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Abstract. We propose a heuristic global optimization technique which combines combinatorial and
continuous local search. The combinatorial component, based on Reactive Search Optimization,
generates a trajectory of binary strings describing search districts. Each district is evaluated by ran-
dom sampling and by selective runs of continuous local search. A reactive prohibition mechanisms
guarantees that the search is not stuck at locally optimal districts.

The continuous stochastic local search is based on the Inertial Shaker method: candidate points
are generated in an adaptive search box and a moving average of the steps filters out evaluation noise
and high-frequency oscillations.

The overall subdivision of the input space in a tree of non-overlapping search districts is adap-
tive, with a finer subdivision in the more interesting input zones, potentially leading to lower local
minima.

Finally, a portfolio of independent CoRSO search streams (P-CoRSO) is proposed to increase the
robustness of the algorithm.

An extensive experimental comparison with Genetic Algorithms and Particle Swarm demon-
strates that CoRSO and P-CoRSO reach results which are fully competitive and in some cases sig-
nificantly more robust.

Key words: global optimization, reactive search optimization, algorithm portfolios.

1. Introduction

Global optimization, in particular with stochasticity (Zhigljavsky and Žilinskas, 2007),
presents a suite of techniques and theoretical results for solving optimization problems.
Now, it is generally assumed that competitive results for a specific technique can be ob-
tained only for selected classes of functions, in particular for high-dimensional problems.
While this paper has no space for an extensive review of methods assuming specific prop-
erties of the functions to be optimized, let’s mention a couple of notable examples.

*Corresponding author.
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A first context studied by many researchers assumes that functions satisfy the Lipschitz
condition (Sergeyev and Kvasov, 2015). If f (x) satisfies the Lipschitz condition over the
search hyper-interval with an unknown Lipschitz constant K , a deterministic ‘Divide-the-
Best’ algorithm based on efficient diagonal partitions of the search domain and smooth
auxiliary functions is proposed in Sergeyev and Kvasov (2015). The method adaptively
estimates the unknown Lipschitz constant K and the objective function and its gradient
are evaluated only at two vertices corresponding to the main diagonal of the generated
hyperintervals.

A second well-known case assumes that the functions satisfy some statistical model, so
that theoretically justified methods can be developed, in the framework of rational decision
making under uncertainty, to generate new sample points based on information derived
from previous samples, and to study convergence properties. The book (Zhigljavsky and
Žilinskas, 2007) contains an in-depth presentation of the topic. Let’s note that statistics
is an essential part of machine learning: techniques developed by different communities
should be considered jointly in the bag of tools to address challenging optimization in-
stances. In particular, the models of functions can be random processes in the case of
functions of one variable, and random fields in the case of functions of many variables.
As an example, for a Wiener process ξ(x) in one dimension (the limit of a random walk),
one can derive an analytical formula for the probability distribution of the minimum given
the previously evaluated sample points, and use it for a rational stopping condition with
a predefined tolerance. In multiple dimensions, random fields are a possible model but
with a high inherent computational complexity motivating the study of simpler statistical
models. The P -algorithm (Žilinskas, 1985) generates the next point to be evaluated as the
one maximizing the probability to improve the current record, given the previously ob-
served samples. In multiple dimensions, if yon is the current record value and (xi, yi) are
the previous evaluated points and corresponding values, the next (n + 1)-th optimization
step is defined as:

xn+1 = argmax
x

Pr
{

ξ(x)6 (yon − ǫ)
∣

∣ ξ(x1) = y1, . . . , ξ(xn) = yn

}

.

The P -algorithm with simplicial partitioning is proposed in Žilinskas and Žilinskas
(2002) to obtain a practical algorithm. The observation points coincide with the vertices
of the simplices and different strategies for defining an initial covering and subdividing
the interesting simplices are proposed and considered. The P ∗-algorithm, combining the
P -algorithm with local search, is related to the algorithm presented in this paper, which
is also based on a combination of global models and efficient local searches when the
current area is deemed sufficiently interesting.

Response surface methods substitute the real function with a surrogate model learnt
by means of the previously evaluated points. The surrogate model is then optimized at
each step in place of the original function, which can be very computationally efficient if
evaluating f is very costly (like in engineering simulations) and if the surrogate model is
sufficiently fast to be optimized. For example, a response surface built with radial basis
functions centered on the evaluated points is considered in Gutmann (2001).
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In practical applications, verifying that a specific function obeys a given model can be
difficult, in particular if few instances are of interest, and not an infinite collection of them.
In this case, the use of theoretically justified methods is of course possible, in some cases
highly desirable, but at the price of abandoning the comfort zone of guarantees derived
from the statistical analysis.

If the function does not possess a rich (“non-random”) structure, convergence to the
global optimum can become painfully slow and smart techniques become comparable to,
or even worse than, pure random search. As an example of the “curse of dimensional-
ity”, to reach an approximation of the global optimizer with a specific probability, pure
random search requires a number of iterations which increases exponentially as the input
dimension d increases. No structure, no hope of efficient optimization!

On the other hand, most real-world problems have a “black box” nature. One can eval-
uate the output given the inputs (for example by engineering simulators), but no analytic
form and no hints about the function structure are given a priori. Furthermore, in many
cases just a single relevant instance has to be solved at a given time (like designing a new
airplane wing to reduce fuel consumption). An effective strategy in these cases consists of
adopting machine learning methods to learn some elements of the instance structure in an
online (reactive) manner so that the proper solution technique can be chosen or adapted
(Battiti et al., 2008).

In this paper we design two reactive (adaptive) techniques, called CoRSO and
P-CoRSO, which integrate these elements: local-search building blocks scouting for local
minima (working with continuous variables) and a discrete (combinatorial) prohibition-
based search acting on search boxes identified by binary strings. The method is related
to the “branch and probability bound” technique described in Zhigljavsky and Žilinskas
(2007), being based on (i) branching the optimization set into a tree of subsets of the input
space, (ii) making decisions about the perspectiveness of the subsets for further search,
and (iii) selecting the subsets that are recognized as perspective for further branching.

CoRSO is based on C-RTS (Battiti and Tecchiolli, 1996), but focuses on the Inertial
Shaker method for continuous stochastic local search instead of the more complex and less
scalable Reactive Affine Shaker. P-CoRSO builds an additional coordination level among
a portfolio of independent CoRSO runs to increase the robustness for some deceptive
functions.

The specific proposal is to build a trajectory of subsets via local search (LS) acting on
binary strings, plus a prohibition mechanism for diversification which ensures that LS is
not stuck at locally optimal subsets. In addition, all previously evaluated points are saved
in memory and used for simple statistical inference about the number of local minima
present in a subset and to evaluate the perspectiveness of the subsets.

Local search on binary strings is an effective building block for solving complex com-
binatorial optimization problems, and the local minima traps can be cured by Reactive
Search Optimization (Battiti et al., 2008). CoRSO extends RSO to the case of continuous

optimization problems, with input variables consisting of real numbers, solved by a team
of local searchers. CoRSO uses a framework for solving continuous optimization prob-
lems by a strategic use of memory and cooperation among a team of self-adaptive local
searchers.
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The three pillars of CoRSO are: multiple local searchers in charge of districts (portions
of input space), mutual coordination, and continuous “reactive” learning and adaptation.

CoRSO adopts a sociological/political paradigm. Each local searcher takes care of
a district (an input area), generates samples and decides when to fire local search in coor-
dination with the other members. The organized subdivision of the configuration space is
adapted in an online manner to the characteristics of the problem instance. Coordination

by use of globally collected information is crucial to identify promising areas in configu-
ration space and allocate search effort.

2. Intelligent Coordination of Local Search Processes

To fix the notation and the direction, let’s assume that we aim at minimizing a function
f (x) defined over a set of continuous variables x . No constraints are present apart from
simple bounds on each input variable. Models of cultural evolution inspire a set of pow-
erful optimization techniques known as Memetic Algorithms (MAs). According to a sem-
inal paper (Moscato, 1989), memetic algorithms are population-based approaches that
combine a fast heuristic to improve a solution (and even reach a local minimum) with
a recombination mechanism that creates new individuals.

The fast heuristic to improve a solution is some form of local search. LS generates
a search trajectory in configuration space X(t), depending on the iteration counter t , so
that the next point X(t+1) is selected from a set of neighbours, with a bias towards points
with lower function values. The motivation for the effectiveness of stochastic local search
for many real-world optimization tasks lies in the correlation between function values at

nearby points: the probability to find points with lower values is larger for neighbours of
points which are already at low function values.

In many cases a given optimization instance is characterized by structure at different

levels, as explained with the big valley property (more details in Battiti et al., 2008). If
we reduce the initial search space to a set of attractors (the local minima), again it may
be the case that nearby attractors —having an attraction basin close to each other— tend
to have correlated values. This means that knowledge of previously found local optima
can be used to direct the future investigation efforts. Starting from initial points close to
promising attractors favors the discovery of other good quality local optima, provided that
a sufficient diversification mechanism avoids falling back to previously visited ones.

In sequential local search the knowledge accumulated about the fitness surface flows
from past to future searches, while in parallel processes with more local searchers active
at the same time, knowledge is transferred by mutual sharing of partial results. We argue
that the relevant subdivision is not between sequential and parallel processes (one can
easily simulate a parallel process on a sequential machine) but between different ways of
using the knowledge accumulated by set of local search streams to influence the strategic

allocation of computing resources to the different LS streams, which will be activated,
terminated, or modified depending on a shared knowledge base, either accumulated in
a central storage, or in a distributed form but with a periodic exchange of information.
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MAs fit in this picture, a set of individuals described by genes and subjected to ge-
netic evolution scouts the fitness surface to search for successful initial points, while LS
mechanisms (analogous to life-time learning) lead selected individuals to express their full
potential by reaching local optima through local search. The Genetic Algorithms used in
standard MAs follow the biological paradigms of selection/reproduction, cross-over and
mutation. While GAs are popular for many applications, there is actually no guarantee
that specific biologically-motivated genetic operators must be superior to human-made

direct mechanisms to share the knowledge accumulated about the fitness surface by a set
of parallel search streams (a.k.a. population). Alternative coordination mechanisms have
been proposed for example in Törn and Viitanen (1992) with the name of “topographical”
global optimization, based on “clustering” methods (Törn and Žilinskas, 1989). The idea
is to identify possible attraction basins by first sampling points, then defining a directed
graph (each point is connected to a neighbour with higher function value, for k nearest
neighbours), and finally identifying points with all neighbours having larger function val-
ues as candidate starting points for local optimization.

The rationale behind CoRSO is to design mechanisms with a higher level of coordina-
tion to effectively manage many local search streams. One is not constrained by genetic
algorithms but free to experiment with different and more organized ways of coordinat-
ing search streams, following sociological and political paradigms. Knowledge is trans-
ferred between different searchers in a way similar to efficient political organizations, like
a smoothly living community of monks.

3. CoRSO: A Political Analogy

Although not necessary, analogies can help in reasoning about problems. But if we accept
the helpfulness of analogies, we prefer analogies derived from the human experience more
than analogies based on animals or genetics. Politics is a process by which groups of peo-
ple make collective decisions. Groups can be governments, but also corporate, academic,
and religious institutions.

Local search is an effective building block for starting from an initial configuration of a
problem instance and progressively building better solutions by moving to neighbouring
configurations. In an organized institution, like a corporation composed of individuals
with intelligent problem-solving capabilities, each expert, when working on a tentative
solution in his competence area, will after some time come up with an improved solution.
The objective is to strategically allocate the work so that, depending on the accumulated
performance of the different experts and competencies, superior solutions are obtained.

Memetic Algorithms start from local search and consider a hybridized genetic mecha-
nism to implicitly accumulate knowledge about past local search performanceby the tradi-
tional biologically-motivated mechanisms of selection/reproduction, mutation and cross-
over. The first observation is that an individual can exploit its initial genetic content (its
initial position) in a more directed and determined way. This is effected by considering
the initial string as a starting point and by initiating a run of local search from this ini-
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Fig. 1. Different ways of allocating local searchers: by Memetic Algorithms (left) and by a political analogy
of CoRSO (right). Circles represent local optima reached after running local search. In the second case each
individual is responsible for an area of configuration space. Some local search streams are shown.

tial point, for example scouting for a local optimum (see Fig. 1, left). The term memetic

algorithms (Krasnogor and Smith, 2005; Moscato, 1989) has been introduced for mod-
els which combine the evolutionary adaptation of a population with individual learning
within the lifetime of its members. Actually, there are two obvious ways in which individ-
ual learning can be integrated: a first way consists of replacing the initial genotype with
the better solution identified by local search (Lamarckian evolution), a second way can
consist of modifying the fitness function by taking into account not the initial value but
the final one obtained through local search. In other words, the fitness does not evaluate
the initial state but the value of the “learning potential” of an individual, measured by the
result obtained after local search. This evaluation changes the fitness landscape, while the
evolution is still Darwinian in nature.

When the road of cultural paradigms is followed, it is natural to consider models de-
rived from organizations of intelligent individuals equipped with individual learning and
social interaction capabilities also in the strategic allocation of resources to the different
search streams. In particular, this work presents a hybrid algorithm for the global opti-
mization of functions, in which a fast combinatorial component (the Reactive Search Op-
timization based on prohibitions) identifies promising districts (boxes, see Fig. 1, right)
in a tree-like partition of the initial search space, and a stochastic local search minimizer
(the Inertial Shaker – IS – algorithm) finds the local minimum in a promising attraction
basin.

The development of the CoRSO framework is guided by the following design princi-
ples.

• General-purpose optimization: no requirements of differentiability or continuity
are placed on the function f to be optimized.

• Global optimization: while the local search component identifies a local optimum
in a given attraction basin, the combinatorial component favours jumps between dif-
ferent basins, with a bias toward regions that plausibly contain good local optima.

• Multi-scale search: the use of grids at different scales in a tree structure is used to
spare CPU time in slowly-varying regions of the search space and to intensify the
search in critical regions.
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• Simplicity, reaction and adaptation: the algorithmic structure of CoRSO is simple,
the few parameters of the method are adapted in an automated way during the search,
by using the information derived from memory. The intensification-diversification
dilemma is solved by using intensification until there is evidence that diversification
is needed (when too many districts are repeated excessively often along the search
trajectory). The tree-like discretization of the search space in districts is activated by
evidence that the current district contains more than one attraction basin.

• Tunable precision: the global optimum can be located with high precision both be-
cause of the local adaptation of the grid size and because of the decreasing sampling
steps of the stochastic IS when it converges.

CoRSO is characterized by an efficient use of memory during the search, as advocated
by the Reactive Search Optimization. In addition, simple adaptive (feedback) mechanisms
are used to tune the space discretization, by growing a tree of search districts, and to adapt
the prohibition period of RSO acting on prohibitions. This adaptation limits the amount
of user intervention to the definition of an initial search region, by setting upper and lower
bounds on each variable, no parameters need to be tuned.

CoRSO fuses combinatorial Reactive Search Optimization with an efficient stochastic
Local Search component. An instance of an optimization problem is a pair (X , f ), where
X is a set of feasible points and f is the cost function to be minimized: f :X → R. In the
following we consider continuous optimization tasks where X is a compact subset of RN ,
defined by bounds on the N independent variables xi , where BLi 6 xi 6 BU i (BL and
BU are the lower and upper bounds, respectively).

In many popular algorithms for continuous optimization one identifies a “local mini-
mizer” that locates a local minimum by descending from a starting point, and a “global”
component that is used to diversify the search and to reach the global optimum. We define
as attraction basin of a local minimum Xl the set of points that will lead to Xl when used
as starting configurations for the local minimizer.

In some cases, as we noted in our starting assumptions, an effective problem-specific
local search component is available for the problem at hand, and one is therefore motivated
to consider a hybrid strategy, whose local minimizer has the purpose of finding the local
minimum with adequate precision, and whose combinatorial component has the duty of
discovering promising attraction basins for the local minimizer to be activated. Because
the local minimizer is costly, it is activated only when the plausibility that a region contains
a good local optimum is high. On the contrary, a fast evaluation of the search districts is
executed by the combinatorial component, and the size of the candidate districts is adapted
so that it is related to that of a single attraction basin. A district is split when there is
evidence that at least two different local minima are located in the same district.

4. CoRSO: Blending RSO with Stochastic Local Search

In the hybrid CoRSO scheme, RSO identifies promising regions for the local minimizer
to be activated. In this section we describe how the two components are interfaced. The
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Fig. 2. CoRSO: tree of search districts. Thick borders identify upper-level boxes, crosses show the position of
local minima found by the search component; finer divisions are the tree leaves and partition the whole function
domain.

specific stochastic local search component Inertial Shaker (IS) will be presented in Sec-
tion 4.4.

The basic structure through which the initial search region is partitioned consists of
a tree of districts (boxes with axes parallel to the coordinate axes), see Fig. 2. The tree
is born with 2

N equal-size leaves, obtained by dividing in half the initial range on each
variable. Each district is then subdivided into 2

N equally-sized children, as soon as two
different local minima are found in it. Because the subdivision process is triggered by the
local properties of f , after some iterations of CoRSO the tree will be of varying depth in
the different regions, with districts of smaller sizes being present in regions that require
an intensification of the search. Only the leaves of the tree are admissible search points
for the combinatorial component of CoRSO. The leaves partition the initial region: the
intersection of two leaves is empty, the union of all leaves coincides with the initial search
space. A typical configuration for a two-dimensional task is shown in Fig. 3, where each
leaf-district is identified by thick borders and a bold binary string.

Each existing district for a problem of dimension N is identified by a unique binary
string BS with n × N bits: BS = [g11, . . . , g1n, . . . , gN1, . . . , gNn]. The value n is the
depth of the district in the tree: n = 0 for the root district, n = 1 for the leaves of the initial
tree (and therefore the initial string has N bits), n increases by one when a given district
is subdivided. The length of the district edge along the i-th coordinate is therefore equal
to (BUi − BLi )/2

n. The position of the district origin BOi along the i-th coordinate is

BOi = BLi + (BUi − BLi )

n
∑

j=1

gij

2j
.

The evaluated neighbourhood of a given district consists only of existing leaf-districts:
no new districts are created during the neighbourhood evaluation. Now, after applying the
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("0","1")

("0","0")

("10", "11") ("11","11")

("11","10")("100","100") ("101","100")

("100!,!101")

("110","011") ("111","011")

("110","010") ("111","010")

("100","001")

("100","000") ("101","000")

("1010","1011")

("1011","1011")

("1010","1111")

("1110","1011")

("1010","1010")

("1010","1001")

("1010","0011")

("1011","0011")

("1011","0010")

("1010","0010")

("10100","00111")

("0010","1011")

Fig. 3. CoRSO: a concrete example of the tree of search districts. Thick borders and bold strings identify existing
leaf-districts, hatched districts show the neighbourhood of district (1010,1011).

elementary moves to the identifying binary string BS of a given district B , one obtains
N × n districts of the same size distributed over the search space as illustrated in Fig. 3,
for the case of BS = (1010,1011). Because the tree can have different depth in different
regions, it can happen that some of the obtained strings do not correspond to leaf-districts,
others can cover more than a single leaf-district. In the first case one evaluates the smallest
enclosing leaf-district, in the second case one evaluates a randomly-selected enclosed leaf-
district. The random selection is executed by generating a point with uniform probability
in the original district, and by selecting the leaf that contains the point. This assures that
the probability for a leaf to be selected is proportional to its volume.

4.1. Evaluating Opportunities for the Different Districts

While the RSO algorithm for combinatorial optimization generates a search trajectory
consisting of points X(t), CoRSO generates a trajectory consisting of leaf-districts B(t).
There are two important changes to be underlined: firstly, the function f (X) must be
substituted with a routine measuring the potential that the current district contains good
local optima, secondly, the tree is dynamic and the number of existing districts grows
during the search.
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Obtained Boxes

("1010","1011") ("0010","1011")

("1110","1011")

("1000","1011")

("1011","1011")

("1010","0011")

("1010","1111")

("1010","1001")

("1010","1010")

("0","1")

("11","10")

("100","101")

("1011","1011")

("10100","00111")

("10","11")

("101","100")

("1010","1010")

("10101","00110")

("10100","00110")

("10101","00111")

("10100","00111")

Starting box Neighbors

Fig. 4. CoRSO: Evaluation of the neighbourhood of district (1010,1011).

The combinatorial component must identify promising districts quickly. In the absence
of detailed models about the function f to be minimized, a simple evaluation of a district
B can be obtained by generating a point X with a uniform probability distribution inside
its region and by evaluating the function f (X) at the obtained point. Let us use the same
function symbol, the difference being evident from its argument: f (B) ≡ f (rand X ∈ B).
The potential drawback of this simple evaluation is that the search can be strongly biased
in favor of a district in the case of a “lucky” evaluation (e.g., f (X) close to the minimum
in the given district), or away from a district in the opposite case. To avoid this drawback,
when a district is encountered again during the search, a new point X is generated and
evaluated and some collective information is returned. The value f (B) returned is then
the minimum of the evaluated Xi : f (B) ≡ mini{f (Xi)}.

Let us consider the example of Fig. 3. The current district (1010,1011) has the neigh-
bours shown with a hatched pattern. The neighbour (0010,1011) in the upper left part
is not an existing leaf-district, it is therefore transformed into the enclosing existing leaf-
district (0,1). Vice versa the neighbour (1010,0011) in the lower right part contains four
leaves, one of them (10100,00111) is the output of a random selection. Figure 4 specifies
the complete final neighbourhood obtained for the given example.

4.2. Decision about Activating Local Search in a Given Region

According to the RSO dynamics, the neighbourhooddistricts obtained starting from a cur-
rent district are evaluated only if the corresponding basic move from the current point is
not prohibited. Only if the evaluation f (B(t)) of the current district is less than all evalu-
ations executed in the neighbourhood, a decision is taken about the possible triggering of
the Local Search component (the Inertial Shaker). In other words, a necessary condition
for activating high-precision and expensive searches with Local Search is that there is a
high plausibility – measured by f (B) – that the current region can produce local min-
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ima that are better with respect to the given neighbourhood of candidate districts. Given
the greedy nature of the combinatorial component, the current district B(t) on the search
trajectory moves toward non-tabu locally optimal districts, therefore it will eventually be-
come locally optimal and satisfy the conditions for triggering IS. Let us note that, if a given
district B loses the above contest (i.e. it is not locally optimal for RSO), it maintains the
possibility to win when it is encountered again during the search, because the evaluation
of a different random point X can produce a better f (B) value. Thanks to the evaluation
method CoRSO is fast in optimal conditions, when the f surface is smooth and f (B) is
a reliable indicator of the local minimum that can be obtained in region B , but it is robust

in harder cases, when the f (B) values have a high standard deviation or when they are
unreliable indicators of good local minima obtainable with the Inertial Shaker.

The local optimality of the current district B is necessary for activating IS but it is
not sufficient, unless B is locally optimal for the first time, a case in which IS is always
triggered. Otherwise, if r > 1 is the number of times that the district B has been locally
optimal during the search, an additional IS run must be justified by a sufficient probabil-
ity to find a new local minimum in B . Bayesian rules to estimate the probability that all
local optima have been visited can be applied in the context of a single district, where a
multi-start technique is realized with repeated activations of IS from uniformly distributed
starting points. Because of our splitting criterion, at most one local optimum will be asso-
ciated to a given district (a district is split as soon as two different local optima are found,
see Section 4.3). In addition, some parts of the district can be such that IS will exit the
borders if the initial point belongs to these portions. One can therefore partition the dis-
trict region into W components, the attraction basins of the local minima contained in the
district and a possible basin that leads IS outside, so that the probabilities of the basins
sum up to one (

∑W
w=1

Pw = 1).
According to Boender and Rinnooy Kan (1983), if r > W + 1 restarts have been exe-

cuted and W different cells have been identified, the total relative volume of the “observed
region” (i.e., the posterior expected value of the relative volume �) can be estimated by

E(�|r,W) = (r − W − 1)(r + W)

r(r − 1)
, r > W + 1. (1)

The Inertial Shaker is always triggered if r 6 W + 1, because the above estimate
is not valid in this case, otherwise the IS is executed again with probability equal to
1 − E(�|r,W). In this way, additional runs of IS tend to be spared if the above esti-
mate predicts a small probability to find a new local optimum, but a new run is never
completely prohibited for the sake of robustness: it can happen that the Bayesian estimate
of equation (1) is unreliable, or that the unseen portion (1 − E(�|r,W)) contains a very
good minimum with a small attraction basin.

The initial conditions for IS (described in Fig. 6) are that the initial search point
is extracted from the uniform distribution inside B , the initial search frame is Ebi =
Eei × (1/4) × (BU i − BLi) where Eei are the canonical basis vectors of RN . The Inertial
Shaker generates a trajectory that must be contained in the district B enlarged by a border
region of width (1/2)× (BU i −BLi), and it must converge to a point contained in B . If IS
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exits the enlarged district or the root-district, it is terminated, the function evaluations ex-
ecuted by IS are discarded. If it converges to a point outside the original district but inside
the enlarged district, the point location is saved. In both cases the CoRSO combinatorial
component continues in the normal way: the next district B(t+1) is the best one in the ad-
missible neighbourhood of B(t). In any case the “best so far” value is always updated by
considering all admissible points evaluated (those that are inside of the root-district).

A possible exception to the normal CoRSO evolution can happen only in the event that
IS converges inside B(t) to a local minimum Xl . If Xl is the first local minimum found, it
is saved in a memory structure associated to the district. If a local minimum Yl was already
present, and Xl corresponds to the same point, it is discarded, otherwise the current district
is split until the “siblings” in the tree divide the two points. After the splitting is completed,
the current district B(t) does not correspond to an existing leaf anymore: to restore legality
a point is selected at random with uniform distribution in B(t) and the legal B(t) becomes
the leaf-district that contains the random point. Therefore each leaf-district in the partition
of the initial district has a probability of being selected that is proportional to its volume.
The splitting procedure is explained in the following section.

4.3. Adapting the District Area to the Local Fitness Surface

As soon as two different local minima Xl and Yl are identified in a given district B , the
current district is subdivided into 2

N equal-sized boxes. If Xl and Yl belong to two differ-
ent leaf-districts of the new partition, the splitting is terminated, otherwise the splitting is
applied to the district containing Xl and Yl , until their separation is obtained.

In all cases the old district ceases to exist and it is substituted with the collection ob-
tained through the splitting. The local minima Xl and Yl are associated with their new
boxes. Numerically, the criterion used in the tests for considering different two local min-
ima Xl and Yl is that ‖Xl − Yl‖ < ǫ, where ǫ is a user-defined precision requirement.

All local minima identified are saved and reported when CoRSO terminates.
An example of the tree structure produced during a run of CoRSO is shown in Fig. 5,

for the case of a two-dimensional function (the Goldstein–Price function also used in ex-
periments, see Section 5). The local optima are clearly visible as the zones in which boxes
are recursively broken up, while the global optimum is in x = (0,−1). One notices that
the points evaluated (the points used to calculate f (B)) are distributed quasi-uniformly
over the search space: this is a result of the volume-proportional selection, and it guaran-
tees that all regions of the search space are treated in a fair manner. The IS trajectories
either converge to a local minimum or are terminated when they exit from the enlarged
district, as explained in Section 4.2. Because of our splitting criterion, each district con-
tains at most one local minimum. Although it is not visible from the figure, most points
(about 85% in the example) are evaluated during the local search phases, that are the most
expensive parts of the CoRSO algorithm.

We underline that CoRSO is a methodology to integrate a local search component
with a strategic allocation and sizing of districts and the generation of starting points in a
multi-dimensional space. Feel free to experiment with different local search components,
or different details about splitting the original space and firing local searches.
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Fig. 5. A CoRSO tree structure adapted to a fitness surface. Boxes (thin lines), evaluated points (dots) and LS
trajectories (thick lines).

4.4. Local Search with the Inertial Shaker (IS)

RAS, the previous default algorithm used in C-RTS (Battiti and Tecchiolli, 1996), requires
matrix-vector multiplications to update the search region, and therefore slows down when
the number of dimensions becomes very large. The simpler Inertial Shaker (IS) tech-
nique (Battiti and Tecchiolli, 1994) can be a more effective choice in this case: the search
box is always identified by vectors parallel to the coordinate axes (therefore the search
box is defined by a single vector β and no matrix multiplications are needed) and a trend

direction is identified by averaging the d previous displacements where d is the domain’s
dimensionality. An important parameter of the IS heuristic is the amplification coefficient
defined as fampl > 0 controls the extent at which the trend direction modifies the search
box.
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f (input) Function to minimize
x (input) Initial and current point
β (input) Box defining search region R around x

δ (parameter) Current displacement
amplification (parameter) Amplification factor for future displacements
history_depth (parameter) Weight decay factor for past displacement average

1. function InertialShaker (f, x, β)

2. t ← 0

3. repeat

4. success ← double shot on all components ( δ)

5. if success = true

6. x ← x + δ

7. find trend ( δ)

8. if f( x + δ) < f( x)

9. x ← x + δ;

10. increase amplification and history depth

11. else

12. decrease amplification and history depth

13. until convergence criterion is satisfied

14. return x;

Fig. 6. The Inertial Shaker algorithm, from Battiti and Tecchiolli (1994).

RAS requires matrix-vector multiplications to update the search region, and therefore
slows down when the number of dimensions becomes very large. The simpler Inertial

Shaker (IS) technique (Battiti and Tecchiolli, 1994), outlined in Fig. 6, can be a more
effective choice in this case: the search box is always identified by vectors parallel to the
coordinate axes (therefore the search box is defined by a single vector β and no matrix
multiplications are needed) and a trend direction is identified by averaging a number of
previous displacements: the find_trend function used at line 7 simply returns a weighted
average of the previous displacements:

δt = fampl ·
∑d

u=1
δt−ue

− u

h2
decay

∑d
u=1

e
− u

h2
decay

,

where the amplification coefficient fampl and the history decay factor hdecay are defined in
the algorithm; the number of past displacements in the weighted average is chosen to be
equal to the function’s dimensionality d in order to cut off negligible exponential weights
and to keep the past history reasonably small.

Figure 7 shows how the double-shot strategy is applied to all components of the search
position x. A displacement is applied at every component as long as it improves the result.
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f Function to minimize
x Current position
β Vector defining current search box
δ Displacement

1. function double shot on all components (f, x, β, δ)

2. success ← false

3. x̂ ← x

4. for i ∈ {1, . . . , n}

5. E ← f( x̂)

6. r ← random in [−bi, bi]

7. x̂i ← x̂i + r

8. if f(x̂) > E

9. x̂i ← x̂i − 2r

10. if f(x̂) > E

11. bi ← ρcompbi
12. x̂i ← x̂i + r

13. else

14. bi ← ρexpbi
15. success ← true

16. else

17. bi ← ρexpbi
18. success ← true

19. if success = true

20. δ ← x̂ - x

21. return success

Fig. 7. The double-shot strategy from (Battiti and Tecchiolli, 1994): apply a random displacement within the
search box to all coordinates, keep the improving steps; return false if no improvement is found.

If no improvement is possible, then the function returns false, and the search box is
accordingly shrunk.

4.4.1. On the Importance of Local Search in CoRSO
The district separation mechanism of CoRSO can be used to recursively divide the func-
tion’s domain into smaller and smaller regions, therefore isolating local minimum points,
without the need for a local search algorithm; every time a district is evaluated to be a local
minimum, instead of executing an IS run starting from the district we simply evaluate a
new point and proceed at splitting the district as if a new local minimum had been found.

The four charts in Fig. 8 show the effect of “switching off” the local search component
on two functions. The Rastrigin benchmark function used in the top charts is multi-modal
(it actually contains a grid of local minima, gradually decreasing towards the global one at
x = (0,0)). In the 10

5 evaluations allotted for the test, both tests (with IS on the left, with-
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Fig. 8. CoRSO tree structure with (left) and without (right) the local search component, applied to the 2-dimen-
sional Rastrigin (top) and Rosenbrock (bottom) function.

out it on the right) correctly identify the global minimum, although the version without
local search finds it later and with much more approximation.

The same can be said about the Rosenbrock function (bottom charts of Fig. 8); the
function is unimodal, with a deep parabolic valley that gets progressively narrow towards
the global minimum in x = (1,1) (i.e., away from the paraboloid’s vertex). The bottom
of the valley can be traced both by the IS trajectories in the left picture and by the finer
districts in the right chart.

In both cases, the version without local search is much slower, due to the need to main-
tain the district tree data structure with multiple subdivisions, and becomes prohibitively
slow for d > 3. For this reason, and for the higher precision attained by allowing the local
search phase, we can conclude that local search is indeed a fundamental component in the
proposed heuristic.
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CORSO P-CORSO

Fig. 9. Optimization history traces of all runs of CoRSO and its portfolio version P-CoRSO on the order-5 Shekel
function. The record value is plotted against the number of evaluations.

4.4.2. P-CoRSO: A Portfolio of CoRSO Optimizers

As a preliminary test, the left part of Fig. 9 tracks the execution of 150 runs of CoRSO

on the order-5 Shekel function (one of the benchmark functions used for testing, as de-
scribed in Section 5). For every run, the record value is plotted against the number of
function evaluations. In the top left, we can observe the interaction between the combi-
natorial component and the Inertial Shaker. In some runs, the initial exploration by the
Inertial Shaker gets stuck in a local minimum; in such case, we need to wait until the
IS termination condition is met before the combinatorial component can search a more
promising region and restart the local search phase. Once a good starting point has been
found, convergence to the global minimum is quite fast, but the number of restarts needed
can be high and unfortunate searches can exhaust the evaluation budget. This problem can
be mitigated by maintaining a portfolio of CoRSO optimizers.

The P-CoRSO (Portfolio of CoRSO) technique works by initially maintaining a set
of 5 CoRSO searchers. In this initial phase, these searchers are executed in a round-robin
fashion until 1% of the evaluation budget is consumed. At this point, the remaining iter-
ations are reserved to the searcher having found the best objective value. The P-CoRSO

heuristic is shown in the right chart of Fig. 9. Some unlucky cases are still possible, but
the overwhelming majority of the runs converges at the first try.

5. Experimental Results

In this section we describe the experimental results obtained by comparing CoRSO, and its
portfolio version P-CoRSO, with other state-of-the-art population-based meta-heuristics
for continuous optimization:

• The Comprehensive Learning Particle Swarm Optimizer (CLPSO) (Liang et al.,
2006) is a PSO-based heuristic that prevents premature convergence by using the
historical best information of all particles.1 The code is implemented in MATLAB.

1Code available at http://www.ntu.edu.sg/home/epnsugan/.
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• Differential Evolution (DE) (Price et al., 2006) is a Genetic Algorithm based on
adding the difference between two population members to a selected vector before
crossing over, so that “no separate probability distribution has to be used which
makes the scheme completely self-organizing”.2 The C version has been used in
this paper.

The CoRSO code described in this paper has been implemented in C++.

5.1. Benchmark Functions

A subset of classical benchmark functions from the GenOpt challenge3 has been used
for testing, in particular the unimodal Rosenbrock (d = 10,30), Sphere (d = 10,30) and
Zakharov (d = 10,30) function families, and the multi-modal Goldstein-Price (d = 2),
Hartmann (d = 3,6), Rastrigin (d = 10,30), and Shekel (d = 4, order = 5,7,10) fami-
lies.

5.2. Settings

All tests have been carried out on an 8-core 2.33 GHz Intel Xeon server running a 64-bit
Linux OS with kernel 3.13.0. However, due to the large performance gap between the
MATLAB implementation of CLPSO and the other algorithms, all comparisons are based
on the number of function evaluations rather than on physical time.

The relevant parameters of the CoRSO optimizer have been empirically tested on short
runs on the 5-dimensional Rastrigin and Rosenbrock functions (d = 5 is not used in the
subsequent tests). The tabu period reduction factor, to which the technique has proved to
be very little sensitive, has been set to fred = 0.7; the prohibition period is divided by fred

whenever 3 boxes are re-visited 3 times. The amplification factor of the Inertial Shaker has
been set to fampl = 0.99. The Inertial Shaker phase is stopped whenever the improving
step size in the domain is shorter than 10

−8 ·
√

d , where d is the domain’s dimensionality.
Following the authors’ suggestions, the population size for the CLPSO algorithm has

been set to 10 for lower-dimensional functions (d 6 10), and to 40 for d = 30, while the
DE parameters are: NP = max{10 · d,40}, F = 0.8, CR = 0.9.

In the subsequent tests, the main objective is to reach a pre-defined error δ = 10
−5 with

respect to the function’s known global minimum, recording the number of iterations re-
quired to achieve it. This kind of task is more representative of many real-world situations
in which a tolerance is given on the process to be optimized, and the objective function is
often noisy, so that arbitrarily low errors are not realistic. The chosen error value is low
enough to ensure that the algorithm has correctly chosen the global minimum’s attraction
basin in the case of the multi-modal benchmark functions.

2Code available at http://www1.icsi.berkeley.edu/~storn/code.html.
3Available at http://genopt.org/.
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Table 1
Median iterations for 30+ runs of CoRSO, P-CoRSO, CLPSO, DE, to get within 10

−5 from the global
minimum. Boldface numbers indicate the best median; underlined if the IRQs don’t intersect (see explanation

in the text). No result if technique does not reach the desired approximation within the allotted number of
function evaluations.

Function Dim CORSO P-CORSO CLPSO DE

Goldstein-Price 2 5276 2814 4021 716

Hartmann 3 804 2253 3291 1172

Hartmann 6 1847 3229 13306 –
Rastrigin 10 10190 11569 51241 –
Rastrigin 30 94401 64300 143952 –
Rosenbrock 10 80852 82159 – 29862

Rosenbrock 30 (20%) (3%) – –
Shekel 5 4 28127 4642 74757 4283

Shekel 7 4 40419 4843 30909 4006

Shekel 10 4 42972 5060 26264 4321

Sphere 10 2964 4366 15615 6044

Sphere 30 12174 13797 61440 –
Zakharov 10 18992 20181 28950 16254

Zakharov 30 172276 173163 – –

5.3. Comparison and Discussion

The three meta-heuristics have been run for at least 50 times on each benchmark func-
tion. Every run was interrupted at the earliest of two occurrences: (i) an evaluation of the
objective function produced a value below fmin + δ, where fmin is the global minimum
value of the function, or (ii) the total budget of 2 · 10

5 evaluations was consumed.
The CoRSO heuristic was run 150 times for each benchmark function; with this larger

number of runs, the portfolio version could be simulated by aggregating 5 traces at a time,
yielding 30 simulated P-CoRSO runs.

Table 1 reports the median number of evaluations required by each algorithm to
achieve the target objective value. For every benchmark function, the lowest number is
highlighted in boldface. As a measure of confidence in the winner, the underlined values
are those in which the inter-quartile ranges of the winner and of the runner-up don’t inter-
sect (i.e., the third quartile of the winning algorithm’s runs is still below the first quartile
of the second best algorithm).

CoRSO achieves good results in high-dimensional cases such as the Rastrigin, Sphere
and Zakharov function families (although in the 10-D Zakharov case DE achieves a better
median result) and in the Hartmann functions. DE works better in most low-dimensional
cases, in particular on the Goldstein-Price function and on the Shekel family. Unfortu-
nately, DE is very fragile and it fails completely to reach the desired approximation in the
allotted budget in five cases for which the median results are still very far.

While the portfolio version P-CoRSO only wins in one case (30-dimensional Rast-
rigin), its capability of quickly identifying unfortunate situations put it on par with DE
on the Shekel family, where it achieves a dramatic reduction with respect to the CoRSO

heuristic alone.
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Shekel 7 (d = 4) Shekel 10 (d = 4)

Goldstein-Price (d = 2) Hartmann (d = 3)

Fig. 10. Distribution of the number of iterations required to achieve the target value for the four algorithms on
four benchmark functions.

It is also worth noting that, while DE can be very fast on certain function classes, it
is significantly underperforming in many other cases, where no runs achieve the required
target value within the allotted number of iterations. This is possibly due to sensitivity to
parameters, which (as a general rule) were kept constant through all benchmark functions.
The CoRSO heuristic achieved the local minimum for all functions for at least a fraction
of the runs.

Figure 10 shows a more detailed comparison on four benchmark functions. In the top
two charts, referring to the Shekel 7 and Shekel 10 functions, the success of the portfolio
version P-CoRSO in lowering the median value of CoRSO is apparent. However, in both
cases we can see a heavy tail in the form of outliers (Shekel 7) or a large IQR (Shekel 10).
The bottom charts show two cases in which the portfolio heuristic is ineffective in lowering
the median.

As a specific example, let us follow the evolution in time of the algorithms on the
3-dimensional Hartmann function, whose final outcomes are represented in the bottom-
right chart of Fig. 10. In Fig. 11 the median value of all the runs of each algorithm on the
3-dimensional Hartmann function is plotted against the number of evaluations. In order to
better appreciate the variability of the single runs, error bars represent the interval between
the first and the third quartile, so that 50% of the runs actually pass within the error bar.



CoRSO: Collaborative Reactive Search Optimization 319

Fig. 11. Optimization history of the considered meta-heuristics on the 3-dimensional Hartmann function. The
median record value of all runs is plotted against the number of evaluations. Inter-quartile ranges are shown as
error bars. Only the initial 3500 iterations are shown.

Figure 12 shows the individual traces of all runs of the four algorithms on the same
benchmark function. The charts have the same scale as in Fig. 11. In this figure, we can
appreciate in particular the “outlier” CoRSO runs that do not converge immediately, but
need to be restarted from a better position. The same outliers are visible in the bottom-
right chart of Fig. 10 on the CoRSO column. The relationship between CoRSO and P-

CoRSO is explained by looking at the top-left and top-right traces shown in Fig. 12. While
the unlucky runs are removed by the portfolio mechanism, the evaluation overhead intro-
duced by the initial round-robin evaluation delays the earliest successful runs by reducing
their downward slope. The net result is an increase of the median number of evaluations
from 804 to 2253, even though outlier runs are eliminated.

6. Conclusions

Many optimization problems of real-world interest are complex and need enormous com-
puting times for their solution. The use of many computers working in parallel (maybe
living in the cloud, rented when they are needed) comes to the rescue to reduce the clock
time to produce acceptable solutions. In some cases, one can consider independent search

streams, periodically reporting the best solutions found so far to some central coordina-
tor. In other cases, more intelligent schemes of coordination among the various computers
lead to a higher efficiency and effectiveness.

The CoRSO algorithm presented in this paper and its portfolio version P-CoRSO deal
with coordinating a team of interacting solvers through an organized subdivision of the
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CORSO P-CORSO

CLPSO DE

Fig. 12. Traces of all runs of the four algorithms on the 3-dimensional Hartmann function. Only the initial 3500
iterations are shown.

configuration space which is adapted in an online manner. The main building block is local
search, acting in two different levels. Combinatorial local search with reactive prohibitions
(RSO) manages an adaptive tree of search districts and generates a trajectory of search
boxes, biased towards more promising areas. Continuous stochastic local search (Inertial
Shaker) is started in a frugal manner only when the current search district looks sufficiently
promising.

The experimental results of CoRSO and P-CoRSO, when compared with widely used
genetic and particle swarm algorithms, demonstrates either better median results for some
problems or a greater robustness level. In particular, the competing techniques appear to
be stuck with values very far from the global optimum for some instances, within the
allotted budget. In some cases DE and CLPSO do not reach the desired approximation
even if the budget is increased by an order of magnitude.

As a future step it would be of high scientific and practical interest to compare CoRSO

with different strategies like the P -algorithm with simplicial partitioning or ‘Divide-the-
Best’ algorithm based on Lipschitz assumptions and on efficient diagonal partitions. Pos-
sible adaptive hybrids which determine in an online manner the best methods (or the best
combination) to use based on preliminary results are also of high scientific and practical
interest. A possible context can be that of scientific competitions like genopt.org.
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Our experimental evidence supports the hypothesis that paradigms derived from hu-
man organizations, characterized by “learning on the job” capabilities, can lead to superior
or more robust results with respect to paradigms derived from simpler living organisms
or genetic principles.
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Kombinatorinės ir tolygios lokalios paieškos sujungimas (CoRSO)

Mauro BRUNATO, Roberto BATTITI

Straipsnyje pasiūlytas euristinis globalios optimizacijos metodas, derinant kombinatorinę ir tolydžią
paiešką. Kombinatorinė komponentė, pagrįsta reaktyvine optimizacine paieška (ROP), generuoja
binarines eilutes, kuriomis apibrėžiama paieškos sričių trajektorija. Reaktyvus draudimo mecha-
nizmas užtikrina, kad paieška neįstrigs lokaliai optimalioje srityje. Tolydi stochastinė lokali paieš-
ka yra pagrįsta inerciniu plakimo metodu: žingsniai generuojami adaptyviai parenkamoje dėžėje ir
slenkančio vidurkio metodu filtruojamas triukšmas bei aukšto dažnio osciliacijos. Paieškos erdvė
adaptyviai skaidoma į nepersidengiančių paieškos sričių medį tankiau skaidant įdomias sritis, taip
ieškant geresnių lokalių minimumų. Algoritmo patvarumui užtikrinti naudojamas nepriklausomų
ROP srautas. Išsamiais eksperimentais parodyta, kad ROP ir ROP srautas yra konkurencingi gene-
tinių ir dalelių spiečių algoritmų atžvilgiu, ir kai kuriais atvejais žymiai patvaresni negu pastarieji.


