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Abstract. This paper reviews the interplay between global optimization and probability models,

concentrating on a class of deterministic optimization algorithms that are motivated by probability

models for the objective function. Some complexity results are described for the univariate and

multivariate cases.

Key words: optimization, statistical models, convergence.

1. Introduction

This paper is a survey of a class of algorithms and complexity results for global optimiza-

tion based on probability models. Probability models have been used both to inspire the

construction of new optimization algorithms, and also to analyse the average performance

of algorithms.

The global optimization problem we consider starts with a class F of objective func-

tions; a typical example is Cr ([0,1]), the r-times continuously differentiable functions

on the unit interval. To avoid the better-understood local optimization problem, we avoid

classes that have properties such as convexity. For f ∈ F , we want to approximate the

global minimum f ∗ using function values at sequentially chosen points. If the approxi-

mation is A(f ), then we want to make A(f ) − f ∗ small in some sense.

The global optimization problem is intractable in the worst case setting for the types of

function classes that we have in mind. For example, if we take F = Cr ([0,1]), then to en-

sure finite error we need a further assumption such as uniform bounds on the derivatives.

For example, we can restrict to functions with |f (r)|∞ 6 1. Then 2
(

ǫ−1/r
)

function val-

ues are required in order to ensure that the approximation error is at most ǫ. If we take the

domain to be the d-dimensional hypercube, then 2
(

ǫ−d/r
)

function values are required,

and so the problem is intractable in the multivariate case; see Wasilkowski (1992).

There is another reason to adopt an average-case analysis instead of a worst-case anal-

ysis. Adaptive algorithms choose each evaluation point as a function of previous function

evaluations, while nonadaptive methods evaluate at the same points for each function. If

the class F is convex and symmetric, that is if f,g ∈ F and λ ∈ [0,1] implies that −f

and λf + (1 − λ)g ∈ F , then in the worst case adaptive methods are essentially no more

efficient than nonadaptive methods; see Ritter (2000). In practice adaptive methods are

favoured over nonadaptive methods.
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The pessimistic worst-case complexity of global optimization problems is a reflection

of the fact that a worst case error bound is too much to expect with the weak assumptions

that the optimizer starts with.

One alternative to a worst-case analysis is to consider randomized algorithms. Many

randomized global optimization algorithms have been proposed; see, for example, Zhigl-

javsky and Z̆ilinskas (2008) and Tikhomirov (2006). In this paper we will consider only

deterministic algorithms.

Instead of seeking an error bound that holds for every f ∈ F , another approach is

to construct algorithms that have small error on average. To carry out this approach we

need a probability on F . Of course, the results we obtain may depend very much on the

choice of probability. Gaussian probability measures are natural choices because they do

not require much special structure of the class F and they are reasonably tractable. For

these reasons Gaussian measure have been adopted for the average-case analysis of many

numerical problems; see Ritter (2000).

Though we do not consider the problem in this paper, the random function model is

well-suited to problems with noise-corrupted function evaluations. If independent Gaus-

sian measures are adopted for the objective function and the noise in the observations,

then the observed values have a Gaussian distribution. The case of Wiener measure for

the objective function and independent Gaussian noise for the observations was treated in

Calvin and Z̆ilinskas (2005).

Several algorithms have been developed based on a probability model on a class F ;

for example, Kushner (1962), Mockus (1972). These are studied in a general setting in

Z̆ilinskas (1985). Given such an algorithm, the natural question is the average error of

the algorithm under the assumed probability measure. This question will be addressed in

Section 3. Another issue is the rate at which the error approacheszero asymptotically as the

number of function evaluations grows for a fixed f in some class; this will be addressed

in Section 4. General computational and algorithmic issues in global optimization are

reviewed in Zhigljavsky and Z̆ilinskas (2016).

2. Notation

Let f be a real-valued function defined on the unit interval [0,1], and denote the global

minimum by f ∗ = min06s61 f (s). The optimizer adaptively chooses points t1, t2, . . . ∈
[0,1],

t1, t2
(

t1, f (t1)
)

, t3
(

t1, f (t1), t2, f (t2)
)

, . . .

and, after n observations, forms an approximation to the global minimum M based on

{ti, f (ti): i = 1,2, . . . , n}. We allow each tn+1 to depend on the previous observations;

i.e. the (n + 1)st observation point is given as a function

tn+1 = hn+1

(

t1, f (t1), . . . , tn, f (tn)
)

.
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We are mainly interested in the error in approximating the function’s global minimum,

which we denote by 1n = Mn − f ∗, where Mn = mini6n f (ti).

Let {zn} be a sequence of positive numbers, where zn may depend on the first n − 1

observations {ti, f (ti); i < n}. We consider the optimization method based on the follow-

ing procedure: given t1, t2, . . . , tn and f (t1) = x1, f (t2) = x2, . . . , f (tn) = xn, choose the

next point tn+1 ∈ [0,1] to maximize

P
(

f (tn+1) < Mn − zn

∣

∣f (t1) = x1, . . . , f (tn) = xn

)

. (1)

3. Univariate Models

In addition to the sequences of observation sites {t0, t1, t2, . . .}, it will be necessary to refer

to the ordered observations for each fixed n. Therefore, for n > 2 let

0 ≡ tn0 < tn1 < tn2 < · · · < tnn−1 < tnn 6 1

be the ordered observations, so that {tni : i 6 n} = {ti : i 6 n}.

3.1. Brownian Motion

Denote the linear interpolation between observed values by

Ln(s) =
tni − s

tni − tni−1

f (tni−1) +
s − tni−1

tni − tni−1

f
(

tni
)

, tni−1 6 s 6 tni , 0 6 i 6 n. (2)

Then Ln(s) is the conditional expected value of f (s) given the observations {tni , f (tni );
i 6 n}. For 1 6 i 6 n define

ρn
i ≡

∫ tni

tni−1

ds

(Ln(s) − Mn + zn)
2
. (3)

In the case of Brownian motion, these quantities are related to the probabilities at (1) by

P
(

f (tn+1) < Mn − zn

∣

∣f (t1) = x1, . . . , f (tn) = xn

)

= exp
(

− 2/ρn
i

)

.

Given the first n − 1 steps, the algorithm chooses the next observation in the subinterval

with the largest value of ρn−1
i and evaluates the function within that interval. Variations

are to choose the midpoint of the interval or to choose the point that maximizes the prob-

ability (1).

We now describe a particular version following this general approach. Let τn =
min16i6n tni − tni−1 denote the smallest distance between function evaluation points. The

first two observation points of the algorithm are fixed: t1 = 1 and t2 = 1/2. Define

g(x) = 4
√

x log(1/x)
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for 0 < x 6 1/2. The function g is increasing and g(x) ↓ 0 as x ↓ 0. We define the ρn
i at

Eq. (3) by setting zn = g(τn). Then

ρn
i =

∫ tni

tni−1

ds

(Ln(s) − Mn + g(τn))2
=

tni − tni−1

(f (tni−1) − Mn + g(τn))(f (tni ) − Mn + g(τn))
.

The algorithm operates as follows: at each step, split the interval with the largest value

of ρn
i ≡ ρn at the midpoint. More precisely, suppose we have made k evaluations. Com-

pute ρk
i , 1 6 i 6 k, and let i be an index such that ρk

i > ρk
j for all 1 6 j 6 k. The next

function evaluation is made at the midpoint

tk+1 =
tki−1 + tki

2
.

The following theorem is proved in Calvin (2011a).

Theorem 1. For the algorithm described above, there is a positive constant c such that

as the number of observations n → ∞,

P
(

1n 6 n1/4 exp(−c
√

n)
)

→ 1.

The complexity analysis of optimization of the Brownian motion was initiated in Ritter

(1990), where it was shown that for any nonadaptive algorithm using n function evalu-

ations the average error is at least of order n−1/2. Equi-spaced points gives an error of

order n−1/2, and thus achieves the lower bound for nonadaptive algorithms. We see from

Theorem 1 that adaptive algorithms can be exponentially more powerful than nonadaptive

algorithms.

A natural question is to what extent the convergence rate in Theorem 1 can be im-

proved. In Calvin (2007), it was shown that for any (adaptive) algorithm using n function

evaluations the average error is at least of order exp(−c n/ log(n)) for some positive con-

stant c.

The convergence rate described in Theorem 1 is sensitive to the probability model. If

instead of the Wiener process the objective function were smooth, then the convergence

rate would be much slower.

In some applications a parametric family of probabilities might be assumed for the

objective function. Then as the optimization algorithm proceeds it would be reasonable

to estimate the parameters of the probability measure based on the observations.

3.2. Smooth Classes

The Brownian motion paths are nowhere differentiable with probability one. A natural

way to obtain a model for smooth functions is by integrating the Brownian paths.
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Denote by Wr the r-fold integrated Wiener measure on F = Cr ([0,1]); this is the

Gaussian measure with covariance function

Kr (s, t) =
∫

F

f (s)f (t)Pr (df ) =
∫ 1

u=0

(s − u)r+(t − u)r+
(r!)2

du,

where x+ = max(0, x). P0 is the classical Wiener measure (corresponding to Brownian

motion), and if f ∈ Cr−1([0,1]) is distributed according to Wr−1, then

g(t) =
∫ t

s=0

f (s) ds, 0 6 t 6 1,

is distributed according to Wr .

In order to ensure that a sample path has a global minimizer in the interior of the unit

interval, we construct a conditional r-fold integrated Wiener measure Pr by translating

each path by a suitable polynomial so that prescribed boundary conditions are satisfied

(Novak et al., 1995). Let r > 1 denote the smoothness, and {ai,0 6 i 6 r} and {bi,0 6

i 6 r} the boundary values at 0 and 1, respectively. We consider a class of functions

F =
{

f ∈ Cr
(

[0,1]
)

: f (i)(0) = ai, f
(i)(1) = bi, for i = 0,1, . . . , r

}

.

In order to ensure that the global minimum occurs in the interior of the interval, we assume

that a1 < 0 and b1 > 0.

Under Pr , f has a continuous r-th derivative, but is nowhere (r + 1)-times differen-

tiable with probability one. This class of probability models has been used extensively

in the average-case analysis of problems such as zero finding, integration, and function

approximation; see Ritter (2000) and references therein, and Wasilkowski (1992). The

class of models is of particular value for studying optimization since it provides a hier-

archy of models with increasing smoothness, allowing us to study the impact of smooth-

ness on the complexity of optimization. Furthermore, if f ∼ Pr , then the vector process

(f (t), f ′(t), . . . , f (r)(t)) is a Markov process as well as a Gaussian process, and the com-

bined techniques of the two classes aid in the analysis.

Calvin and Z̆ilinskas (2005) construct an algorithm for the once-integrated Wiener

process. The authors established that using the algorithm defined at Eq. (1) with constant

zn = c > 0, the error is of order n−3/2. By contrast, Calvin and Z̆ilinskas (2000a, 2000b)

considered stationary Gaussian processes with twice continuously differentiable paths, for

which the convergence rate (for constant zn) is n−2.

3.3. Lower Bound

In this section we consider lower bounds on the complexity of the global optimization

problem for the probabilities Pr , r > 1. We are interested in the smallest error that can

be attained with general algorithms that can evaluate the function or its derivatives at

adaptively chosen points, and furthermore can stop adaptively.
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The approximation to the minimizer is based on evaluations at a finite number of

points, which we indicate by

A(f ) = φ
(

Nn(f )
)

,

where the information Nn(f ) is given by

Nn(f ) =
[

f (j1)(t1), f
(j2)(t2), . . . , f

(jn)(tn)
]

.

The initial point t1 and the order of derivative j1 are fixed, and subsequent points and

derivative orders are chosen adaptively. The total number of evaluations n = n(f ) is also

chosen adaptively. For any k > 1, after the information

Nk(f ) =
[

f (j1)(t1), f
(j2)(t2), . . . , f

(jk)(tk)
]

has been computed, a termination rule determines if n(f ) > k, and if so then tk+1 and

jk+1 are computed from Nk(f ).

We call n(f ) the cardinality of information, and define the cost of an algorithm applied

to the function f to be n(f ). Since we are interested in a lower bound, we ignore the com-

putational cost of determining the evaluation points and constructing the approximation.

The error, when applied to f , is

1(f ) ≡ f
(

A(f )
)

− min
06t61

f (t).

For our probability Pr defined on F , we define the average cost and average error

cost(φ,N) =
∫

F

n(f )Pr (df ),

and

error(φ,N) =
∫

F

[

f (A(f )) − min
06t61

f (t)
]

Pr (df ) =
∫

F

1(f )Pr (df ).

The local error

E
(

1(f )
∣

∣Nn(f )
)

= E
(

f
(

A(f )
)

− min
06t61

f (t)
∣

∣Nn(f )
)

is minimized by choosing A(f ) to be a minimizer of the conditional mean; then

f
(

A(f )
)

= min
06t61

E
(

f (t)
∣

∣Nn(f )
)

.

With this optimal choice the local error is

E
(

1(f ) |Nn(f )
)

= E
(

min
06t61

E
(

f (t)
∣

∣Nn(f )
)

− min
06t61

f (t)
∣

∣Nn(f )
)

. (4)



Probability Models in Global Optimization 329

The following result is proved in Calvin (2011b).

Theorem 2. Let ǫ > 0 and r > 1 and consider an arbitrary algorithm that has average

error at most ǫ. There exists a positive number C, depending only on the boundary values

{ai, bi, 0 6 i 6 r} and r , such that the average cost of the algorithm is at least

C · log(1/ǫ)
1

(2r−1)(2r+1) .

It is interesting to compare results for the global optimization problem with results

for the zero-finding problem; both have been studied for the case of the conditional r-fold

integrated Wiener measures Pr . For zero finding, any algorithm that uses a fixed number of

function evaluations requires on order log(1/ǫ) evaluations to obtain an ǫ-approximation.

In contrast, an algorithm that uses an adaptive stopping rule obtains an ǫ approximation

with on average order log log(1/ǫ) function evaluations. The algorithm that achieves this

bound uses only function values, and not derivatives; see Novak et al. (1995).

4. Asymptotic Results for Multivariate Optimization

The idea of the optimization algorithm based on (1) extends naturally to higher dimen-

sions, but the probability computations are much more difficult. One approach is to sub-

divide the domain into polyhedral subsets and define for each subset an analog of the

quantity defined at Eq. (3). Computing the distribution of the error for the resulting algo-

rithms is difficult, but an asymptotic analysis of the error is feasible for some subdivision

strategies. We outline the results for two such strategies in this section.

4.1. Rectangular Subdivision

The first algorithm operates by decomposing [0,1]d into (hyper)-rectangles as follows.

Given a current decomposition, choose one of the rectangles (according to the maximal

value of a criterion to be defined below) and bisect it along the longest axis by evaluating

the function at up to 2d−1 midpoints of the longest rectangle edges.

Let vn denote the smallest volume of a hyperrectangle after n iterations. Define

q ≡ 3 · 22/3e−1

2 log(2)
≈ 1.27

and

g(x) = q · d
(

x log(1/x)
)2/d

(5)

for 0 < x 6 1/2 and g(1) = q ·d . Let Ln denote the multilinear function that has the same

values as f at the vertices of the smallest enclosing rectangle. Note that Mn is equal to

the global minimum of Ln. For 1 6 i 6 n set

ρn
i ≡ |Ri |

(Ln(ci) − Mn + g(vn))d/2
, (6)

where we denote the volume of set A by |A| and ci is the centre of rectangle i .
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The idea is that the criterion ρn
i tends to be large for large (unexplored) rectangles, and

also large when the local approximation Ln(ci) is near the smallest observed value Mn.

The additional term gn(vn) regulates the tradeoff so that the error converges to zero for

any continuous f , and the desired asymptotic error bound can be obtained.

The error bound will depend on the regularity of the function as measured by a certain

seminorm. For a compact set K and f ∈ C2(K), define the seminorm

∣

∣D2f
∣

∣

∞,K
≡ sup

x∈K

sup
u1,u2∈Rd

|ui |=1

∣

∣Du1
Du2

f (x)
∣

∣,

where Dyf is the directional derivative of f in the direction y .

The following theorem is proved in Calvin et al. (2015).

Theorem 3. Suppose that f ∈ F has a unique global minimizer x∗ in the interior of the

domain, and denote the matrix of second-order partial derivatives at the minimizer by

D2f (x∗). There is a number n0(f ) such that for n > n0(f ),

1n 6
1

8

∣

∣D2f
∣

∣

∞,[0,1]d (q · d) exp
(

−
√

nβ(f, d)
)

,

where

β(f, d) =
(

2Ŵ(1 + d/2)
√

det(D2f (x∗))

(2π)d/2(d(d + 1))2d−1(2(q · d))d/2

)1/2

.

The limiting error is smaller the larger the determinant of the second derivative at the

minimizer; a larger second derivative allows the search effort to concentrate more around

the minimizer. While the convergence rate in terms of the number of function evaluations

n is quite fast, the term β(f, d) decreases exponentially fast as d increases.

4.2. Delaunay Subdivision

The rectangular decomposition suffers from some drawbacks. At each iteration, as many

as 2d−1 function evaluations are required before making another decision. Also, in high

dimensions rectangles are not too efficient in terms of interpolation accuracy. An approach

based on Delaunay triangulations has been successful in the bivariate case. A main advan-

tage compared with the rectangular subdivisions is that there is only one function evalua-

tion on each iteration (at the centre of a simplex). The main obstacle is to choose points so

that the simplexes of the Delaunay triangulation have a certain quality (avoiding so-called

“slivers”).

As before, assume that f has been evaluated at the vertices of the hypercube [0,1]d .

A triangulation is a partition of the cube into simplexes with the set of vertices equal to

the set of observations. Suppose that the algorithm has evaluated the function at n points

P = {x1, x2, . . . , xn}. The Delaunay triangulation has the property that no point of P lies

in the interior of the circumsphere of any of its constituent simplexes. In the planar case,



Probability Models in Global Optimization 331

this triangulation has the desirable property that it maximizes the minimum angle of any

simplex over all triangulations of P . For a given point set, some simplexes of the Delaunay

triangulation may have small interior angles, which leads to large error bounds in our

analysis. We require a Delaunay mesh with a certain quality which is defined in terms of

the quantity

Q(T ) ≡ rad(T )2

|T |2/d
, (7)

where rad(T ) is the radius of the sphere circumscribing T . For our method we require

that this quantity be bounded above over all simplexes:

max
i

Q(Ti)6 q(d),

where the bound can depend on the dimension. By adding extra (so-called Steiner) points,

a mesh with certain quality guarantees can be constructed in the 2-dimensional case. For

example, with d = 2, we can guarantee a bound of

Q(T ) 6
16√

7
≡ q(2) ≈ 6.0474. (8)

The algorithm that we now describe works for any dimension d , though for d > 2

we have no quality bound like (8). Let vn denote the smallest volume of a simplex after n

iterations and modify the function g define at (5) by replacing the factor q ·d by a function

q(d):

g(x) = q(d)
(

x log(1/x)
)2/d

for 0 < x 6 1/2 and g(x) = q for x > 1/2. Let ti,j , j = 1,2, . . . , d +1, denote the vertices

of simplex Ti and f̂i the average of the function values at the vertices:

f̂i = 1

d + 1

3
∑

j=1

f (ti,j ).

Define

ρn
i ≡ |Ti |

(f̂i − Mn + g(vn))d/2
. (9)

Suppose that f has been evaluated at n points, and the Delaunay triangulation has been

constructed. For each simplex, compute ρn
i . Choose the next point xn+1 as the centroid of

the simplex with the largest value of ρn
i . Evaluate f (xn+1) and construct the new Delaunay

triangulation including the new point. Set Mn+1 = min(Mn, f (xn+1)). Note that at each

step we make a single new evaluation, unlike in the rectangular decomposition case.
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Assume that f has a unique minimizer x∗ ∈ (0,1)d and let λ1 > λ2 > · · · > λd > 0

be the eigenvalues of D2f (x∗), so detD2f (x∗) = λ1λ2 . . .λd . It is shown in Calvin and

Z̆ilinskas (2014) that the error after n evaluations is of order exp(−c
√

n ) for a constant c

depending on the objective function f . More precisely,

Theorem 4. Let dimension d = 2 and assume that each triangle T in the Delaunay tri-

angulation has a quality bound Q(T )6 q . Then the error 1n after n iterations satisfies

lim inf
n→∞

n−1/2 log

(

1

1n

)

>
(λ1λ2)

1/4

2
√

6qπ
. (10)

The assumption of unique global minimizer is only for convenience. In the case of

multiple global minimizers the constant on the right-hand size is replaced by a function of

the eigenvalues at all of the global minimizers. However, for the convergence rate in (10)

to hold it is essential that the global minimizers be isolated.

This result is a generalization to two dimensions of the main result in Calvin et al.

(2012). That result had the same n−1/2 normalizing rate that appears in (10), with a dif-

ferent constant on the right-hand side. In particular, if the univariate smooth function f

has a unique global minimizer at t∗ ∈ (0,1), then for the one-dimensional algorithm,

lim inf
n→∞

n−1/2 log

(

1

1n

)

>

(

f ′′(t∗)

12

)1/4

.
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Tikimybiniai globaliosios optimizacijos modeliai

James M. CALVIN

Straipsnyje pateikta globaliosios optimizacijos algoritmų, pagrįstų tikimybiniais tikslo funkcijų mo-

deliais, apžvalga, akcentuojanti žinomus apžvelgtų algoritmų sudėtingumo įverčius. Tikimybinių

modelių reikšmė čia dvejopa: pirma, jais grindžiama algoritmo idėja; antra, jų atžvilgiu vertinamas

algoritmų efektyvumas.


