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Abstract. The maximization problem for an objective func­
tion f given on a feasible region X is considered, where X is a 
compact subset of Rn and f belongs t.o a set. of cont.inuous mul­
tiextremal functions on X can be evaluated at any point x in X 
without error, and its maximum M = maxf(;r) together with a 

rEX 
maximizer .r*(a point x* in X such that AI = f(;r*)) are to be 
approximated. "We consider a class of the global random search 
methods, underlying an apparatus of the mathematical statistics 
and generalizing the so-called branch a,nd bound methods. 

Key words: global optimization, random search, branch and 
bound, statistical inferences. 

l.Gist of Branch and Bound Methods. Branch and 
bound methods used to -advantage in various extremal prob­
lems (for instance, see Horst (1986)) consist in rejecting some 
of the subsets of X that do not for sure contain a maximizer 
and searching only among the rest of sets regarded as promis­
ing. Branch and bound methods may be schematized as a 
suc('('ssive implementation at each iteration of the follmving 
three stages: 
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i) branching (decomposition) of the original set into the 
tree of subsets and evaluating the objective function values at 
some points in the subsets; 

ii)estimation of functionals of the objective function over 
the obtained subsets (criteria of subset prospectiveness); 

iii) selection of subsets that are promising for further 
branching. 

In standard versions of branch and bound methods, de­
terministic upper bounds of the maximum of f on subsets are 
used as subset prospectiveness criteria. In doing so, all subsets 
Z whose upper bounds for sup f do not exceed the maximal of 

z 
already obtained values of f are rejected. Prospectiveness cri-
teria in these methods, thus, can be either 1 or 0, what means 
that branching of a subset should go on or be stopped. 

Further, consideration will be given to non-standard vari­
ants of branch and bound methods that will be called branch 
and probability bound ones. Their distinction is that the max­
imum estimates on subsets are probabilistic (true with a dose­
to-one probability) rather than deterministic ones. The key 
notion arising under the description of the branch and proba­
bility bound methods is that of the s.et prospectiveness. 

2. Prospectiveness Criteria. We shall call a sub ad­
ditive set function '{J : B -+ RI , resulting from processing 
the preceding values of the objective function and reflecting 
the. possibility of locating the global maximizer in subsets, 
a prospectiveness criterion. Here B is the b-algebra of the 
Borel subsets of X .If for two sets ZI, Z2 E B the inequality 
'P( ZI) ~ 'P( Z2) holds, then location of the globalmaximizer in 
ZI is according to the prospectiveness criterion 'P at least as 
likely as in Z2 . 

Set functions 'f' assuming for Z E B the following values 
can be used as prospectiveness criteria: 
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a) cp(Z) is an estimate for Mz = sup f, 
z 

b) cp(Z) is a mean value Jz f(z )z;(dz) estimate, 
c) cp( Z) is a minimum min f estimate, 

z 
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d) cp(Z) is an upper confidence bound of a fixed confi-
dence level for lvf Z ,. 

e) cp(Z) is an estimate of probability Pr{Mz ~ ft},where 
f; is the maximal of already determined values of f. 

A lot of statistical procedures for construction of the 
above prospectiveness criteria are considered in Zhigljavsky 
(1985). The preference order is as follows: e), d), a), b) and 
c). Thus, criteria e) and d) should be used if possible. In 
the involved situations (for instance, in the case of a random 
noise presence under evaluation of f) they cannot be always 
constructed and one has to content oneself with b)-type crite­
ria that can be constructed in general situations. 

The estimates listed above can be constructed either via 
the results of evaluating the objective function or after the 
investigation of estitnates or approximation of this function. 
As a rule, the estimates are probabilistic; deterministic esti­
mates can be constructed mainly for a Lipschitz-type func­
tional classes and correspond to the branch and bound ap­
proach. 

3. Principal Construction of Branch and Proba­
bility Bound Methods. The methods under consideration 
are distinguished by (i) organization of the set branching, (ii) 
kinds of the prospectiveness criteria and (iii) rules for rejection 
of unpromising subsets. 

Set branching depends on a structure of X and on a re­
searcher's software and. computer resources. If X is a hyper­
rectangle,it is· natural to choose the same form for branching 
sets Zkj ~here k is an iteration number and j is a set number. 
In the general case, spheres, hyperrectangles and sometimes 
ellipsoids can be naturally chosen as Zkj. Two conditions are 
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imposed on the choice of Zkj: their union should cover the do­
main of search and the number of points where f is evaluated 
should be in ea:ch set sufficiently large for drawing statistical 
inferences. There is no need for Zkj to be disjoint for any 
fixed k. 

Branching (or decomposition) of the search domain can 
be carried out either a priori (i.e., independently of the values 
of f) or a posteriori. Numerical investigation shows that the 
second technique provides more economical algorithms. The 
following branching techhique has been proved to be conve­
nient and efficient. At each k-th iteration first isolate in the 
search domain X k a sub domain Zk1 with the centre at the 
point,corresponding to the record value of f. The point corre­
sponding to the record value of f over Xk \Zk1 is the centre of 
a subdomain Zk2. Similar sub domains Zkj (j = 1, ... , J) are 
isolated until either X is not covered or the hypothesis is not 
rejected that the global maximum can occu,: in the residual 

J 
set X k \ U Zkj (the hypothesis can be verified by the proce­

j=l 

dure described below). The search domain Xk+1 of the next 
J 

(k + 1 )-th iteration is naturally to be either Z(k) = U Zkj 
j=l 

or a hyperrectangle covering Z(k) ,or a union of disjoint hyper­
rectangles covering Z(k). In multidimensional cases the last 
two ways induce more convenient variants for realization of 
the branch and probability bound methods than the first one. 

Contrary to the standart branch and bound methods, in 
the methods in hand the prospectiveness criterion may assume 
any real value (for some criteria, the interval [0,1] can be 
the set of values) rather than two values (say, 0 and 1). An 
estimate of !vIz can be used as the prospectiveness criterion. 
It is more natural to take as the prospectiveness criterion of Z 
the upper confidence bound for !vIz of a fixed h \·el 1 - I (see 
Section 4). Finally, the prospectiveness criterion discussed at 
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the beginning of Section 5, which relies upon the procedure for 
testing statistical hypothesis about Mz, is natural and easily 
computable. 

Rules for rejecting unpromising sets also can differ. Un­
der reasonable organization of branching and use of the math­
ematical statistics apparatus for construction of the prospec­
tiveness criterion, there is usually no absolutely unpromising 
set Zo (i.e., such whose prospectiveness criterion is <p( Zo) = 
inf <p(Z) ). Narrowing of the search domain (i.e., rejection of 
ZEB 
subsets), therefore, may occur only if the lower prospective-. 
ness bound 6 is defined; if <p( Z) ::::;; 6, then the set Z may be 
regarded as unpro~sing and be rejected. 

Further, it is intuitively evident that the more promising 
a subset, the greater number of points should be locted in it. 
This can be allowed for by taking, for instance, the number 
of points in a subset to be directly proportional to a value 
of the prospectiveness criterion. The extremal case where all 
points are always located in the most promising set is not 
efficient and reliable. The following can be also taken into 
consideration when constructing the rejection rule. A reason­
able prospectiveness criterion depends not only on function 
values over a given subset, but also on those in the whole set 
X. A subset of a mean prospectiveness can, therefore, become 
the unpromising one (and be rejected) owing to the improved 
prospectiveness of other subsets. The following organization 
of the search algorithm is, thus, possible: 'if a subset Z was 
recognized at the k-th iteration as being of a mean pro spec­
tiveness (i.e. 6 < <p(Z) ::::;; 6*),one might not evaluate function 
f in Z at several Elubsequent iterations and wait for Z to be-
come unpromising and be rejected. . 

4. Statistical Inferences about the Maximal Value 
of a Function. Let 2: = {6, ... , en} be an independent 
sample from a random vector e with a probability distribution 
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P given on a measurable set Z, N be large, 'fIl :::;; .•. :::;; 'fiN 

be the order statistics,corresponding to the sample Y = {Yi = 
f(~i)' i = 1, ... , N} of the objective function values at the 
points of 3, 

F{t) = [ P(dx) 
Jf(x)<t 

(1) 

be the cumulative distribution function (c.d.f.) of the ran­
dom variable Y = f(~). Suppose that P is equivalent to the 
Lebesgue measure on Z, f is continuous and the function 
V( v) = 1 - F(M -l/v), v > 0, regularly varies at infinity, i.e., 

lim V(tv )/V( v) = t-OI for each t > 0, (2) 
v~oo 

where 
M = Mz = ess sup y = supf(z) 

zEZ 

and 0,0 < 0 < cc is some exponent called the tail index. We 
shall suppose 0 is known (for the condition on determining 0 
see Haan·(1981), Zhigljavsky (1985)). If it is not the case,then 
o can be estimated, see Hall (1982), Smith (1987), Zhigljavsky 
(1985). 

Statistical inferences about M constructed through the 
sample Y are the background for the branch and probabil­
ity bound methods. Their thorough description and study is 
considered in Zhigljavsky (1985) with the references contained 
there. We mention only three representatives. 

The linear estimators for M have the form 
r 

MN,r = L ai'flN-i , 
i=O 

where r is much smaller than N, ao, ... , ar are some coeffi­
r 

cients satisfying the condition l: ai ~ 1. The optimal coeffi­
i=O 

dents are expressed as follows: 

(aj)* = cVjr(i + l)/r(i + 1 + 2/0), where 
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Vo = a + 1, Vr = -( ar + 1), Vj = a-I for j = 1, ... ,r - 1, 

{
(a - 2)/[ar(r +2)/r(r + 1 + 2/a)-

_ -2/r(1 + 2/a)] 
c- r 

1/ L: 1/(i + 1) 
i=O 

for a f= 2, 

for a = 2. 

For N --+ 00 the corresponding estimators MN r are asymp­
totically optimal in the class of linear estimate~ and asymp­
totically efficient (under r --+ 00, r / N --+ 0 for N --+ 00). 

A convenient one-sided confidence interval for M of a 
fixed asymptotical (for N ---+ 00) confidence level 1 -, has the 
form 

(3) 

where 

The corresponding test procedure for the hypothesis 
Ho : M ~ M* ,where M* is a fixed number, M* ~ 1]N is 
determined by the rej~ction region 

5. Typical Variants of the Branch and Probabil­
ity Bound Method. Consider one of the most natural and 
readily computable prospectiveness criterion. 

Let f; be the largest value of f obtained so far and the 
search domain Xk be decomposed at the k-th iteration into 
subsets Zkj(j = 1, ... , Jk) : Xk C U Zkj. Define the pro­

j 

spectiveness criterion of Zkj as 

'Pk(Zkj) == Pkj = [1 - (U; -1]N )/U; - 1]N-r ))CXr, (5) 

where 1]N and 1]N-r are the order statistics,corresponding to 
a sample {Yl = f(e') , I = 1, ... , N}, r is much smaller than 
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N, 6, ... ,eN are independent realizations of a random vector 
on X got into Zkj. The values Pkj can be treated in two ways: 
asymptotically (for r=const, N -+ ob) it is greater than or 
equal to the probability that 

M Zkj = sup I(x) ~ IZ 
XEZki 

and the probability of accepting the hypothesis Ho : MZkj ~ 

~ Ik ,provided that the hypothesis is true and that the hypoth­
esis testing procedure is determined via (4). To derive (5) from 
(4),it suffices to solve the inequality UZ - ''IN )/( ''IN - ''IN-r) ~ 
~ qr,l--y with respect to I and to substitute the corresponding 
equality for it. 

In the algorithm below the number of points at each k­
th iteration in promising subset Zkj is assumed to be (in the 
probabilistic sense) proportional to the value of the prospec­
tiveness criterion 'Pk(Zkj); a further branching is performed 
over those sets Zkj ,whose values (5) are not less than given 
numbers 8k . 

Algorithm l. 
l.Put k = 1, Xl, 10 = --=-00. Choose a distribution PI. 
2. Generate Nk times the distribution Pk1 obtain a 

sample 

3 k ={xik) ... , xNkk)}. 

3. Evaluate 1 at the points of 3 k and put 

4. Organize a branching of X k by representing this set 
as X k C U Z kj ,where Z kj are measurable subsets of X ,hav­

j 

ing a sufficient number of points from 3 k for the statistical 
inferences drawing. 
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5. For each subset Zkj compute (not necessarily through 
(5)) values of a prospectiveness criterion 'Pk(Zkj). 

6. Put X k+1 = U Zkj ,where 
j 

·Z* - {Zkj if 'Pk(Zkj) > 8k, 
kj - 0 otherwise, 

i.e., those subsets Zkj(j = 1,2, ... ) for which 'P(Zkj) ~ 8k are 
rejected from the search domain X k. Let h be a number of 
subsets Zkj' 

7. Put 

lie 

Pk+1(dx) = LP?)(hj(dx) , (6) 
j=l 

where p?) = l/Ik and ()kj are the uniform distributions over 
the sets Zkj (j=1, ... , Ik). If 'Pk is a nonnegative criterion,we 
may take 

lie 

pt) = 'Pk(Zkj)/ L 'Pk(Zkl)' (7). 
l=l 

8. Return to Step 2 substituting k + 1 for k. 
Closeness of fk to an estimate of M = M x or to the 

upper bound of the confidence interval (3) are natural stopping 
rules for Algorithml. Another type of the stopping rule is the 
reaching of rather a small volume of the search domain X k· 

Of course, after termination of the algorithm one may 
use a local ascent routine to determine a location of a global 
maximizer more precisely. 

Distributions Pk+1 in Algorithm 1 are sampled by means 
of the superposition method: discrete distribution concen­
trated at the points {I, 2, ... , Id with probabilities p?) is 
sampled first and is followed by the distribution ()kT sampling, 
where T is the realization obtained at sampling of the discrete 
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distribution. If the first procedure for choosing probabilities 
pY) (i.e. pY) = 1/ h) is used at Step 7 of Algorithm 1 and 
Zkj (j = 1,2, .. '.) are disjoint,then (6) is nothing but a uniform 
distribution on the set X k+1 . 

All the points obtained at the previous interations and 
occuring at the set X k can be included into the collection 
3 k at Step 2 of Algorithm 1, which improves the accuracy of 
statistical procedures for determination of the propectiveness 
criterion. If all distributions Pk are uniform on Xk ,the result­
ing samples are samples trom the uniform on X k distributions 
as well; if the form of Pk+l resembles (6), distributions of the 
resulting samples are not uniform on X k but this fact is of no 
importance for drawing statistical inferel1ces (see Zhigljavsky 
(1985)). It is not of course necessary to store all previous 
points and objective function values because statistical infer­
ences are drawn only from the points, where f is relatively 
large; one even does not need to know the number of points 
within the domain. 

After completion of Algorithm 1,0ne can apply (5) to the 
union of all rejected subsets in order to determine the probabil­
ity of "not loosing" the global maximum. The following should 
be taken into consideration. Let ikj = 1 - Pkj be the proba­
bilities of loosing the global maximum in the rejected sets Zkj 
as computed through (5). The total probability of loosing the 
global maximizer as determined through( 5) is, then, max ikj 
at most. Indeed, let us take the set Zkj = Zkj containing the 
point, corresponding to the maximal order statistic 7] N of the 
set Z = U Zkj. Then 7]N-r for Z is not less than 7]N-r for 

k,j 
Zkj and maXk f: (it plays the role of f: for Z) is not less than 
f:. But Pkj defined via (5) is an increasing function of both 
7]N-r and f: for fixed G', r, rand 7]N. 
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If evaluations of j are costly, one has to be extremely cau­
tious in planning computations. After completion of certain 
number of evaluations of j, one should extend the amount 
of auxiliary computations with the aim of extracting and ex­
ploiting as much information about the objective function as 
possible. To extract this information from a large union of 
sets Zkj,One should: compute probabilities (5); construct var­
ious estimates of M Zkj ; check the hypothesis about the value 
of the tail index a which can provide information on whether 
a global maximizer vicinity is reached; estimate c.d.f. (1) for 
the values of t close to M (this will enable one to draw a 
conclusion about the expediency and approximate size of the 
remaining computations ); and, in addition, one can estimate 
j and related functions in order to re check and update the in­
formation. A decision about prospectiveness of subsets should 
be made through a large set of statistical procedures. It is 
natural that these procedures can be taken into consideration 
only if the algorithms are realized in the interactive fashion. 

The major part of our assertions have an exact sense 
only if for the corresponding function F(t) the condition (2) 
is met and the tail index a is known. As for the condition 
(2) ,the practice shows that it may be always regarded as met, 
if the problem at hand is not too exotic. In principle, a sta­
tistical inference about a can be always made via the proce­
dures of Smith (1987) that are to be carried out successively 
as the points are accumulated. However, it is recommendable 
to use the results of Haan (1981) and Section 4.2 of Zhigl­
javsky (1985), if possible, since the accuracy of procedures for 
statistical inferences about a is high only under comparatively 
large samples. According to these results,for the case when 
X c Rn and the objective function j is twice continuously dif­
ferentiable and approximated by a non-degenerate quadratic 
form in a vicinity of a global maximizer x* )one can always 
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set Q' n/2. While doing sO,one may be confident that 
statistical inferences are asymptotically true for the subsets 
Z C X containing x* (together with subsets Z containing 
maximizers Xz = argma~f(x) as interior points). The pro-

xEZ 
spectiveness of other subsets Z may be lower than for the case 
of the usage of their true values of Q' but it is not the deficiency 
for the methods. 

Let us finally describe the variant of the branch and prob­
ability bound method that is convenient for realization, uses 
most of the above recommendations and proved to be efficient 
for a wide range of practical problems. 

AlgorithJ;Il 2. 
1. Set k - 1, Xl = X, f; = -00. 

2. Gen orate a given number N times the uniform distri-
b t · th h d . X b' ~ {( k) ( k) } U IOn on e searc omam. k, 0 tam'::::'k = Xl"'" x N . 

3. Evaluate f(xjk)) for j = 1, ... ,N. Put 

Check the stopping criterion (closeness of f; and the estimator 
A1N r for M). , 

4. Put Yk,O -':'Xk, j = 1 . 
5. Put Yk,j = Yk,j-l \Zkj ,where Zkj is a cube (or a ball) 

of volume pmes(Xk) centered at the point having the maximal 
value of f among the points from the set Yk,j-l w:ith evaluated 
objective function values. 

6. If a number m of points in Yk,j with known values 
of the objective function is insufficient for drawing statistical 
inferences (i.e., m ~ mo), then set Xk+l = Xk and go to Step 
9. If m > mo ,then put 
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where order statistics 77m, 77m-r correspond to the values of f 
k 

at Yk,j n u '31. If 'Pk(yil) ~ 8 then go to Step 8. 
1=1 

7. Substitute j + 1 for j and go to Step 5. 
8. Choose X",+1 as the union of disjoint hyperrectangles 

covering the set Z k1 U ... U Z kj . 
9. Substitute k + 1 for k and return to Step 2. 
The author proposes to use N = 100, mo = 15, P = 0.1, 

and r = min{5, [m/IOn, where [.] is the integer part oper­
ation as a standart collection of parameters of Algorithm 2. 
Another choice of the parameters,corresponding to the recom­
mendation of Zhigljavsky (1985), is possible as well. 

Under the condition rno ~ 00, Algorithm 2 converges 
with probability 1 - r, i.e., it looses a global maximizer with a 
probability not larger than 1 - I . It follows from the results 
of Section 4.2 of Zhigljavsky (1985). 

6. Numerical Results. We present here some numeri­
cal results for Algorithm 2 and compare them with results of 
some other authors basing on Zilinskas (1986). We use Hart­
man and Shekel test functions with the coefficients given in 
Zilinskas (1986) pp. 146, 147 as the test ones. The numerical 
results for the P*--algorithm of .Zilinskas , some variant of Al­
gorithm 2 (branch and probability bound (BPB) algorithm) 
added both wit.h local stages to obtain more precise approxi­
mations for ;r* (we use Nelder-Meed local algorithm) and t.he 
best results in Dixon and ~zego (1978) are given in Tables 1 
and 2 for Hartman and Shekel test functions,correspondingly. 
In most cases our algorithm has won. Of course, it is not 
meant t.hat in any case it is better t.han the above ment.ioned 
P*-algorit.hm or some other. One of the reasons for a good 
feature of our algorithm is a suitable choice of the algorithm 
parameters. 
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Table 1. Test results for Shekel test function 

4 terms 

Evaluation 
numbers 

6 terms 

Evaluation 
numbers 

9 terms 

Evaluation 
numbers 

Global stage Local stage 
only 

Total number 
of evaluation 

P* BPB P* BPB P* BPB Best in DS 

2.289 4.726 10.14510.148 
4.531 4.042 4.007 4.003 
4.004 3.705 4.000 4.001 
4.276 3.833 4.005 3.997 
3.893 4.04 3.998 3.994 

386 57 53 262 439 319 620 

2.716 3.002 10.380 10.398 
4.510 3.545 3.995 3.995 
4.092 4.264 4.013 4.003 
3.726 4.035 3.988 4.001 
4.089 3.946 3.989 3.996 

356 150 53 '92 409 242 788 

2.004 4.468 10.469 10.531 
3.557 3.842 4.018 4.004 
4.605 4.144 3.982 4.000 
4.020 3.669 4.002 4.008 
3.895 3.999 4.005 3.9.99 

400 300 49 119 449 419 1160 
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Table 2. Test results for Hartman test function 

Global stage Local stage Total number 
only of evaluation 

P* BPB P* BPB P* BPB Best in DS 

3.778 3.856 3.763 3.864 
Dimension 3 0.239 0.237 0.114 0.153 

0.524 0.557 0.556 0.554 
0.830 0.857 0.852 0.853 

Evaluation 
numbers 197 200 50 52 247 252 513 

2.093 3.630 3.322 3.946 
0.009 0.638 0.201 0.656 
0.123 0.365 0.150 0.418 

Dimension 6 0.687 0.507 0.477 0.439 
0.177 0.879 0.275 0.921 
0.375 0.602 0.311 0.417 
0.595 0.140 0.657 0.102 

Evaluation 
numbers 276 252 122 120 398 3~·) /..., 515 
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