabinsky, 2003) almost exclusively devoted to PAS. This high
popularity of PAS is due to the fact that under some natural assumptions about f (·) and A,
PAS has exponential rate of convergence for any dimension of A. This popularity was
short-lived because people have quickly realized that generating random points in the sets
Aj = {x ∈ A : f (x)≦ y0,j−1} is extremely difficult. In particular, if to obtain a uniform
random point in Aj we generate independent random points in A and wait until the first
point arrives to Aj , then, as will be discussed in Section 2.3, the expected waiting time
is infinite, even for j = 2. There is, however, no other clear way of getting random points
in Aj .

RMS is an extremely popular algorithm in practical optimization. It is very clear and
very easy to program. Efficiency of RMS depends on the complexity of computing deriva-
tives of f (·) and other properties of f (·) such as the number of its local minimizers and
the volumes of different regions of attraction of local minimizers. It is advisable to use the
clustering heuristic of Kan and Timmer (1987) in order to avoid clumping of points around
local minimizers. Concerning theoretical studies of RMS, we are only aware of one good
paper (Zieliński, 1981), see also Section 4.5 in Zhigljavsky (1991) and Section 2.6.2 in
Zhigljavsky and Žilinskas (2008). Under some natural assumptions concerning the vol-
umes of the regions of attraction of local minimizers, R. Zieliński has derived a way of
making statistical inferences about the number of local minimizers after some number of
minimizers have been found (most of them, a few times).

In PBS methods, populations (that is, bunches of points) evolve rather than individual
points. There is a lot of literature on PBS but the majority of publications devoted to PBS
deal with metaheuristics rather than theory and generic methodology.Several probabilistic
models where populations are associated with probability distributions are proposed and
investigated in Chapter 5 of Zhigljavsky (1991). Some additional insights into the theo-
retical understanding of the asymptotic behaviour of PBS methods is given in Section 3.5
of Zhigljavsky and Žilinskas (2008). It is shown there that similar to the MGS methods,
where the so-called Gibbs distributions are of fundamental importance (they are the lim-
iting measures for the points xj ), eigen-measures of certain non-linear integral operators
play a similar role in many PBS. Space limitation refrains us from talking more here about
this fascinating direction of research which is not well known to specialists in GO.

2.1.4. Choice of Points: Random or Non-Random?
There are many attractive features of good GRS methods but how important is randomness
of the points xj ? In another words, what do we gain by choosing these points at randomand
can we improve the efficiency of GRS algorithms if we sacrifice some randomness? The
answer to this question is similar to what you find in other areas of applied mathematics
like Monte Carlo methods for estimation of integrals: we gain simplicity of the methods
and a possibility to make statistical inferences but if we care more about efficiency (that is,
the rate of convergence) then we have to sacrifice (in a clever way) as much randomness
as we possibly can.
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First of all, we need to perform local descents (which are parts of many GRS algo-
rithms) using standard deterministic routines like the conjugate gradient method (local
random search algorithms would never be able to compete with such methods). In the
global stage of GRS methods, where we explore the whole A or some prospective subsets
of A, purely deterministic or quasi-random sequences of points would do this exploration
much more efficiently than random sequences. In particular, if in place of random points
in PRS we use any of the quasi-random sequences (either low-discrepancy or even bet-
ter low-dispersion) well described in a wonderful book (Niederreiter, 2010), then we will
(i) dramatically improve the rate of convergence of PRS investigated in Section 2.2.2,
(ii) avoid very long waiting times with infinite expectation for getting new records (that
would cure somehow GRS methods like PAS), and (iii) gain the reproducibility of results.
If we use some semi-random sequences like the stratified sample in place of i.i.d. sample in
the PRS, then we will still be able to use some of the statistical procedures outlined below
in Section 2.3. More precisely, consider a version of PRS where the sample {x1, . . . , xn} is
stratified rather than independent. Assume that the distribution P = PU is uniform on A
and the set A is split into m subsets of equal volume. Assume also that in each subset we
generate l independent uniformly distributed points. The sample size is then n =ml. In
particular, under the assumption l > k and exactly the same assumptions about f (·), ex-
actly the same estimator (7) can again be used. The accuracy of this estimator is better than
the accuracy of the same estimator for the case of an independent sample, see Zhigljavsky
(1991, Section 3.2).

2.2. Convergence and Rate of Convergence of GRS Algorithms

2.2.1. Convergence
In the nineteen seventies and eighties (when there were only very few results known on
stochastic methods of global optimization), a number of papers were published establish-
ing sufficient conditions for convergence of GRS algorithms; see, for example, Solis and
Wets (1981) and Pintér (1984) and Auger and Hansen (2010) and Section 9.4 in Tempo
et al. (2012) for a much more modern discussion. The main idea in most of these, and
in many other results on convergence of GRS algorithms, is the classical, in probability
theory, ‘zero-one law’. The following theorem stated and proved in Zhigljavsky (1991,
Section 3.2) (in a more general form), illustrates this technique in a rather general setup.

Theorem 1. Let A be a compact set and f (·) be a continuous function on A satisfying
the Lipschitz condition. Assume that

∞∑

j=1

qj (ε)= ∞ (3)

for any ε > 0, where qj (ε) = infPj (B(x, ε)), with B(x, ε) = {z ∈ A:‖z − x‖ ≦ ε}; the
infimum in the expression for qj (ε) is taken over all x ∈ A, all possible previous evaluation
points and the results of the objective function evaluations at them. Then, for any δ > 0,
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the sequence of points xj with distributions Pj falls infinitely often into the set W(δ) =
{x ∈ A:f (x)− f∗ 6 δ}, with probability one.

Theorem 1 holds in the general case where evaluations of the objective function f (·)
are noisy and the noise is not necessarily random. If the function evaluations are noise-
free, then the conditions of the theorem ensure that the sequence {xj } converges to the
set A∗ = {arg minf } of global minimizers with probability 1; similarly, the sequence of
records yoj converges to f∗ = minf with probability 1.

For PRS with P = PU uniform on A, qj (ε)= const> 0 and hence (3) trivially holds.
In practice, a very popular rule for selecting the probability measures Pj is

Pj+1 = αj+1PU + (1 − αj+1)Qj , (4)

where 0 ≦ αj+1 6 1, PU is the uniform distribution on A and Qj is an arbitrary proba-
bility measure on A which may depend on the results of the evaluation of the objective
function at the points x1, . . . , xj . As an example, sampling from Qj may correspond to
performing several iterations of a local descent from the current record point xo,j ; that
is, a point with f (xo,j )= yo,j . Sampling from the distribution (4) corresponds to taking
a uniformly distributed random point in A with probability αj+1 and sampling from Qj

with probability 1 − αj+1.
If the probability measures Pj are chosen according to (4), then the condition∑∞
j=1 αj = ∞ implies (3) and hence convergence of the corresponding GRS algorithm.
Unless some regularity conditions about f like the Lipschitz condition are imposed

and used for guaranteeing that A is covered by the balls with centres at the observations
points xj , the statements like Theorem 1 are the only tools which guarantee convergence
of GRS algorithms. An implication of that is that the PRS with P = PU is the fastest
(in the worst-case scenario) GRS algorithm. Its rate of convergence we consider next.

2.2.2. Rate of Convergence of PRS
Consider the PRS defined in Section 2.1.3. Let ε, δ > 0 be fixed, x∗ = arg minf be a
global minimizer of f (·) andW(δ)= {x ∈ A:f (x)−f∗ ≦ δ}. If we want to study the rate
of convergence towards x∗ we set B = B(x∗, ε). Otherwise, if we study convergence with
respect to the function values (that is, convergence of yo,n − f∗), then we set B =W(δ).

Assume that our objective is hitting the set B with at least one point xj (j = 1, . . . , n),
where n is the total number of points generated by PRS. We will call the event ‘a point xj
hits the set B’ success. In this notation, PRS generates a sequence of independent
Bernoulli trials with success probability P{xj ∈ B} = P(B); note that under natural as-
sumptions about P we have P(B) > 0 for any ε > 0. In view of the independence of xj ,
P{x1 /∈ B, . . . , xn /∈ B} = (1 − P(B))n and therefore P{xj ∈ B for at least one j, 1 6

j 6 n} = 1 − (1 − P(B))n. Since P(B) > 0, this probability tends to one as n→ ∞.
Let us assume that we wish to reach the set B with probability at least 1 − γ for some

0< γ < 1. This gives the following inequality for n, the number of points required in the
PRS: 1 − (1 − P(B))n > 1 − γ . Solving it we obtain n> n(γ )= lnγ /ln(1 − P(B)). If
P(B) is small (which is always the case in practice), then ln(1−P(B))∼= −P(B), and we
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can replace the previous inequality with n> (− lnγ )/P (B); that is, one needs to make at
least ⌈− lnγ /P (B)⌉ points in PRS to reach the set B with probability 1 − γ .

Consider the quantity nγ = (− lnγ )/P (B). Multiplier (− lnγ ) depends on γ but it
cannot be too large in practical computations. For example, − lnγ ≃ 2.99573 for γ =
0.05. Unlike (− lnγ ), the multiplier 1/P (B) in the formula for nγ can be astronomically
large.

To give an example, assume A = [0,1]d , P = PU is uniform on A and B = B(x∗, ε).

Then vol(B)≦ εdVd , whereVd = π
d
2 /Ŵ( d

2
+1) is the volume of the unit ball (of radius 1)

in R
d . In view of the multiplier εd in the upper bound for the volume vol(B), this volume

can be extremely small even when d is not very large (say, d = 10) and ε is not very small
(say, ε = 0.1). This is much larger than the total number of atoms in the universe (which
is estimated to be smaller than 1081).

2.2.3. Rate of Convergence of a General GRS Method
As it was discussed in Section 2.2.1, the main way to guarantee convergence of a general
GRS algorithm is to choose the probabilitiesPj in the form (4) where αj satisfy (3). Let us
modify the arguments provided above for the case of PRS. As a replacement of the start-
ing equality P{xj ∈ B} = P(B), for all j > 1 we now have P{xj ∈ B} > αjPU (B), with
equality if we consider the worst-case scenario. Modifying the other arguments above cor-
respondingly we can define n(γ ) as the smallest integer such that the following inequality
is satisfied:

∑n(γ )

j=1 αj > −lnγ /PU (B). Assume αj = 1/j , which is a common recommen-
dation. Using for simplicity the approximation

∑n
j=1 αj ≃ lnn, we approximately obtain

n(γ ) ≃ exp{−lnγ /PU (B)}. If A = [0,1]d , then this gives n(γ ) ≃ exp{−lnγ /PU (B)}.
Assuming further B = B(x∗, ε, ρ2) we obtain n(γ ) ≃ exp{const · ε−d}, where const =
(−lnγ )/Vd (note also that if x∗ lies closer to the boundary of A than ε in any direction,
then the constant above and hence n(γ ) are even larger). For example, for γ = 0.1, d = 10

and ε = 0.1, n(γ ) is a number larger than 101000000000. Even for a small dimension d = 3,
γ = 0.1 and ε = 0.1, the value of n(γ ) is huge: n(γ )≃ 10238.

The main conclusion of this discussion is: even for moderate dimensions, general GRS
algorithms do not guarantee convergence worst-case scenario in practical computations.
Convergence could only be seriously discussed if the Lipschitz-type conditions are as-
sumed and used in the process of search.

2.3. Statistical Inference in GRS

2.3.1. Statistical Inference in PRS
Assume A is a compact in R

d and x1, . . . , xn are i.i.d. with xj ∼ P , where n is a large
number and P is a probability measure on A with some density p(x), which is a piece-
wise continuous function on A and p(x) > 0 for all x ∈ A. The following two types of
statistical inference based on prior information about f (·) and the information contained
in the values {yj = f (xj ), j = 1 . . . , n} related to the sample {x1, . . . , xn} could be made.

Type 1. Either a parametric or non-parametric estimator of f (·) can be constructed. In
PRS, such an estimator can only be used for defining a stopping rule (as the rule
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for choosing points xj ’s is fixed). Implicitly, non-parametric estimators of f (·) are
constructed in most evolutionary GRS algorithms (these estimators are used for the
construction of the rules for choosing the next points xj ’s).

Type 2. Statistical inference about f∗ = minf based on several smallest values extracted
from the sample {yj = f (xj ), j = 1 . . . , n}.

We will not consider inferences of Type 1 here as it would take us too far into the
direction of metaheuristic, see a comprehensive discussion in Zhigljavsky (1991). Below
we only consider inferences of Type 2. In this exposition, we closely follow the material
of Chapter 7 in Zhigljavsky (1991), Sections 2.3–2.6 in Zhigljavsky and Žilinskas (2008)
and Zhigljavsky (1993).

Since xj are i.i.d. with distribution P , the elements of the sample Y = {yj =
f (xj ), j = 1 . . . , n} are i.i.d. with c.d.f.

F(t)= P
{
x ∈ A:f (x)6 t

}
=
∫

f (x)6t
P(dx)= P

(
W(t − f∗)

)
, (5)

where t ≧ f∗ and W(δ) = {x ∈ A:f (x)≦ f∗ + δ}, δ ≧ 0. This c.d.f. is concentrated on
the interval [f∗ = minf,f∗ = maxf ] and our main interest is the unknown value f∗. The
analytic form of F(t) is either unknown or incomprehensible (unless f is very simple)
and we need to use asymptotic considerations. Luckily, the asymptotic distribution of the
order statistics is unambiguous and the conditions on F(t) (and hence on f ) when this
asymptotic law works are very mild and can always be assumed true. Specifically, for
a very wide class of functions f and distributions P , the c.d.f. F can be shown to have
the following representation for t ≃ f∗:

F(t)= c(t − f∗)α + o
(
(t − f∗)α

)
, t ↓ f∗, (6)

here c and α are some positive constants; more generally, c = c(t) can be a slowly vary-
ing function for t ≃ f∗ and the results cited below are also valid for this slightly more
general case. The value of c is irrelevant but the value of α, which is called ‘tail index’,
is very important. We shall assume that the value of α is known. As discussed below in
Section 2.3.2, this is usually indeed the case.

Denote by η a random variable which has c.d.f. (5) and by y1,N ≦ · · ·≦ yN,N the order
statistics corresponding to the sample Y . The parameter f∗ = minf is at the same time
the lower endpoint of the random variable η, i.e. f∗ = ess infη.

There are many good books on the theory of extreme order statistics and in this survey
we are not reviewing it. We refer the reader to the excellent book (Nevzorov, 2001), which
provides an introduction not only to the theory of extreme order statistics but also to the
related theory of record moments, which we are going to use in Section 2.3.4. A review
of both theories, fully sufficient for all our purposes, is contained in Section 2.3 of Zhigl-
javsky and Žilinskas (2008). The most important result in the theory of extreme order
statistics states that if (6) holds then c.d.f. F(t) belongs to the domain of attraction of the
Weibull distribution with density ψα(t) = α tα−1 exp{−tα}, t > 0. This distribution has
only one parameter, α, which is called ‘the tail index’.
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Several good estimates of f∗ are known for given α, see Zhigljavsky and Žilinskas
(2008, Section 2.4). We highly recommend one of them, the optimal linear estimator based
on the use of k order statistics. This estimator has the form

f̂N,k = c

k∑

i=1

[
ui/Ŵ(i + 2/α)

]
yi,N , (7)

where Ŵ(·) is the Gamma-function,

ui =





(α + 1), for i = 1,

(α − 1)Ŵ(i), for i = 1, . . . , k − 1,

(α − αk − 1)Ŵ(k), for i = k,

1/c=
{∑k

i=1 1/i, for α = 2,

1
α−2

(αŴ(k + 1)/Ŵ(k + 2/α)− 2/Ŵ(1 + 2/α)), for α 6= 2.

Under the assumption (6), for given k and α and for N → ∞, f̂N,k is a consistent and
asymptotically unbiased estimator of f∗ and E(M̂N,k −f∗)2, its asymptotic mean squared
error, has maximum possible rate of decrease in the class of all consistent estimates in-
cluding the maximum likelihood estimator ofM , see Chapter 7 in Zhigljavsky (1991) for
a comprehensive treatment of the theory.

Under the same assumptions, the following confidence interval for f∗ has asymptotic
(as N → ∞) confidence level 1 − δ:

[
y1,N − (yk,N − y1,N )/ck,δ, y1,N

]
, where ck,δ =

[
1 − (1 − δ)1/k

]−1/α − 1. (8)

Procedures of testing hypotheses about f∗ are based on constructing confidence in-
tervals for f∗. Indeed, if we want to test the hypothesis H : f∗ ≦ c, then we construct a
c.i. like (8) and if c belongs to this c.i., then the hypothesisH gets accepted. Those inter-
ested in more material related to construction of confidence intervals for f∗ and testing
hypotheses about f∗ are advised to consult (Weissman, 1981, 1982) and especially Chap-
ter 7 in Zhigljavsky (1991). A comparison of accuracy of statistical procedures outlined
above and similar to them was performed in Hamilton et al. (2007).

2.3.2. Tail Index
As it was mentioned above, the assumption (6) can always be assumed true. The main issue
is whether the value of the tail index α can be gathered or has to be estimated. The second
option is not good as the estimation of α is notoriously difficult; see De Haan and Peng
(1998) for a survey of a comparison of different estimators of α. The sample sizeN should
be astronomically large if we want to have an accurate estimator of f∗ obtained from (7)
or any other estimator of f∗ after replacing α with any (even best possible) estimator,
see for example Section 2.5 in Zhigljavsky and Žilinskas (2008). In PRS, however, we
can usually have enough knowledge about f to get the exact value of the tail index α. In
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particular, the following result holds: if the global minimizer x∗ of f (·) is unique and f
is locally quadratic around x∗, then the condition (6) holds with α = d/2. This result and
many generalizations of it have been established independently in De Haan (1981) and
Zhigljavsky (1981). For a detailed exposition of these results and the related theory see
Zhigljavsky (1985, 1991).

An important implication of the result α = d/2 is the so-called ‘curse of dimension-
ality’. Indeed, if α increases, the quality of all estimators, and in particular (7), fastly
deteriorates; for fixed y1,N and yk,N , the length of the confidence interval (8) also grows
fast, see Chapter 7 in Zhigljavsky (1991).

2.3.3. Branch and Probability Bound (BPB) Methods
Branch and bound optimization methods are widely known. These methods consist of
several iterations, each including the following stages: (i) branching the optimization set
into a tree of subsets (more generally, decomposing the original problem into subprob-
lems), (ii) making decisions about the prospectiveness of the subsets for further search,
and (iii) selecting the subsets that are recognized as prospective for further branching.

To make a decision at stage (ii) prior information about f (·) and values of f (·) at
some points in A are used, deterministic lower bounds concerning the minimal values of
f (·) on the subsets of A are constructed, and those subsetsZ ⊂ A are rejected (considered
as non-prospective for further search) for which the lower bound for fZ∗ = infx∈Z f (x)
exceeds an upper bound f̂∗ for f∗ = minf ; the record value (2) of f (·) in A is a natural
upper bound f̂∗ for f∗. A standard recommendation for improving this upper bound is to
use a local descent algorithm, starting at the new record point, each time we obtain such
a point.

Let us briefly consider a version of the branch and bound technique, which was in-
troduced in the first issue of Informatica, see Zhigljavsky (1990). We call these methods
‘branch and probability bound methods’ or shortly BPB methods.

At each iteration of a BPB method, an independent sample from the uniform distri-
bution in the current search region is generated and the statistical procedure mentioned
above for testing the hypothesis HZ : fZ∗ 6 f̂∗ is applied to make a decision concerning
the prospectiveness of sets Z at stage (ii). Rejection of the hypothesis HZ corresponds
to the decision that the global minimum f∗ cannot be reached in Z. If such a rejection
is erroneous, then it may result in losing the global minimizer. An attractive feature of
the BPB methods is that the asymptotic level for the probability of false rejection can be
controlled and kept on a prescribed low level.

The stages (i) and (iii) above can be implemented in exactly the same fashion as in the
classical branch and bound methods. When the structure of A is not too complicated, the
following technique has been proven to be convenient and efficient. LetAj be a search re-
gion at iteration j , j > 1 (so that A1 =A). At iteration j , in the search region Aj we first
isolate a subregion Zj1 with centre at the point corresponding to the record value of f (·).
The point corresponding to the record value of f (·) over Aj\Zj1 is the centre of a sub-
region Zj2. Similar subregions Zji (i = 1, . . . , I ) are isolated until either Aj is covered
or the hypothesis that the global minimum can occur in the residual set Aj/

⋃I
i=1Zji
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is rejected. The search region Aj+1 in the next (j + 1)-th iteration is naturally either
Z(j+1) =

⋃I
i=1Zji , a hyperrectangle covering Z(j+1), or a union of disjoint hyperrect-

angles covering Z(j+1). Note that at subsequent iterations all previously used points can
still be used as they are uniformly distributed at the reduced regions.

The BPB methods are both practically efficient for small d (say, d ≦ 5) and theoreti-
cally justified in the sense that under natural assumptions about f (·), they asymptotically
converge with a given probability, which can be chosen close to one. However, as d (and
therefore α) increases, the efficiency of the statistical procedures deteriorates. Therefore,
for large d the BPB methods are both hard to implement and their efficiency is poor.

BPB methods have recently been extended for solving multi-criteria optimization
problems, see Žilinskas and Zhigljavsky (2016). The main idea in this extension is the use
of the estimators (7) and the procedures and the confidence intervals (8) simultaneously
for all objective functions in the augmented weighted Tchebycheff optimization problems.
This has allowed us to estimate the Pareto front even when the original objective functions
are multi-extremal. Construction schemes of related BPB methods are then similar to the
standard single-criterion case.

2.3.4. Other GRS Algorithms Using Statistical Procedures of Section 2.3.1
BPB methods are not the only possible random search methods that benefit from the sta-
tistical procedures described in Section 2.3.1. Any population-based GRS method can
be complemented with these statistical procedures. They could be useful for (a) making
a stopping rule (see below), (b) helping to make decisions when to stop creating the cur-
rent population and start making a new one, and (c) complementing rules for deciding
on prospectiveness of different subsets of A. Possibilities are enormous, in particular for
those who like metaheuristical GRS algorithms as an example of such algorithm see a re-
cent paper of Kulczycki and Lukasik (2014).

The use of statistical inferences outlined in Section 2.3.1 for creating GRS algorithms
that can be useful for solving multicriteria optimization problems with non-convex objec-
tives has already been mentioned, see two paragraphs above. Let us also note a potential
usefulness of these statistical inferences for making stopping rules in population-based
GRS algorithms and deciding whether it is worthwhile to carry on generating random
points with given distribution. The idea developed in Zhigljavsky and Hamilton (2010) is
as follows. Consider the confidence interval (8) and assume that it is our main character-
istic of accuracy of the current sample. Assume we have made n observations so far. Then
the length of the confidence interval (8) is proportional to yk,n− y1,n. We want to make a
decision: stop with the current strategy of generating i.i.d. points xj or carry on doing this
hoping that our c.i. will (significantly) decrease. It is pointless waiting for an update of the
new record as the waiting time is infinite. However, each time yk,n is updated, the length
of the confidence interval (8) changes. The expected waiting time to the next update is not
that long, it is n/(k−1). The distribution of the change in the length of the c.i. should also
be taken into account when we decide whether to wait for the next update. Zhigljavsky and
Hamilton (2010) contain also many details concerning the corresponding stopping rules.
For other techniques of devising stopping criteria in GRS algorithms see Dorea (1990),
Hart (1998) and Yamakawa and Ohsaki (2013).
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3. Statistical Models Based Global Optimization

3.1. Basic Ideas

Methods based on statistical models of objective functions are oriented to the problems
which are generally described as ‘expensive’ ‘black box’ problems. Such a class of global
optimization problems is difficult to tackle theoretically as well as to develop algorithms
suitable to a broad field of applications. The theory of rational decisions under uncertainty
well suits to substantiate methods for such problems because of the correspondence of the
basic concepts: ‘black box’/uncertainty, ‘expensive’/rational, and optimization/decision.
Statistical model of uncertainty means here an appropriate statistical model of aimed ob-
jective functions, selected taking into account not only the representativeness of available
information but also the conformity with the efficiency of implementation of the corre-
sponding algorithms. The algorithms are defined as sequences of decisions under uncer-
tainty, and the ideas of rational decision making theory are used to find an appropriate
algorithm.

A model of functions under uncertainty considered in the probability theory is a
stochastic function; the terms ‘stochastic process’ and ‘random field’ also are used to
specify stochastic functions of one and several variables correspondingly. Let ξ(x),
x ∈ A be a stochastic function selected for a statistical model of the aimed objective
functions. The main algorithms based on the statistical models of objective functions
are the P-algorithm (Žilinskas, 1985), and one-step Bayesian algorithm (Mockus, 1972;
Žilinskas, 1975). We refer to the cited above monographs and papers of Žilinskas
(1990, 1992) for a review and the theoretical substantiation of these algorithms.

To define the considered algorithms we need the following notation. At the k+ 1 step
of search, the objective function values yj are computed at the points xj , j = 1, . . . , k,
and the current minimum computed value is denoted yo,k . The P-algorithm computes the
next objective function value at the point

xk+1 = arg max
x∈A

P
(
ξ(x)≦ yo,k − ε

∣∣xj , yj , j = 1, . . . , k
)
, (9)

meaning that it is aimed at maximal probability of the improvement of the current esti-
mate of global minimum; here P(·|·) denotes the conditional probability. For the Gaussian
stochastic function, the algorithm (9) is defined by a simpler formula

xk+1 = arg max
x∈A

yo,k − ε−m(x|xj , yj , j = 1, . . . , k)

σ (x|xj , yj , j = 1, . . . , k)
, (10)

where m(x|xj , yj , j = 1, . . . , k) and σ(x|xj , yj , j = 1, . . . , k) denote the conditional
mean and conditional standard deviation of the stochastic function at the point x .

The one-step Bayesian algorithm computes the next objective function where the ex-
pected improvement is maximum

xk+1 = arg max
x∈A

1Yk+1(x),
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1Yk+1(x)= E
(

max{yo,k − ξ(x), 0}
∣∣xj , yj , j = 1, . . . , k

)
, (11)

where1Yk+1(x)means expected improvement at k+1 step in case of computing function
value at the point x , E(·|·) denotes the conditional expectation. This algorithm in later
papers was also called ‘kriging’ and ‘EGO’ (efficient global optimization) (Jones et al.,
1998). The reasons for renaming remained without an explanation. We note only that
the term ‘kriging’ originally was used to call the prediction method by the name of its
author D.G. Krige; to our best knowledge, Krige has not considered statistical models
based global optimization methods. On the other hand, the substantiation for adding the
pretentious attribute ‘efficient’ is expected, at least the theoretical analysis of conditions
of the real efficiency and of the limitations of the algorithm; unfortunately, such results
were not presented by the inventors of the name EGO.

In the implementations of the one-step Bayesian algorithm with a Gaussian stochastic
functions for a statistical model, the computations normally are performed according to
the following formula

xk+1 = arg max
x∈A

σ(x|xj , yj , j = 1, . . . , k)

(
vk(x)8(vk(x))+

1√
2π

exp

(
−
v2
k (x)

2

))
,

vk(x)=
yo,k −m(x|xj , yj , j = 1, . . . , k)

σ (x|xj , yj , j = 1, . . . , k)
,

8(z)= 1√
2π

∫ z

−∞
exp

{
− t2/2

}
dt, (12)

where the notationm(x|xj , yj , j = 1, . . . , k) and σ 2(x|xj , yj , j = 1, . . . , k) has the same
meaning as in (10).

Various modifications of (11), usually with some numerical examples, can be found
in numerous publications with EGO and ‘kriging’ in the titles and lists of key words.

3.2. Selection of a Statistical Model

In the majority of publications on the subject in question, statistical models were selected
from the stochastic functions well researched by the probability theoreticians. Besides
stochastic functions extensively studied in the probability theory, a specific stochastic
model oriented to the information global optimization algorithm was proposed in Stron-
gin (1978); we do not consider this model here since it is well presented and thoroughly
discussed in Grishagin et al. (1997), Strongin and Sergeyev (2000).

The selection of an appropriate statistical model is guided by the theoretical properties
of potential candidates known from the probabilistic literature, and by the computational
complexity of algorithms for computing parameters of the conditional distributions. The
latter criterion determines the priority of a Gaussian stochastic function, and of a Marko-
vian processes in the single variable case.

The selection of statistical methods for constructing GO algorithms in the considered
time period predominantly was the same as in the time before 1990. For the single vari-
able models frequently selected was the Wiener process, specifically the Brownian bridge.
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The Wiener model is especially appropriate for the theoretical analysis of properties of
GO algorithms constructed using this model (Calvin, 2001, 2007, 2011; Calvin and Žilin-
skas, 2005; Zhigljavsky and Žilinskas, 2008). Let us note, that this model was appropriate
for investigation of the average complexity of algorithms for other classes of numerical
problems, e.g. for approximation in Ritter (1990). Although the generalization of Wiener
model to multidimensional problems is widely used in investigation of the complexity of
multidimensional approximation and integration (see e.g. Traub and Weschulz, 1998), no
attempts have been made to extend the Wiener model based single variable GO results to
the multidimensional case.

The homogeneous isotropic Gaussian random fields are a natural generalization of
stationary stochastic processes to the multidimensional case. These statistical models are
used for the construction of GO algorithms from the very beginning of the development
of the considered approach. To our best knowledge, the non-Gaussian random fields were
not used for the construction of GO algorithms. However, the algorithms based on the
Gaussian fields, the characteristics of which are not invariant with respect to translations
and/or rotations, are described in literature. For example, a Gaussian random field with
constant mean and variance but with coordinate dependent correlation function

ρ(xi, xj )= exp

(
−

d∑

k=1

βk|xi,k − xj,k|αk
)

was used to construct a GO algorithm in Jones et al. (1998), where xi,k denotes the kth
component of vector xi , and αk > 0, βk > 0. Although such a generalization seems attrac-
tive the problem of estimation of many parameters from a modest number of observations
can be problematic. The maximum likelihood method is supposed in Jones et al. (1998),
Jones (2001) as well as in the papers of a number of other authors. Despite numerical
values in that estimation problem can be computed by the maximization of the likelihood
function, the real worth of such estimates can be doubtful; see e.g. the analysis in Pe-
pelyshev (2011) where the drawbacks of the estimates, obtained using values of a typical
objective function, are highlighted in the case of even a single parameter of the correlation
function in question.

The new idea of the construction of GO algorithms on the basis of generalized statisti-
cal models, introduced in Žilinskas (1982), is to adjust the model to a simplicial partition
of the feasible region. The adjustment mimics the Markovian property of stochastic pro-
cesses enabling implementation of the algorithm in branch and bound framework similarly
as in the case of Lipschitz optimization (Paulavičius and Žilinskas, 2014). Let at the k+ 1

step of search the feasible region A be partitioned into m simplices, and sij , i = 1, . . . ,m,

j = 1, . . . , d+1 be the simplices of the i simplex. In Žilinskas and Žilinskas (2002, 2010),
Calvin and Žilinskas (2014) algorithms are considered which are based on generalized sta-
tistical models defined for every simplex independently, using information related to its
vertices, and the maximum improvement probability approximately computed for every
simplex. The simplex with maximum probability is subdivided thus making the subdi-
vision more refined. Let us note, that a random field model can be applied in a similar
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way restricting the information, used in computing of conditional characteristics, by the
information related to the vertices of the relevant simplex. Similarly, an algorithm can be
constructed using the partitioning of the feasible region into sub-rectangles (Gimbutienė
and Žilinskas, 2015). The computational burden of those algorithms is reduced with re-
spect to the original one (9) mainly by decreasing the complexity of the computation of
the improvement probability, and by the possibility to store the collected during the search
information in a convenient data structure.

Finally, there exists some equivalence between the P-algorithm and the GO algorithm
based on the model of radial basis functions (RBF) (Gutmann, 2001; Žilinskas, 2010).
Therefore, the favourable properties of RBF interpolants can be taken into account defin-
ing the parameters of a Gaussian random field selected as a statistical model of objective
functions, e.g. an approved RBF can be reasonable to select as a covariance function.

3.3. Modifications

The interest in modifications of the considered above original methods is caused by the
difficulties to cope with their complexity as well as by the desire to extend the field of their
applicability.

One of the important counterparts of the algorithms based on the statistical models of
objective functions is the method of estimation of model parameters, and the choice of
non appropriate parameters can crucially degrade the performance of the corresponding
algorithm. The authors of Kleijnen et al. (2012) claim that the version of algorithm (11)
performs very well with the parameters estimated by the bootstrapping (DenHertog and
Kleijnen, 2006).

Some statistical models, e.g. Gaussian stochastic functions, are prone to the includ-
ing noisy observations. Already in the first paper on the construction of GO algorithms
based on statistical models of objective functions (see Kushner, 1962) the possibility was
indicated to construct an algorithm for minimization in the presence of noise. Although
theoretical definition of an algorithm for the optimization in such a case is almost coin-
cident with that for the case without noise, implementation problems of algorithms for
noisy optimization can be essentially more complicated. For example, the computational
advantages of Markovian processes are loosen in case random errors in the objective func-
tion values are taken into account. We refer to the paper (Calvin and Žilinskas, 2005) and
the references therein for the description of a special implementation of a one dimen-
sional algorithm based on the Wiener process model for the optimization in the presence
of noise. This implementation is sufficiently efficient for applications, although it is of
notably higher complexity than its analog for the non-noisy optimization. However, the
implementation in Calvin and Žilinskas (2005) is not generalizable to the multidimen-
sional case. Some experimentation results with multidimensional noisy version of (11)
and its modification are reported in Huang et al. (2006b). Although, for the used in the
experimentation test functions, the results seem promising, the computational burden is
too high for a large number of evaluations of function values needed for higher dimen-
sions and noise level. The computational burden at a current step can be reduced using
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a simplicial (possibly also hypercubic) statistical model enabling the implementation of
an algorithm in the branch and bound framework with the partition of the feasible re-
gion; in other words, it seems promising to generalize the idea of Žilinskas and Žilinskas
(2002, 2010) to the optimization in the presence of noise. An implementation of this idea,
although with a slightly different interpretation of the P-algorithm, is described in Rul-
lière et al. (2013) where the testing of the developed algorithm was restricted with two
dimensional examples. Finally, it should be noted that, in the algorithms based on the sta-
tistical models, the objective function values, evaluated with different level of noise, can
be treated uniformly but with respect to the noise level. An algorithm demonstrating such
possibilities is proposed in Huang et al. (2006a) where the collected during the search
information is supposed of different fidelity.

The statistical models of objective functions considered in the present paper take
into account and forecast the values of objective functions. The derivatives, if available,
can supplement important information about the objective function, and thus improve
the performance of corresponding algorithms. Some results about the one-dimensional
P-algorithm operating with derivatives can be found in the book (Zhigljavsky and Žilin-
skas, 2008). An attempt to develop a multidimensional statistical model with derivatives
was made in Makauskas (1991), however further results concerning a corresponding al-
gorithm are not known.

In principle, statistical models can be applied for the construction of algorithms for
constrained optimization where a stochastic function ηi(x) is chosen for a model of the left
hand side function in the inequality constraintgi(x)6 0, i = 1, . . . ,K . Then the algorithm
(13) would be modified to the following one

xk+1 = arg max
x∈A

P
(
ξ(x)≦ yo,k − ε, ηi(x)≦ 0, i = 1, . . . ,K | xj , yj , j = 1, . . . , k

)
.

Other versions could be also defined using e.g. the average improvement (11); see Sasena
(2002), Picheny (2014). However, the most difficult problem here is in choosing appropri-
ate stochastic functions for the models of gi(x).

The research in multi-objective optimization is presently very active. The extension
of statistical model based GO algorithms to multi-objective problems was natural since
problems with expensive black-box objectives are no less acute than the single-objective
ones. The multi-objective P-algorithm as a direct generalization of single-objective one is
proposed in Žilinskas (2014).The multi-objectiveP-algorithm is based on the assumptions
reviewed above which imply the acceptance of a vector valued random field 4(x) ∈ R

m,
x ∈ A as a statistical model of m objective functions. The algorithm is defined similarly
to (9)

xk+1 = arg max
x∈A

P
(
4(x)≦ yo,k | xj , yj , j = 1, . . . , k

)
, (13)

where yj , j = 1, . . . , k, denote them dimensional vectors of the values of objective func-
tions computed at previous search steps, and yo,k is a reference vector intended to improve
at k + 1 step. The selection of yo,k enables a user to express his preferences with respect
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to objectives as well as to control distribution of solutions along the Pareto front. Various
modifications of the criterion (13) are possible; see e.g. Picheny (2015).

The single-objective algorithms based on statistical models were used for multi-
objective optimization in combination with scalarization methods. The EGO (which cor-
responds to (11)) was proposed in Knowles (2006) to hybridize with the Chebyshev’s
scalarization; this method was extended for the noisy objectives in Knowles et al. (2009).
Similarly, the combination of the hypervolume scalarization with a statistical model based
algorithm is proposed in Emerich et al. (2016). A version of hybridization of methods
based on statistical models of objective functions with evolutionary methods is proposed
in Emerich et al. (2006).

Because of high computational complexity of Bayesian methods, they are mainly ori-
ented to the expensive low dimensional objective functions. Therefore, the Bayesian meth-
ods are appropriate for the application at upper level of the two level algorithms where the
upper level algorithm is used to optimize the parameters of a lower level algorithm enhanc-
ing their performance; for the details of the concrete algorithms and their applications we
refer to Mockus et al. (1994, 1997).

3.4. Investigation of Efficiency

The efficiency of algorithms in computer science is understood as reciprocal time com-
plexity where the latter means the computing time (or number of computer operations)
needed to complete the computations. Such assessment is well applicable to assess the
efficiency of algorithms for combinatorial optimization as well as for algorithms for opti-
mization problems solvable in finite time, e.g. problems of linear programming. The other
approach of the efficiency assessment used in optimization theory is typical for numeri-
cal analysis: it is the assessment of the asymptotic convergence rate. Both approaches are
theoretically appropriate to assess the performance of GO methods where large number
of computations of function values can be made. However, such assessment methods are
not fully relevant to assess the efficiency of algorithms supposed for expensive objective
functions where the number of computations of function values is scarce.

The GO methods considered here are supposed for expensive objective functions, and
they are theoretically substantiated by the original definition. Nevertheless, their asymp-
totic properties are of interest, at least for the comparison with the other algorithms of
similar destination. The convergence of the methods in question were considered in two
frameworks, in the probabilistic sense assuming that an objective function is a randomly
generated sample function of the underlying stochastic function, and in deterministic sense
assuming that an objective function is an arbitrary function from an appropriate class of
functions.

Let us recall that the considered algorithms, although based on statistical models, are
deterministic. The algorithm, applied to a concrete objective function, generates a deter-
ministic sequence of sites xk ∈ A, k→ ∞ for computing values of the objective function.
To guarantee the convergence of the candidate solution to the point of global minimum
for an arbitrary continuous function, the sequence xk should be every dense sequence in A
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(Törn and Žilinskas, 1989). Such a convergence of the P-algorithm and of one-step op-
timal Bayesian algorithms were proved in the originating papers; for the details we refer
to Mockus (1988), Törn and Žilinskas (1989). To assess the rate of convergence, more
strict assumptions should be made. For example, in Calvin and Žilinskas (2000) the sin-
gle variable optimization problem is considered, and it is shown there that the P-algorithm
(9) based on a smooth statistical model with the threshold sequence εk = k−1+γ , γ > 0

converges to global minimum of an arbitrary twice continuously differentiable function
with convergence rate O(k−3+γ ). The term ‘smooth statistical model’ is used here for a
Gaussian stationary stochastic process with correlation function satisfying the following
conditions:

ρ(t)= 1 − 1

2
λ2t

2 + 1

4
λ4t

4 + o
(
t4
)
,

as t → 0, λ2 > 0, λ4 > 0, and

∣∣∣∣
d4ρ(t)

dt4
− λ4

∣∣∣∣=O
(
|t|
)
, −d

2ρ(t)

dt2
= λ2 +O

(∣∣ log−α |t|
∣∣),

for some α > 1 as t → 0, and also ρ(t) log(t)→ 0 as t → ∞. These assumptions guar-
antee that the underlying statistical model is compatible with the assumption made, in the
statement on convergence, about the considered objective function. In other words, the
made assumptions guarantee that the sample functions of the underlying stochastic pro-
cess are twice continuously differentiable with probability 1. For the comparative analysis
of the convergence rates of the univariate P-algorithms, based on different statistical mod-
els, we refer to Zhigljavsky and Žilinskas (2008).

The investigation of the convergence rate of multivariate methods based on statisti-
cal models is more difficult than of univariate ones. To the best knowledge of the au-
thors, the only publication in question is Calvin and Žilinskas (2014) where a two vari-
able P-algorithm is considered based on a simplical statistical model. The feasible region
is iteratively partitioned into simplices by means of Delaunay triangulation, and the im-
provement probability is approximated using asymptotic expressions of the conditional
mean and variance of the underlying statistical model (Žilinskas and Gimbutienė, 2015).
Let an objective functionf (x) be twice continuouslydifferentiable, x∗ = arg minx∈A f (x)

be a unique global minimizer, and δk = yok − f (x∗) denotes, the error of estimation of
the global minimum. As shown in Calvin and Žilinskas (2014), the following inequality
is satisfied

lim inf
k→∞

√
k log

(
1

δk

)
>
(λ1λ2)

1/4

2
√

6qπ
, (14)

where λ1, λ2 are eigenvalues of the Hessian of f (x) at the point x∗, and q is a measure of
the triangulation quality. The result in less detail can be expressed in the following form:

δk ≦ exp(−c
√
k ),

where c > 0 aggregates all constants of the expression in right hand side of (14).
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The investigation of algorithms’ performance in probabilistic sense is based on the
assumption that the objective functions are randomly selected sample functions of the
underlying stochastic function. The probability of an attribute of search by a deterministic
algorithm means the probability to select randomly the function for which this attribute
occurs during the search. The difficulties in the analysis of the probabilistic convergence
are implied mainly by the complexity of the computation of conditional distribution of the
relevant functionals with respect to the currently known values of the objective function.
Therefore, it is not surprising that the analysis of probabilistic convergence was started
using for the statistical model of objective functions the Wiener process which is Gaussian,
Markovian, and with independent increments.

The nonadaptive (passive) algorithms, although believable of low efficiency, are sim-
pler than adaptive ones, and therefore were investigated foremost. It was shown in Ritter
(1990) that the uniform grid is order optimal method, and its asymptotic error is given by
the following formula:

δk =2
(
k−1/2

)
,

where δk denotes the average error for the uniform grid of k points. Let us note, that the
average error is defined with respect to the underlying statistical model. The disadvantage
of the uniform grids is in their non-compositivity, i.e. the uniform grid of k point is not
extensible to the k + 1 one. It is important to mention that for a fixed k a uniform grid
is not necessary optimal (Zhigljavsky and Žilinskas, 2008); this fact highlights difference
between average case and worst case optimality where uniform grids are generally optimal
(Sukharev, 1971; Žilinskas, 2013).

For the detailed review of the efficiency in probabilistic sense we refer to the papers
(Calvin, 2016a, 2016b), and for a discussion on the average complexity of Bayesian algo-
rithms we refer to Mockus (1995).

3.5. New Ideas and Open Problems

The GO methods, based on statistical models of objective functions, are theoretically
substantiated by the definition expressing their optimality. The high convergence rate,
although proved for few special cases, complements to the theoretical soundness of the
P-algorithm. However, some theoretical drawbacks, not appearing in publications, are
worth to discuss.

Let us consider the one-step Bayesian algorithm (11) applied to the objective functions
corresponding to the true statistical model. For example, let the algorithm be defined us-
ing the Gaussian stationary stochastic process with exponential correlations function, and
sample functions of this process are used for objective functions. It is easy to check that
after a modest number (say 20) of steps, the maximal average improvement normally does
not exceed 0.01% of the standard deviation of the process since the average improvement
(12) is computed via tails of the Gaussian density and cumulative distribution functions.
Therefore, the rationality of maximization of such a totally small average improvement
seems doubtful. If the rationality of the application of a method even in the situation of
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true mathematical model is doubtful, the theoretical investigation of this problem should
be recognized as an urgent one. Doubts in the rationality of search casts also the rather
frequent selection of a point for current computing an objective function value in a vicin-
ity of a point of previous computation. Such a selection at early stage of search causes
the instability of the whole process because the subsequently used covariance matrices
become ill-conditioned.

The P-algorithm, when applied to a Gaussian statistical model, suffers a similar prob-
lem: in a situation described above, the maximal improvement probability is very low after
small number of steps. However, the P-algorithm is not as sensitive to the probability dis-
tribution as (11). Let us compare the formulas (10) and (12). The formula (10) remains
not changed for any distribution function in (9) of the form5(

y−m
σ
) where m and σ de-

note mean value and standard deviation of the random variable in question. Therefore,
the site of next computation of the objective function is the same for any distributions of
the mentioned class, thus with considerably higher probability for the distributions with
heavy tails. Recently an idea was proposed to derive an algorithm from the assumption of
the search invariance

Let us consider the choice of a point for the current computation of the objective func-
tion value. Such a choice in the ‘black box’ situation is a decision under uncertainty, and
the rational decision theory can be applied to make the choice rationally. The theory sug-
gests to make the decision by maximization of the average utility. To compute the latter
a statistical model of uncertainty is needed as well as an utility function. The axioms in
Žilinskas (1982) substantiate the acceptance of a random variable as a model of uncer-
tainty for the unknown value of the objective function. Accordingly a family of random
variables ξx is acceptable as a statistical model of the objective function. In the previous
investigation, summarized in Törn and Žilinskas (1989),Zhigljavsky and Žilinskas (2008),
we proceeded with the specification of a distribution of ξx and of the utility function. Let at
the moment limit ourselves by the assumption that there exist appropriate distribution and
utility functions. We intend to construct an algorithm bypassing the necessity to specify
the utility function and the distribution of ξx .

Any characterization of a random variable normally includes a location parameter
(e.g. mean) and a spread parameter (e.g. standard deviation); we use minimal descrip-
tion of ξx by these two parameters which are denoted by m(x) and s(x). The dependence
of both parameters on the information available at the current optimization step (xj , yj ,
j = 1, . . . , k) will be included into the notation where needed. Let us assume that the av-
erage utility uk+1(x) of computation of the current objective function value at the point x
depends on x via m(x) and s(x). A value desired to reach yo,k , yo,k < min1≦j≦k yj , is
also assumed as a parameter which defines uk+1(x)

un+1(x)=U
(
m(x), s(x), yo,k

)
, (15)

and the point of current computation is defined as the maximizer of un+1(x). The fol-
lowing assumptions on U(·) express rationality of invariance of the average utility with
respect to the scales of the objective function values:

U
(
m(x)+ c, s(x), yo,k + c

)
=U

(
m(x), s(x), yo,k

)
,
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U
(
m(x) ·C, s(x) ·C,yo,k ·C

)
=U

(
m(x), s(x), yo,k

)
, C > 0. (16)

Since the minimization problem is considered, the current computed objective function
value will be more valuable if smaller; therefore we postulate that

m<µ implies U(m, s, z) > U(µ, s, z). (17)

The postulated properties are inherent for several well known optimization algorithms;
see e.g. Žilinskas (2012).

It can be shown that the average utility function satisfying the postulated properties
has the following structure

U
(
m(x), s(x), yo,k

)
=5

(
yo,k −m(x)

s(x)

)
, (18)

where π(·) is an increasing function. Therefore, the site for computing the current value
of the objective function is given by the formula

xk+1 = arg max
x∈A

yo,k −m(x|xj , yj , j = 1, . . . , k)

σ (x|xj , yj , j = 1, . . . , k)
, (19)

which is coincident with (10). Thus, the P-algorithm is rational for a broad range of sta-
tistical models and utility functions, and the criterion for choosing the current point is not
necessary interpretable as the improvement probability.

The applications of numerical algorithms are tightly related to the available computing
power. The fast increase of computing power influences also the development and appli-
cations of the algorithms based on statistical models of objective functions. Besides the
enhancement of the classical computers, there occur also principally new possibilities, e.g.
those related to the infinity computer (Sergeyev, 2010). The compatibility of the algorithm
(9) and (11) with the arithmetic of infinity was shown in Žilinskas (2012), however the
full scale exploitation of the potential of this perspective technology is still a challenging
future project.

4. Conclusions

The theoretical foundation of the stochastic global optimization was laid in the seventies
of the last century. At the beginning, many different ideas were proposed and tested. Later,
the attention of the theory-oriented researchers focussed on the following directions: con-
vergence of and statistical inference in random global search, and substantiation of the use
of statistical models and properties of the model-based algorithms. The present review
covers these topics as well as some recent generalizations to multi-objective optimization.
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Apžvelgti stochastinės globaliosios optimizacijos teoriniai ir metodologiniai pasiekimai. Apžval-
gą sudaro dvi dalys: atsitiktinė globalioji paieška ir statistinių tikslo funkcijų modelių taikymas.
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