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Abstract. This paper proposes the concept of an interval neutrosophic hesitant fuzzy set (INHFS)
and the operational relations of INHFSs. Then, we develop correlation coefficients of INHFSs and
investigate the relation between the similarity measures and the correlation coefficients. Further-
more, a multiple attribute decision making method based on the correlation coefficients is estab-
lished under interval neutrosophic hesitant fuzzy environment. Through the correlation coefficients
between each alternative and the ideal alternative, we obtain the ranking order of all alternatives
and the best one. Finally, an illustrative example of investment alternatives is given to demonstrate
the application and effectiveness of the developed approach.
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1. Introduction

Correlation coefficients are a powerful tool in data analysis and classification, decision
making, pattern recognition and so on (Bonizzoni et al., 2008; Kriegel et al., 2008;
Park et al., 2009; Szmidt and Kacprzyk, 2010; Ye, 2010; Wei et al., 2011). As many
real world data may be fuzzy, various types of correlations have been proposed under
fuzzy environments. Chiang and Lin (1999) introduced the concept of correlation. Hong
(2006) proposed a fuzzy correlation coefficient under Tw (the weakest t-norm)based fuzzy
arithmetic operations. As an extension of fuzzy correlations, Wang and Li (1999) intro-
duced the correlation and information energy of interval-valued fuzzy numbers. Then,
Gerstenkorn and Manko (1991) developed the correlation coefficients of intuitionistic
fuzzy sets (IFSs). Also, Hung and Wu (2002) proposed a method to calculate the cor-
relation coefficients of IFSs by means of “centroid”. Furthermore, Bustince and Burillo
(1995) and Hong (1998) further developed the correlation coefficients for interval-valued
intuitionistic fuzzy sets (IVIFSs). Recently, Torra and Narukawa (2009) and Torra (2010)
extended fuzzy sets to hesitant fuzzy sets (HFSs), which allow the membership degree
of an element to a set represented by several possible values. Thus, HFS can be consid-
ered as a powerful tool to express uncertain information in the process of group decision
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making. After that, Chen et al. (2013a) proposed the concept of interval valued hesi-
tant fuzzy sets (IVHFSs) and some correlation coefficients for HFSs and IVHFSs and
applied them to clustering analysis under hesitant fuzzy environments and interval hes-
itant fuzzy environments, and then they (Chen et al., 2013b) further proposed interval
valued hesitant preference relations and applied them to group decision making. As a
further generalization of the correlation coefficient between HFSs, Ye (2014a) presented
the correlation coefficient of dual hesitant fuzzy sets (DHFSs) and applied it to multiple
attribute decision making problems with duel hesitant fuzzy information. Recently, intu-
itionistic (uncertain) linguistic numbers and their applications in decision making have
received more and more attention (Liu and Jin, 2012; Liu, 2013; Liu and Wang, 2014;
Liu et al., 2014).

However, the aforementioned sets can only handle incomplete information but not the
indeterminate information and inconsistent information which exist commonly in real sit-
uations. For example, for a given proposition “movie X would be a hit”, in this situation
human brain certainly cannot generate precise answers in terms of yes or no, as indetermi-
nacy is the sector of unawareness of a proposition’s value between truth and falsity. Thus,
Smarandache (1999) presented a neutrosophic set from philosophical point of view. The
neutrosophic set is a powerful general formal framework which generalizes the concept
of the classic set, fuzzy set, interval-valued fuzzy set (IVFS), IFS, IVIFS, paraconsistent
set, dialetheist set, paradoxist set, and tautological set (Smarandache, 1999). In the neutro-
sophic set, indeterminacy is quantified explicitly and truth-membership, indeterminacy-
membership, and falsity-membership are independent. Its functions TA(x), IA(x) and
FA(x) are real standard or nonstandard subsets of ]−0,1+[, i.e., TA(x) : X → ]−0,1+[,
IA(x) : X → ]−0,1+[, and FA(x) : X → ]−0,1+[. Obviously, the neutrosophic compo-
nents are best fit in the representationof indeterminacy and inconsistent information.How-
ever, it will be difficult to apply in real scientific and engineering areas. Therefore, Wang et
al. (2005, 2010) proposed the concepts of an interval neutrosophic set (INS) and a single
valued neutrosophic set (SVNS), which are the subclasses of a neutrosophic set, and pro-
vided the set-theoretic operators and various properties of SVNSs and INSs. Thus, SVNSs
and INSs can be applied in real scientific and engineering fields and give us an additional
possibility to represent uncertainty, imprecise, incomplete, and inconsistent information
which exists in real world. Recently, Ye (2013) presented the correlation coefficient of
SVNSs based on the extension of the correlation coefficient of intuitionistic fuzzy sets
and proved that the cosine similarity measure of SVNSs is a special case of the correlation
coefficient of SVNSs, and then applied it to single valued neutrosophic decision-making
problems. Then, Broumi and Smarandache (2013) introduced the correlation coefficient
of INSs. On the other hand, Ye (2014b) developed a single valued neutrosophic cross-
entropy measure and applied it to decision-making problems with single valued neutro-
sophic information. Ye (2014c) also introduced the Hamming and Euclidean distances
between INSs and their similarity measures, and then applied them to decision-making
problems with interval neutrosophic information. Furthermore, Ye (2014d) presented a
concept of a simplified neutrosophic set (SNS), which is a subclass of the neutrosophic
set and includes a SVNS and an INS, and defined some operations of SNSs, and then he
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developed a simplified neutrosophic weighted averaging (SNWA) operator, a simplified
neutrosophic weighted geometric (SNWG) operator, and a multicriteria decision-making
method based on the SNWA and SNWG operators and the cosine measure of SNSs under
simplified neutrosophic environment.

The IVHFS, which allows the membership degree of an element to a set represented
by several possible interval values, can be considered as a powerful tool to express un-
certain information in the group decision-making process. But it cannot handle indeter-
minate and inconsistent information, while the INS gives us an additional possibility to
represent uncertainty, imprecise, incomplete, and inconsistent information which exists
in real world and would be more suitable to handle indeterminate information and incon-
sistent information. However, existing SVNSs and INSs cannot allow truth-membership
degrees, indeterminacy-membership degrees and falsity-membership degrees of an ele-
ment to a set represented by several possible values or interval values, and then existing
correlation coefficients for SVNSs and INSs cannot also handle this hesitant problem. To
solve this problem, it is very necessary to introduce the concept of interval neutrosophic
hesitant fuzzy sets (INHFSs), which permit truth-membership degrees, indeterminacy-
membership degrees, and falsity-membership degrees of an element to a given set to have
a few different interval values. Hence, the INHFS encompasses fuzzy set, IFS, IVIFS,
SVNS, INS, HFS, DHFS, and IVHFS as special cases of the INHFS. The purposes of
this paper are: (1) to propose the concept of INHFSs based on the combination of INSs
and IVHFSs and some basic operations of INHFSs, (2) to develop some correlation co-
efficients between INHFSs and to investigate their properties and the relation between
the correlation coefficients and some similarity measures, and (3) to establish a multi-
ple attribute decision making method based on the correlation coefficients under interval
neutrosophic hesitant fuzzy environment.The proposed decision making method based on
the correlation coefficients can avoid complex information aggregation and can directly
utilize the derived correlation coefficients to calculate the correlation degrees between
alternatives and the ideal alternative for the ranking order of the alternatives.

The rest of the paper is organized as follows. Section 2 briefly describes some concepts
of INSs, HFSs, IVHFSs, and the correlation coefficients between IVHFSs. Section 3 pro-
poses the concept of INHFSs and defines the correspondingbasic operations. In Section 4,
we develop some correlation coefficients between INHFSs and investigate their properties
and the relation between some similarity measures and the correlation coefficients. Sec-
tion 5 establishes a decision-making approach based on the correlation coefficients under
interval neutrosophic hesitant fuzzy environment. An illustrative example validating our
approach is presented in Section 6. Section 7 gives conclusions and some remarks.

2. Preliminaries

2.1. Interval Neutrosophic Set

Smarandache (1999) presented the neutrosophic set from philosophical point of view and
gave the following definition of a neutrosophic set.
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Fig. 1. Illustration of an INS in R1.

Definition 1. (See Smarandache, 1999.) Let X be a space of points (objects), with
a generic element in X denoted by x . A neutrosophic set A in X is characterized by a truth-
membership function TA(x), an indeterminacy-membership function IA(x), and a falsity-
membership function FA(x). The functions TA(x), IA(x) and FA(x) are real standard or
nonstandard subsets of ]−0,1+[, i.e., TA(x) : X → ]−0,1+[, IA(x) : X → ]−0,1+[, and
FA(x) : X → ]−0,1+[. There is no restriction on the sum of TA(x), IA(x) and FA(x), so
−0 6 supTA(x) + sup IA(x) + supFA(x)6 3+.

Obviously, it is difficult to apply the neutrosophic set to practical problems. Therefore,
Wang et al. (2005) introduced the concept of an INS, which is a subclass of the neutro-
sophic set, for real scientific and engineering applications. In the following, we introduce
the definition of an INS (Wang et al., 2005).

Definition 2. (See Wang et al., 2005.) Let X be a space of points (objects) with generic
elements in X denoted by x . An INS A in X is characterized by a truth-membership
function TA(x), an indeterminacy-membership function IA(x), and a falsity-membership
function FA(x), where TA(x), IA(x),FA(x) ⊆ [0,1] for each point x in X. Hence, the
sum of TA(x), IA(x) and FA(x) is 0 6 supTA(x) + sup IA(x) + supFA(x)6 3.

We call it “interval” because it is the subclass of a neutrosophic set, that is, we only
consider the subunitary interval of [0,1]. Therefore, all INSs are clearly neutrosophic sets.
An INS in R1 is illustrated in Fig. 1 (Wang et al., 2005).

Definition 3. (See Wang et al., 2005.) An INS A is empty if and only if its infTA(x) =
supTA(x) = 0, inf IA(x) = sup IA(x) = 1, and infFA(x) = supFA(x) = 0 for any x in X.
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Definition 4. (See Wang et al., 2005.) The complement of an INS A is denoted by Ac

and is defined as T c
A(x) = FA(x), inf I c

A(x) = 1 − sup IA(x), sup I c
A(x) = 1 − inf IA(x),

F c
A(x) = TA(x) for any x in X.

Definition 5. (See Wang et al., 2005.) An INS A is contained in the other INS B,A ⊆ B ,
if and only if infTA(x) 6 infTB(x), supTA(x) 6 supTB(x), inf IA(x) > inf IB(x),
sup IA(x)> sup IB(x), infFA(x)> infFB(x), and supFA(x)> supFB(x) for any x in X.

Definition 6. (See Wang et al., 2005.) Two INSs A and B are equal, written as A = B ,
if and only if A ⊆ B and B ⊆ A.

2.2. Some Basic Concepts of HFSs and IVHFSs

Torra and Narukawa (2009) and Torra (2010) firstly proposed the concept of a HFS, which
is defined as follows:

Definition 7. (See Torra and Narukawa, 2009; Torra, 2010.) Let X be a fixed set, a HFS
A on X is defined in terms of a function hA(x) that when applied to X returns a finite
subset of [0,1], which can be represented as the following mathematical symbol:

A =
{〈

x,hA(x)
〉∣

∣x ∈ X
}

,

where hA(x) is a set of some different values in [0,1], denoting the possible member-
ship degrees of the element x ∈ X to A. For convenience, we call hA(x) a hesitant fuzzy
element, denoted by h.

Given three hesitant fuzzy elements h, h1, and h2, Torra (2010) defined some opera-
tions in them as follows:

(1) hc =
⋃

γ∈h{1 − γ },
(2) h1 ∪ h2 =

⋃

γ1∈h1, γ2∈h2
max{γ1, γ2},

(3) h1 ∩ h2 =
⋃

γ1∈h1, γ2∈h2
min{γ1, γ2}.

Then, Xia and Xu (2011) defined some operations on the hesitant fuzzy elements h,
h1, h2 and a positive scale λ:

(1) hλ =
⋃

γ∈h{γ λ},
(2) λh =

⋃

γ∈h{1 − (1 − γ )λ},
(3) h1 ⊕ h2 =

⋃

γ1∈h1, γ2∈h2
{γ1 + γ2 − γ1γ2},

(4) h1 ⊗ h2 =
⋃

γ1∈h1, γ2∈h2
{γ1γ2}.

Definition 8. (See Chen et al., 2013a, 2013b.) Let X be a fixed set, an IVHFS on X is
defined as:

E =
{〈

x, h̃E(x)
〉∣

∣x ∈ X
}

,
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where h̃E(x) is a set of some different interval values in [0,1], representing the possible
membership degrees of the element x ∈ X to the set E, and is called an interval valued
hesitant fuzzy element (IVHFE). For convenience, h̃E(x) is denoted by an IVHFE h̃,
which reads h̃ = {γ̃ |γ̃ ∈ h̃}, where γ̃ = [γ L, γ U ] is an interval number, γ L = inf γ̃ and
γ U = sup γ̃ represent the lower and upper limits of γ̃ , respectively.

Given three IVHFEs h̃, h̃1, h̃2, and a positive scale λ > 0, their operations (Chen et

al., 2013b) can be defined as follows:

(1) h̃λ =
⋃

γ̃∈h̃{[(γ L)λ, (γ U )λ]};
(2) λh̃ =

⋃

γ̃∈h̃{[1 − (1 − γ L)λ,1 − (1 − γ U )λ]};
(3) h̃1 ⊕ h̃2 =

⋃

γ̃1∈h̃1, γ̃2∈h̃2
{[γ L

1 + γ L
2 − γ L

1 γ U
2 , γ U

1 + γ U
2 − γ U

1 γ U
2 ]};

(4) h̃1 ⊗ h̃2 =
⋃

γ̃1∈h̃1,γ̃2∈h̃2
{[γ L

1 γ L
2 , γ U

1 γ U
2 ]}.

To compare two interval numbers, we introduce the following definition (Chen et al.,
2013b).

Definition 9. (See Chen et al., 2013b.) Let ã = [aL, aU ] and b̃ = [bL, bU ] be two inter-
val numbers and lã = aU − aL and lb̃ = bU − bL, then the degree of possibility of ã > b̃

is formulated by

p(ã > b̃) = max

[

1 − max

(

bU − aL

lã + lb̃
,0

)

,0

]

. (1)

2.3. Correlation Coefficients of IVHFSs

Since the number of interval elements in different IVHFEs could be different and the inter-
val numbers are usually disorder, we can arrange them in an increasing order using Eq. (1)
for the comparison between two interval numbers. For any IVHFE h̃ = {γ̃ |γ̃ ∈ h̃}, let
γ̃σ(j) stand for the j th smallest value in h̃, where (σ (1), σ (2), . . . , σ (n)) is a permutation
of (1,2, . . . , n), such that γ̃σ(j) 6 γ̃σ(j+1) for j = 1,2, . . . , n − 1. For two IVHFSs A =
{〈xi, h̃A(xi)〉|xi ∈ X, i = 1,2, . . . , n} and B = {〈xi, h̃B(xi)〉|xi ∈ X, i = 1,2, . . . , n}, to
calculate the correlation coefficient between A and B , let li = max[l(h̃A(xi)), l(h̃B(xi))]
for each xi in X, where l(h̃A(xi)) and l(h̃B(xi)) represent the number of interval elements
(interval numbers) in h̃A(xi) and h̃B(xi), respectively. If l(h̃A(xi)) 6= l(h̃B(xi)), accord-
ing to the optimistic principle, one can add the maximum value in less number of elements
between h̃A(xi) and h̃B(xi) until them have the same length between h̃A(xi) and h̃B(xi).
Thus, Chen et al. (2013a) gave two correlation coefficients of the IVHFSs A and B as
follows:

RIVHFS1(A,B) = CIVHFS(A,B)

[CIVHFS(A,A) · CIVHFS(B,B)]1/2

=
∑n

i=1

(

1
li

∑li
j=1(γ

L
Aiσ(j)γ

L
Biσ(j) + γ U

Aiσ(j)γ
U
Biσ(j))

)

{∑n
i=1

{

1
li

∑li
j=1[(γ L

Aiσ(j))
2 + (γ U

Aiσ(j))
2]
}}1/2

×
{
∑n

i=1

{

1
li

∑li
j=1[(γ L

Biσ(j))
2 + (γ U

Biσ(j))
2]
}}1/2

(2)
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RIVHFS2(A,B) =
CIVHFS(A,B)

max[CIVHFS(A,A),CIVHFS(B,B)]

=
∑n

i=1

(

1
li

∑li
j=1(γ

L
Aiσ(j)γ

L
Biσ(j) + γ U

Aiσ(j)γ
U
Biσ(j))

)

max
{
∑n

i=1

{

1
li

∑li
j=1[(γ L

Aiσ(j))
2 + (γ U

Aiσ(j))
2]
}

,
∑n

i=1

{

1
li

∑li
j=1[(γ L

Biσ(j))
2 + (γ U

Biσ(j))
2]
}}

(3)

where γ̃Aiσ(j) = [γ L
Aiσ(j), γ

U
Aiσ(j)] ∈ h̃A(xi) and γ̃Biσ(j) = [γ L

Biσ(j), γ
U
Biσ(j)] ∈ h̃B(xi) for

i = 1,2, . . . , n and j = 1,2, . . . , li .
The two correlation coefficients of RIVHFSk(A,B) (k = 1,2) satisfy the following

properties (Chen et al., 2013a):

(1) RIVHFSk(A,B) = RIVHFSk(B,A);
(2) 0 6 RIVHFSk(A,B) 6 1;
(3) RIVHFSk(A,B) = 1, if A = B .

3. Interval Neutrosophic Hesitant Fuzzy Set

In this section, the concept of an INHFS is presented based on the combination of INSs
and IVHFSs as a further generalization of that of INSs and IVHFSs, which is defined as
follows.

Definition 10. Let X be a fixed set, an INHFS on X is defined as

N =
{〈

x, t̃(x), ĩ(x), f̃ (x)
〉∣

∣x ∈ X
}

,

where t̃ (x), ĩ(x), and f̃ (x) are sets of some different interval values in [0,1], represent-
ing the possible truth-membership hesitant degrees, indeterminacy-membership hesitant
degrees, and falsity-membership hesitant degrees of the element x ∈ X to the set N , re-
spectively. Then, t̃ (x) reads t̃ (x) = {γ̃ |γ̃ ∈ t̃ (x)} , where γ̃ = [γ L, γ U ] is an interval num-
ber, γ L = inf γ̃ and γ U = sup γ̃ represent the lower and upper limits of γ̃ , respectively;
ĩ(x) reads ĩ(x) = {δ̃|δ̃ ∈ ĩ(x)}, where δ̃ = [δL, δU ] is an interval number, δL = inf δ̃ and
δU = sup δ̃ represent the lower and upper limits of δ̃, respectively; f̃ (x) reads f̃ (x) =
{η̃|η̃ ∈ f̃ (x)}, where η̃ = [ηL, ηU ] is an interval number, ηL = inf η̃ and ηU = sup η̃

represent the lower and upper limits of η̃, respectively. Hence, there is the condition
0 6 supγ + + supδ+ + supη+ 6 3, where γ̃ + =

⋃

γ̃∈t̃ (x) max{γ̃ }, δ̃+ =
⋃

δ̃∈ĩ(x) max{δ̃},
and η̃+ =

⋃

η̃∈f̃ (x) max{η̃} for x ∈ X.

For convenience, the three tuple ñ(x) = {t̃ (x), ĩ(x), f̃ (x)} is called an interval neu-
trosophic hesitant fuzzy element (INHFE), which is denoted by the simplified symbol
ñ = {t̃ , ĩ, f̃ }.

From Definition 10, it is obvious that the INHFS consists of three parts of the truth-
membership, the indeterminacy-membership, and the falsity-membership, supporting
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a more exemplary and flexible access to assign some interval values for each element
in the domain, and can handle three kinds of hesitancy in this situation. Thus, the existing
sets, including fuzzy sets, IFSs, IVIFSs, SVNSs, INSs, HFSs, DHFSs, and IVHFSs, can
be regarded as special cases of INHFSs.

Then, we can define the union and intersection of INHFEs as the follows:

Definition 11. Let ñ1 = {t̃1, ĩ1, f̃1} and ñ2 = {t̃2, ĩ2, f̃2} be two INHFEs in a fixed set X,
then their union and intersection are defined, respectively, by

(1) ñ1 ∪ ñ2 = {t̃1 ∪ t̃2, ĩ1 ∩ ĩ2, f̃1 ∩ f̃2},
(2) ñ1 ∩ ñ2 = {t̃1 ∩ t̃2, ĩ1 ∪ ĩ2, f̃1 ∪ f̃2}.

Hence, for two INHFEs ñ1, ñ2, and a positive scale λ > 0, the basic operations can be
given as follows:

(1) ñ1 ⊕ ñ2 = {t̃1 ⊕ t̃2, ĩ1 ⊗ ĩ2, f̃1 ⊗ f̃2}
=

⋃

γ̃1∈t̃1,δ̃1∈ĩ1,η̃1∈f̃1,γ̃2∈t̃2,δ̃2∈ĩ2,η̃2∈f̃2,
{{[

γ L
1 + γ L

2 − γ L
1 γ L

2 , γ U
1 + γ U

2 − γ U
1 γ U

2

]}

,
{[

δL
1 δL

2 , δU
1 δU

2

]}

,
{[

ηL
1 ηL

2 , ηU
1 ηU

2

]}}

;

(2) ñ1 ⊗ ñ2 =
{

t̃1 ⊗ t̃2, ĩ1 ⊕ ĩ2, f̃1 ⊕ f̃2

}

=
⋃

γ̃1∈t̃1,δ̃1∈ĩ1,η̃1∈f̃1,γ̃2∈t̃2,δ̃2∈ĩ2,η̃2∈f̃2,
{{[

γ L
1 γ L

2 , γ U
1 γ U

2

]}

,
{[

δL
1 + δL

2 − δL
1 δL

2 , δU
1 + δU

2 − δU
1 δU

2

]}

,
{[

ηL
1 + ηL

2 − ηL
1 ηL

2 , ηU
1 + ηU

2 − ηU
1 ηU

2

]}}

;

(3) λñ1 =
⋃

γ̃1∈t̃1,δ̃1∈ĩ1,η̃1∈f̃1

{{[

1 −
(

1 − γ L
1

)λ
,1 −

(

1 − γ U
1

)λ]}
,
{[(

δL
1

)λ
,
(

δU
1

)λ]}

{[(

ηL
1

)λ
,
(

ηU
1

)λ]}};

(4) ñλ
1 =

⋃

γ̃1∈t̃1,δ̃1∈ĩ1,η̃1∈f̃1

{{[(

γ L
1

)λ
,
(

γ U
1

)λ]}
,
{[

1 −
(

1 − δL
1

)λ
,1 −

(

1 − δU
1

)λ]}

{[

1 −
(

1 − ηL
1

)λ
,1 −

(

1 − ηU
1

)λ]}}
.

4. Correlation Coefficients of INHFSs

The elements in an INHFE are usually given in a disorder. Therefore, for an INHFE
ñ = {t̃ , ĩ, f̃ } it is necessary to arrange them in ñ by an increasing order using Eq. (1) for
the comparison between two interval numbers. Let γ̃σ(k) ∈ t̃ (k = 1,2, . . . , l), δ̃σ(k) ∈ ĩ

(k = 1,2, . . . , p), η̃σ(k) ∈ f̃ (k = 1,2, . . . , q) stand for the k-th smallest interval in ñ, and
there are γ̃σ(k) 6 γ̃σ(k+1) (k = 1,2, . . . , l − 1), δ̃σ(k) 6 δ̃σ(k+1) (k = 1,2, . . . , p − 1), and
η̃σ(k) 6 η̃σ(k+1) (k = 1,2, . . . , q − 1), where l, p, q are the number of interval values in
t̃ , ĩ, f̃ , respectively.

Let two INHFSs be N1 = {〈xi, t̃1(xi), ĩ1(xi), f̃1(xi)〉|xi ∈ X, i = 1,2, . . . , n} and
N2 = {〈xi, t̃2(xi), ĩ2(xi), f̃2(xi)〉|xi ∈ X, i = 1,2, . . . , n}. For two INHFEs ñ1(xi) =
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{t̃1(xi), ĩ1(xi), f̃1(xi)} and ñ2(xi) = {t̃2(xi), ĩ2(xi), f̃2(xi)} (i = 1,2, . . . , n) in the
two INHFSs N1 and N2, the number of interval elements (numbers) in differ-
ent INHFEs may be different. To compute the correlation coefficients between two
INHFSs, Let li = max[l(t̃1(xi)), l(t̃2(xi))], pi = max[l(ĩ1(xi)), l(ĩ2(xi))], and qi =
max[l(f̃1(xi)), l(f̃2(x2))] for each xi in X, where l(t̃1(xi)), l(t̃2(xi)), l(ĩ1(x)1), l((̃i)2(xi)),
l(f̃1(xi)), and l(f̃2(xi)) represent the number of intervals in t̃1(xi), t̃2(xi), ĩ1(xi), ĩ2(xi),
f̃1(xi), and f̃2(xi), respectively. When l(t̃1(xi)) 6= l(t̃2(xi)) or l(ĩ1(xi)) 6= l(ĩ2(xi)) or
l(f̃1(xi)) 6= l(f̃2(xi)), one can make them having the same number of elements through
adding some elements to less number of elements in the INHFE. For example, if there
are fewer elements in t̃1(xi) than in t̃2(xi), an extension of t̃1(xi) should be considered
optimistically by repeating its maximum element until has the same length as t̃2(xi). Thus,
we use similar method to realize the same length of between ĩ1(xi) and ĩ2(xi) or between
f̃1(xi) and f̃2(xi) .

Similar to the existing works (Chen et al., 2013a), we can define the informational
energy for INHFSs and the corresponding correlation.

Definition 12. For an INHFS N1 = {〈xi, t̃1(xi), ĩ1(xi), f̃1(xi)〉|xi ∈ X, i = 1,2, . . . , n},
the informational energy for the INHFS N1 is defined as

EINHFS(N1) =
n
∑

i=1

{

1

li

li
∑

k=1

[(

γ L
1iσ (k)

)2 +
(

γ U
1iσ (k)

)2]

+ 1

pi

pi
∑

k=1

[(

δL
1iσ (k)

)2 +
(

δU
1iσ (k)

)2]

+ 1

qi

qi
∑

k=1

[(

ηL
1iσ (k)

)2 +
(

ηU
1iσ (k)

)2]
}

(4)

where γ̃1iσ (k) = [γ L
1iσ (k), γ

U
1iσ (k)] ∈ t̃1(xi) (k = 1,2, . . . , li; i = 1,2, . . . , n), δ̃1iσ (k) =

[δL
1iσ (k), δ

U
1iσ (k)] ∈ ĩ1(xi) (k = 1,2, . . . , pi; i = 1,2, . . . , n), and η̃1iσ (k) = [ηL

1iσ (k),

ηU
1iσ (k)] ∈ f̃1(xi) (k = 1,2, . . . , qi; i = 1,2, . . . , n) and li , pi , qi are the number of in-

tervals in t̃1(xi), ĩ1(xi), f̃1(xi), respectively.

Definition 13. For two INHFSs N1 and N2, their correlation is defined as

CINHFS1(N1,N2) =
n
∑

i=1

{

1

li

li
∑

k=1

[

γ L
1iσ (k) · γ L

2iσ (k) + γ U
1iσ (k) · γ U

2iσ (k)

]

+
1

pi

pi
∑

k=1

[

δL
1iσ (k) · δL

2iσ (k) + δU
1iσ (k) · δU

2iσ (k)

]

+
1

qi

qi
∑

k=1

[

ηL
1iσ (k) · ηL

2iσ (k) + ηU
1iσ (k) · ηU

2iσ (k)

]

}

(5)
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where γ̃1iσ (k) = [γ L
1iσ (k)

, γ U
1iσ (k)

] ∈ t̃1(xi), and γ̃2iσ (k) = [γ L
2iσ (k)

, γ U
2iσ (k)

] ∈ t̃2(xi),

(k = 1,2, . . . , li; i = 1,2, . . . , n), δ̃1iσ (k) = [δL
1iσ (k), δ

U
1iσ (k)] ∈ ĩ1(xi), and δ̃2iσ (k) =

[δL
2iσ (k), δ

U
2iσ (k)] ∈ ĩ2(xi), (k = 1,2, . . . , pi; i = 1,2, . . . , n), η̃1iσ (k) = [ηL

1iσ (k), η
U
1iσ (k)] ∈

f̃1(xi), and η̃2iσ (k) = [ηL
2iσ (k), η

U
2iσ (k)] ∈ f̃2(xi), (k = 1,2, . . . , qi; i = 1,2, . . . , n), and

li , pi , qi are the number of intervals in t̃1(xi) and t̃2(xi), ĩ1(xi) and ĩ2(xi), f̃1(xi) and
f̃2(xi), respectively.

It is obvious that the correlation (5) satisfies the following properties:

(1) CINHFS1(N1,N1) = EINHFS(N1);
(2) CINHFS1(N1,N2) = CINHFS1(N2,N1).

According to Definitions 12 and 13, we derive a correlation coefficient between the
INHFSs N1 and N2.

RINHFS1(N1,N2) = CINHFS1(N1,N2)

[CINHFS1(N1,N1)]1/2 · [CINHFS1(N2,N2)]1/2

=









∑n
i=1

{

1
li

∑li
k=1[γ L

1iσ (k) · γ L
2iσ (k) + γ U

1iσ (k) · γ U
2iσ (k)]

+ 1
pi

∑pi

k=1[δL
1iσ (k) · δL

2iσ (k) + δU
1iσ (k) · δU

2iσ (k)]
+ 1

qi

∑qi

k=1[ηL
1iσ (k)

· ηL
2iσ (k)

+ ηU
1iσ (k)

· ηU
2iσ (k)

]
}



































{
∑n

i=1

{

1
li

∑li
k=1[(γ L

1iσ (k))
2 + (γ U

1iσ (k))
2]

+ 1
pi

∑pi

k=1[(δ
L
1iσ (k))

2 + (δU
1iσ (k))

2]

+ 1
qi

∑qi

k=1[(ηL
1iσ (k))

2 + (ηU
1iσ (k))

2]
}}1/2

×
{
∑n

i=1

{

1
li

∑li
k=1[(γ L

2iσ (k))
2 + (γ U

2iσ (k))
2]

+ 1
pi

∑pi

k=1[(δL
2iσ (k))

2 + (δU
2iσ (k))

2]

+ 1
qi

∑qi

k=1[(ηL
2iσ (k)

)2 + (ηU
2iσ (k)

)2]
}}1/2



























. (6)

Theorem 1. The correlation coefficient RINHFS1(N1,N2) satisfies the following proper-

ties:

(1) RINHFS1(N1,N2) = RINHFS1(N2,N1);
(2) 0 6 RINHFS1(N1,N2)6 1;
(3) RINHFS1(N1,N2) = 1, if N1 = N2.

Proof. (1) It is straightforward.
(2) The inequality RINHFS1(N1,N2) > 0 is obvious. Below let us prove

RINHFS1(N1,N2)6 1:
According to the Cauchy–Schwarz inequality:

(x1y1 + x2y2 + · · · + xnyn)
2 6

(

x2
1 + x2

2 + · · · + x2
n

)

·
(

y2
1 + y2

2 + . . . + y2
n

)

,
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where (x1, x2, . . . , xn) ∈ Rn and (y1, y2, . . . , yn) ∈ Rn. Then, there is the following in-
equality:

(

n
∑

i=1

(xiyi)

)2

6

n
∑

i=1

(

x2
i

)

n
∑

i=1

(

y2
i

)

.

Then, according to Eq. (5) and the above inequality, we have

[

CINHFS1(N1,N2)
]2

=









∑n
i=1

{

1
li

∑li
k=1[γ L

1iσ (k) · γ L
2iσ (k) + γ U

1iσ (k) · γ U
2iσ (k)]

+ 1
pi

∑pi

k=1[δL
1iσ (k)

· δL
2iσ (k)

+ δU
1iσ (k)

· δU
2iσ (k)

]

+ 1
qi

∑qi

k=1[ηL
1iσ (k) · ηL

2iσ (k) + ηU
1iσ (k) · ηU

2iσ (k)]
}









2

=



























































{[∑l1
k=1

γ L
11σ(k)·γ

L
21σ(k)√

l1·
√

l1
+
∑l1

k=1

γ U
11σ(k)·γ

U
21σ(k)√

l1·
√

l1

]

+
[∑p1

k=1

δL
11σ(k)·δ

L
21σ(k)√

p1·
√

p1
+
∑p1

k=1

δU
11σ(k)·δ

U
21σ(k)√

p1·
√

p1

]

+
[∑q1

k=1

ηL
11σ(k)·η

L
21σ(k)√

q1·
√

q1
+
∑q1

k=1

ηU
11σ(k)·η

U
21σ(k)√

q1·
√

q1

]

+
[∑l2

k=1

γ L
12σ(k)·γ

L
22σ(k)√

l2·
√

l2
+
∑l2

k=1

γ U
12σ(k)·γ

U
22σ(k)√

l2·
√

l2

]

+
[∑p2

k=1

δL
12σ(k)·δ

L
22σ(k)√

p2·
√

p2
+
∑p2

k=1

δU
12σ(k)·δ

U
22σ(k)√

p2·
√

p2

]

+
[∑q2

k=1

ηL
12σ(k)·η

L
22σ(k)√

q2·
√

q2
+
∑q2

k=1

ηU
12σ(k)·η

U
22σ(k)√

q2·
√

q2

]

+ · · · +
[∑ln

k=1

γ L
1nσ(k)·γ

L
2nσ(k)√

ln·
√

ln
+
∑ln

k=1

γ U
1nσ(k)·γ

U
2nσ(k)√

ln·
√

ln

]

+
[∑pn

k=1

δL
1nσ(k)·δ

L
2nσ(k)√

pn·√pn
+
∑pn

k=1

δU
1nσ(k)·δ

U
2nσ(k)√

pn·√pn

]

+
[∑qn

k=1

ηL
1nσ(k)·η

L
2nσ(k)√

qn·√qn
+
∑qn

k=1

ηU
1nσ(k)·η

U
2nσ(k)√

qn·
√

qn

]}



























































2

=





































{∑l1
k=1

γ L
11σ(k)·γ

L
21σ(k)√

l1·
√

l1
+
∑p1

k=1

δL
11σ(k)·δ

L
21σ(k)√

p1·
√

p1
+
∑q1

k=1

ηL
11σ(k)·η

L
21σ(k)√

q1·
√

q1

+
∑l1

k=1

γ U
11σ(k)·γ

U
21σ(k)√

l1·
√

l1
+
∑p1

k=1

δU
11σ(k)·δ

U
21σ(k)√

p1·
√

p1
+
∑q1

k=1

ηU
11σ(k)·η

U
21σ(k)√

q1·
√

q1

+
∑l2

k=1

γ L
12σ(k)

·γ L
22σ(k)√

l2·
√

l2
+
∑p2

k=1

δL
12σ(k)

·δL
22σ(k)√

p2·
√

p2
+
∑q2

k=1

ηL
12σ(k)

·ηL
22σ(k)√

q2·
√

q2

+
∑l2

k=1

γ U
12σ(k)

·γ U
22σ(k)√

l2·
√

l2
+
∑p2

k=1

δU
12σ(k)

·δU
22σ(k)√

p2·
√

p2
+
∑q2

k=1

ηU
12σ(k)

·ηU
22σ(k)√

q2·
√

q2

+ · · · +
∑ln

k=1

γ L
1nσ(k)

·γ L
2nσ(k)√

ln·
√

ln
+
∑pn

k=1

δL
1nσ(k)

·δL
2nσ(k)√

pn·√pn
+
∑qn

k=1

ηL
1nσ(k)

·ηL
2nσ(k)√

qn·√qn

+
∑ln

k=1

γ U
1nσ(k)

·γ U
2nσ(k)√

ln·
√

ln
+
∑pn

k=1

δU
1nσ(k)

·δU
2nσ(k)√

pn·√pn
+
∑qn

k=1

ηU
1nσ(k)

·ηU
2nσ(k)√

qn·√qn

}





































2
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Therefore, we can obtain

[

CINHFS1(N1,N2)
]2

6

{

l1
∑

k=1

1

l1

(

γ L
11σ(k)

)2 +
p1
∑

k=1

1

p1

(

δL
11σ(k)

)2 +
q1
∑

k=1

1

q1

(

ηL
11σ(k)

)2

+
l2
∑

k=1

1

l2

(

γ L
12σ(k)

)2 +
p2
∑

k=1

1

p2

(

δL
12σ(k)

)2 +
q2
∑

k=1

1

q2

(

ηL
12σ(k)

)2 + . . .

+
ln
∑

k=1

1

ln

(

γ L
1nσ(k)

)2 +
pn
∑

k=1

1

pn

(

δL
1nσ(k)

)2 +
qn
∑

k=1

1

qn

(

ηL
1nσ(k)

)2

+
l1
∑

k=1

1

l1

(

γ U
11σ(k)

)2 +
p1
∑

k=1

1

p1

(

δU
11σ(k)

)2 +
q1
∑

k=1

1

q1

(

ηU
11σ(k)

)2

+
l2
∑

k=1

1

l2

(

γ U
12σ(k)

)(
2) +

p2
∑

k=1

1

p2

(

δU
12σ(k)

)2 +
q2
∑

k=1

1

q2

(

ηU
12σ(k)

)2 + · · ·

+
ln
∑

k=1

1

ln

(

γ U
1nσ(k)

)2 +
pn
∑

k=1

1

pn

(

δU
1nσ(k)

)2 +
qn
∑

k=1

1

qn

(

ηU
1nσ(k)

)2

}

×
{

l1
∑

k=1

1

l1

(

γ L
21σ(k)

)2 +
p1
∑

k=1

1

p1

(

δL
21σ(k)

)2 +
q1
∑

k=1

1

q1

(

ηL
21σ(k)

)2

+
l2
∑

k=1

1

l2

(

γ L
22σ(k)

)2 +
p2
∑

k=1

1

p2

(

δL
22σ(k)

)2 +
q2
∑

k=1

1

q2

(

ηL
22σ(k)

)2 + · · ·

+
ln
∑

k=1

1

ln

(

γ L
2nσ(k)

)2 +
pn
∑

k=1

1

pn

(

δL
2nσ(k)

)2 +
qn
∑

k=1

1

qn

(

ηL
2nσ(k)

)2

+
l1
∑

k=1

1

l1

(

γ U
21σ(k)

)2 +
p1
∑

k=1

1

p1

(

δU
21σ(k)

)2 +
q1
∑

k=1

1

q1

(

ηU
21σ(k)

)2

+
l2
∑

k=1

1

l2

(

γ U
22σ(k)

)2 +
p2
∑

k=1

1

p2

(

δU
22σ(k)

)2 +
q2
∑

k=1

1

q2

(

ηU
22σ(k)

)2 + · · ·

+
ln
∑

k=1

1

ln

(

γ U
2nσ(k)

)2 +
pn
∑

k=1

1

pn

(

δU
2nσ(k)

)2 +
qn
∑

k=1

1

qn

(

ηU
2nσ(k)

)2

}

=
{[

l1
∑

k=1

1

l1

(

γ L
11σ(k)

)2 +
l1
∑

k=1

1

l1

(

γ U
11σ(k)

)2

]



Correlation Coefficients of Interval Neutrosophic Hesitant Fuzzy Sets 191

+
[

p1
∑

k=1

1

p1

(

δL
11σ(k)

)2 +
p1
∑

k=1

1

p1

(

δU
11σ(k)

)2

]

+
[

q1
∑

k=1

1

q1

(

ηL
11σ(k)

)2 +
q1
∑

k=1

1

q1

(

ηU
11σ(k)

)2

]

+
[

l2
∑

k=1

1

l2

(

γ L
12σ(k)

)2 +
l2
∑

k=1

1

l2

(

γ U
12σ(k)

)2

]

+
[

p2
∑

k=1

1

p2

(

δL
12σ(k)

)2 +
p2
∑

k=1

1

p2

(

δU
12σ(k)

)2

]

+
[

q2
∑

k=1

1

q2

(

ηL
12σ(k)

)2 +
q2
∑

k=1

1

q2

(

ηU
12σ(k)

)2 + · · ·
]

+
[

ln
∑

k=1

1

ln

(

γ L
1nσ(k)

)2 +
ln
∑

k=1

1

ln

(

γ U
1nσ(k)

)2

]

+
[

pn
∑

k=1

1

pn

(

δL
1nσ(k)

)2 +
pn
∑

k=1

1

pn

(

δU
1nσ(k)

)2

]

+
[

qn
∑

k=1

1

qn

(

ηL
1nσ(k)

)2 +
qn
∑

k=1

1

qn

(

ηU
1nσ(k)

)2

]}

×
{[

l1
∑

k=1

1

l1

(

γ L
21σ(k)

)2 +
l1
∑

k=1

1

l1

(

γ U
21σ(k)

)2

]

+
[

p1
∑

k=1

1

p1

(

δL
21σ(k)

)2 +
p1
∑

k=1

1

p1

(

δU
21σ(k)

)2

]

+
[

q1
∑

k=1

1

q1

(

ηL
21σ(k)

)2 +
q1
∑

k=1

1

q1

(

ηU
21σ(k)

)2

]

+
[

l2
∑

k=1

1

l2

(

γ L
22σ(k)

)2 +
l2
∑

k=1

1

l2

(

γ U
22σ(k)

)2

]

+
[

p2
∑

k=1

1

p2

(

δL
22σ(k)

)2 +
p2
∑

k=1

1

p2

(

δU
22σ(k)

)2

]

+
[

q2
∑

k=1

1

q2

(

ηL
22σ(k)

)2 +
q2
∑

k=1

1

q2

(

ηU
22σ(k)

)2 + · · ·
]
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+
[

+
ln
∑

k=1

1

ln

(

γ L
2nσ(k)

)2 +
ln
∑

k=1

1

ln

(

γ U
2nσ(k)

)2

]

+
[

pn
∑

k=1

1

pn

(

δL
2nσ(k)

)2 +
pn
∑

k=1

1

pn

(

δU
2nσ(k)

)2

]

+
[

qn
∑

k=1

1

qn

(

ηL
2nσ(k)

)2 +
qn
∑

k=1

1

qn

(

ηU
2nσ(k)

)2

]}

=
n
∑

i=1

{[

li
∑

k=1

1

li

(

γ L
1iσ (k)

)2 +
li
∑

k=1

1

li

(

γ U
1iσ (k)

)2

]

+
[

pi
∑

k=1

1

pi

(

δL
1iσ (k)

)2 +
pi
∑

k=1

1

pi

(

δU
1iσ (k)

)2

]

+
[

qi
∑

k=1

1

qi

(

ηL
1iσ (k)

)2 +
qi
∑

k=1

1

qi

(

ηU
1iσ (k)

)2

]}

×
n
∑

i=1

{[

li
∑

k=1

1

li

(

γ L
2iσ (k)

)2

+
li
∑

k=1

1

li

(

γ U
2iσ (k)

)2
]

+
[

pi
∑

k=1

1

pi

(

δL
2iσ (k)

)2
+

pi
∑

k=1

1

pi

(

δU
2iσ (k)

)2
]

+
[

qi
∑

k=1

1

qi

(

ηL
2iσ (k)

)2
+

qi
∑

k=1

1

qi

(

ηU
2iσ (k)

)2
]}

= CINHFS1(N1,N1) · CINHFS1(N2,N2).

Therefore

CINHFS1(N1,N2)6
[

CINHFS1(N1,N1)
]1/2[

CINHFS1(N2,N2)
]1/2

.

Thus, 0 6 RINHFS1(N1,N2) 6 1.
(3) N1 = N2 ⇒ γ L

1iσ (k) = γ L
2iσ (k), γ

U
1iσ (k) = γ U

2iσ (k), δ
L
1iσ (k) = δL

2iσ (k), δU
1iσ (k) = δU

2iσ (k),

ηL
1iσ (k) = ηL

2iσ (k), and ηU
1iσ (k) = ηU

2iσ (k) for any xi ∈ X ⇒ RINHFS1(N1,N2) = 1. �

As a further generalization of the correlation coefficient between IVHFSs for Eq. (3),
we give another formula of the correlation coefficient of INHFSs.

Definition 14. For two INHFSs N1 and N2 in the universe of discourse X =
{x1, x2, . . . , xn}, the correlation coefficient between two INHFSs N1 and N2 is defined
by
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RINHFS2(N1,N2) =
CINHFS1(N1,N2)

max[CINHFS1(N1,N1),CINHFS1(N2,N2)]

=









∑n
i=1

{

1
li

∑li
k=1[γ L

1iσ (k) · γ L
2iσ (k) + γ U

1iσ (k) · γ U
2iσ (k)]

+ 1
pi

∑pi

k=1[δL
1iσ (k) · δL

2iσ (k) + δU
1iσ (k) · δU

2iσ (k)]

+ 1
qi

∑qi

k=1[ηL
1iσ (k) · ηL

2iσ (k) + ηU
1iσ (k) · ηU

2iσ (k)]
}









max



























{
∑n

i=1

{

1
li

∑li
k=1[(γ

L
1iσ (k))

2 + (γ U
1iσ (k))

2]

+ 1
pi

∑pi

k=1[(δL
1iσ (k))

2 + (δU
1iσ (k))

2]

+ 1
qi

∑qi

k=1[(ηL
1iσ (k))

2 + (ηU
1iσ (k))

2]
}}

,
{
∑n

i=1

{

1
li

∑li
k=1[(γ

L
2iσ (k))

2 + (γ U
2iσ (k))

2]

+ 1
pi

∑pi

k=1[(δL
2iσ (k))

2 + (δU
2iσ (k))

2]

+ 1
qi

∑qi

k=1[(ηL
2iσ (k)

)2 + (ηU
2iσ (k)

)2]
}}



























. (7)

Theorem 2. The correlation coefficient RINHFS2(N1,N2) follows the same properties

listed in Theorem 1 as follows:

(1) RINHFS2(N1,N2) = RINHFS2(N2,N1);
(2) 0 6 RINHFS2(N1,N2)6 1;
(3) RINHFS2(N1,N2) = 1, if N1 = N2.

Proof. The process to prove the properties (1) and (3) is analogous to that in Theorem 1
(omitted).

(2) The inequality RINHFS2(N1,N2) > 0 is obvious. Now, we only prove
RINHFS2(N1,N2)6 1. Based on the proof process of Theorem 1, we have

CINHFS1(N1,N2) 6
[

CINHFS1(N1,N1)
]1/2[

CINHFS1(N2,N2)
]1/2

and then

CINHFS1(N1,N2) 6 max
[

CINHFS1(N1,N1)
]

,
[

CINHFS1(N2,N2)
]

.

Thus, 0 6 RINHFS2(N1,N2) 6 1. �

Especially, when n = 1, two INHFSs N1, N2 reduce to two INHFEs ñ1 =
{t̃1(x), ĩ1(x), f̃1(x)} and ñ2 = {t̃2(x), ĩ2(x), f̃2(x)} for x ∈ X. Then, the correlation co-
efficients (6) and (7) reduce to a cosine similarity measure between two INHFEs and
a similarity measure (or called matching function) between two INHFEs, respectively, as
follows:
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SINHFE(ñ1, ñ2) =
CINHFE(ñ1, ñ2)

[CINHFE(ñ1, ñ2]1/2[CINHFE(ñ1, ñ2]1/2

=









{

1
l

∑l
k=1[γ L

1σ(k) · γ L
2σ(k) + γ U

1σ(k) · γ U
2σ(k)]

+ 1
p

∑p

k=1[δL
1σ(k) · δL

2σ(k) + δU
1σ(k) · δU

2σ(k)]
+ 1

q

∑qi

k=1[ηL
1σ(k) · ηL

2σ(k) + ηU
1σ(k) · ηU

2σ(k)]
}



































{

1
li

∑li
k=1[(γ L

1σ(k))
2 + (γ U

1σ(k))
2]

+ 1
p

∑p

k=1[(δL
1σ(k))

2 + (δU
1σ(k))

2]

+ 1
q

∑q

k=1[(ηL
1σ(k))

2 + (ηU
1σ(k))

2]
}1/2

×
{

1
l

∑l
k=1[(γ L

2σ(k))
2 + (γ U

2σ(k))
2]

+ 1
p

∑p

k=1[(δL
2σ(k)

)2 + (δU
2σ(k)

)2]

+ 1
q

∑qi

k=1[(η
L
2σ(k))

2 + (ηU
2σ(k))

2]
}1/2



























, (8)

MINHFE(ñ1, ñ2) = CINHFE(ñ1, ñ2)

max[CINHFE(ñ1, ñ2),CINHFE(ñ1, ñ2)]

=









{

1
li

∑li
k=1[γ L

1σ(k) · γ L
2σ(k) + γ U

1σ(k) · γ U
2σ(k)]

+ 1
p

∑p

k=1[δL
1iσ (k) · δL

2σ(k) + δU
1σ(k) · δU

2σ(k)]
+ 1

q

∑q

k=1[ηL
1σ(k) · ηL

2σ(k) + ηU
1σ(k) · ηU

2σ(k)]
}









max





























{

1
l

∑l
k=1[(γ L

1σ(k))
2 + (γ U

1σ(k))
2]

+ 1
p

∑p

k=1[(δL
1σ(k))

2 + (δU
1σ(k))

2]
+ 1

q

∑q

k=1[(ηL
1σ(k)

)2 + (ηU
1σ(k)

)2]
}

,
{

1
l

∑l
k=1[(γ L

2σ(k))
2 + (γ U

2σ(k))
2]

+ 1
p

∑p

k=1[(δL
2σ(k))

2 + (δU
2σ(k))

2]

+ 1
q

∑q

k=1[(ηL
2σ(k))

2 + (ηU
2σ(k))

2]
}





























, (9)

where γ̃1σ(k) = [γ L
1σ(k), γ

U
1σ(k)] ∈ t̃1(x) and γ̃2σ(k) = [γ L

2σ(k), γ
U
2σ(k)] ∈ t̃2(x) for k =

1,2, . . . , l, δ̃1σ(k) = [δL
1σ(k), δ

U
1σ(k)] ∈ ĩ1(x) and δ̃2σ(k) = [δL

2σ(k), δ
U
2σ(k)] ∈ ĩ2(x) for k =

1,2, . . . , p, and η̃1η(k) = [ηL
1σ(k)

, ηU
1σ(k)

] ∈ f̃1(x) and η̃2η(k) = [ηL
2σ(k)

, ηU
2σ(k)

] ∈ f̃2(x) for

k = 1,2, . . . , q , and l, p, q are the number of intervals in t̃1(x) and t̃2(x), ĩ1(x) and ĩ2(x),
f̃1(x) and f̃2(x), respectively.

Therefore, Eqs. (8) and (9) are special cases of Eqs. (6) and (7).
However, the differences of importance are considered in the elements in the universe.

Therefore, we need to take the weights of the elements xi (i = 1,2, . . . , n) into account.
In the following, we develop two weighted correlation coefficients between INHFSs.

Let wi be the weight for each element xi (i = 1,2, . . . , n), wi ∈ [0,1], and
∑n

i=1 wi = 1, then we have two weighted correlation coefficients between the INHFSs
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A and B , respectively, as follows:

RINHFS3(N1,N2) = CINHFS2(N1,N2)

[CINHFS2(N1,N1)]1/2[CINHFS2(N2,N2)]1/2

=









∑n
i=1 wi

{

1
li

∑li
k=1[γ L

1iσ (k) · γ L
2iσ (k) + γ U

1iσ (k) · γ U
2iσ (k)]

+ 1
pi

∑pi

k=1[δL
1iσ (k) · δL

2iσ (k) + δU
1iσ (k) · δU

2iσ (k)]
+ 1

qi

∑qi

k=1[ηL
1iσ (k) · ηL

2iσ (k) + ηU
1iσ (k) · ηU

2iσ (k)]
}



































{∑n
i=1 wi

{

1
li

∑li
k=1[(γ L

1iσ (k))
2 + (γ U

1iσ (k))
2]

+ 1
pi

∑pi

k=1[(δL
1iσ (k))

2 + (δU
1iσ (k))

2]

+ 1
qi

∑qi

k=1[(ηL
1iσ (k))

2 + (ηU
1iσ (k))

2]
}}1/2

×
{
∑n

i=1 wi

{

1
li

∑li
k=1[(γ L

2iσ (k))
2 + (γ U

2iσ (k))
2]

+ 1
pi

∑pi

k=1[(δL
2iσ (k))

2 + (δU
2iσ (k))

2]

+ 1
qi

∑qi

k=1[(ηL
2iσ (k))

2 + (ηU
2iσ (k))

2]
}}1/2



























,

(10)

RINHFS4(N1,N2) = CINHFS2(N1,N2)

max[CINHFS2(N1,N1),CINHFS2(N2,N2)]

=









∑n
i=1 wi

{

1
li

∑li
k=1[γ L

1iσ (k) · γ L
2iσ (k) + γ U

1iσ (k) · γ U
2iσ (k)]

+ 1
pi

∑pi

k=1[δL
1iσ (k) · δL

2iσ (k) + δU
1iσ (k) · δU

2iσ (k)]
+ 1

qi

∑qi

k=1[ηL
1iσ (k) · ηL

2iσ (k) + ηU
1iσ (k) · ηU

2iσ (k)]
}









max



























{∑n
i=1 wi

{

1
li

∑li
k=1[(γ L

1iσ (k))
2 + (γ U

1iσ (k))
2]

+ 1
pi

∑pi

k=1[(δL
1iσ (k))

2 + (δU
1iσ (k))

2]
+ 1

qi

∑qi

k=1[(ηL
1iσ (k))

2 + (ηU
1iσ (k))

2]
}}

,
{
∑n

i=1 wi

{

1
li

∑li
k=1[(γ L

2iσ (k))
2 + (γ U

2iσ (k))
2]

+ 1
pi

∑pi

k=1[(δL
2iσ (k))

2 + (δU
2iσ (k))

2]
+ 1

qi

∑qi

k=1[(ηL
2iσ (k))

2 + (ηU
2iσ (k))

2]
}}



























.

(11)

If w = (1/n,1/n, . . . ,1/n)T , then Eqs. (10) and (11) reduce to Eqs. (6) and (7), re-
spectively. Note that both RINHFS3(A,B) and RINHFS4(A,B) also satisfy the three prop-
erties of Theorem 1.

Theorem 3. Let wi be the weight for each element xi (i = 1,2, . . . , n), wi ∈ [0,1],
and

∑n
i=1 wi = 1, then the weighted correlation coefficient RINHFS3(N1,N2) defined in

Eq. (10) satisfies the following properties:

(1) RINHFS3(N1,N2) = RINHFS3(N2,N1);



196 J. Ye

(2) 0 6 RINHFS3(N1,N2)6 1;
(3) RINHFS3(N1,N2) = 1, if N1 = N2.

Since the process to prove these properties is similar to that in Theorem 1, we do not
repeat it here.

Theorem 4. Let wi be the weight for each element xi (i = 1,2, . . . , n), wi ∈ [0,1],
and

∑n
i=1 wi = 1, then the weighted correlation coefficient RINHFS4(N1,N2) defined in

Eq. (11) satisfies the following properties:

(1) RINHFS4(N1,N2) = RINHFS4(N2,N1);
(2) 0 6 RINHFS4(N1,N2)6 1;
(3) RINHFS4(N1,N2) = 1, if N1 = N2.

Since the process to prove these properties is similar to that in Theorem 2, we do not
repeat it here.

5. Decision-Making Method Based on the Correlation Coefficients

In this section, we propose a multiple attribute decision-making method based on the
weighted correlation coefficients between INHFSs under interval neutrosophic hesitant
fuzzy environment.

Let A = {A1,A2, . . . ,Am} be a set of alternatives and C = {C1,C2, . . . ,Cn} be a set
of attributes. Assume that the weight of an attribute Cj (j = 1,2, . . . , n), entered by the
decision-maker, is wj ,wj ∈ [0,1] and

∑n
j=1 wj = 1. In the evaluation of the alternatives,

the characteristic of an alternative Ai (i = 1,2, . . . ,m) on an attribute Cj (j = 1,2, . . . , n)

is represented by an INHFS:

Ai =
{〈

Cj , t̃i(Cj ), ĩi(Cj ), f̃i(Cj )
〉∣

∣Cj ∈ C, j = 1,2, . . . , n
}

,

where t̃i(Cj ) = {γ̃ |γ̃ ∈ t̃i(Cj )}, ĩi(Cj ) = {δ̃|δ̃ ∈ ĩi(Cj )}, and f̃i(Cj ) = {η̃|η̃ ∈ f̃i(Cj )}
are three sets of some interval values in real unit interval [0,1], denoting the possi-
ble truth-membership hesitant degrees, indeterminacy-membership hesitant degrees, and
falsity-membership hesitant degrees of the element Cj ∈ C to the set Ai , respectively.
When the decision makers are required to evaluate the alternative Ai (i = 1,2, . . . ,m)

under the attribute Cj (j = 1,2, . . . , n), they may assign a set of several possible in-
terval values to each of truth-membership degrees, indeterminacy-membership degrees,
and falsity-membership degrees to which an alternative Ai (i = 1,2, . . . ,m) satisfies
or unsatisfies or indeterminates an attribute Cj (j = 1,2, . . . , n), and then these eval-
uated values can be expressed as an INHFE ñi(Cj ) = {t̃i(Cj ), ĩi(Cj ), f̃i(Cj )} in an
INHFS Ai (i = 1,2, . . . ,m; j = 1,2, . . . , n). For convenience, the INHFE ñi(Cj ) =
{t̃i(Cj ), ĩi(Cj ), f̃i(Cj )} is denoted by the simplified symbol ñij = {t̃ij , ĩij , f̃ij } (i =
1,2, . . . ,m; j = 1,2, . . . , n). Thus, we can elicit a interval neutrosophic hesitant fuzzy
decision matrix D = (ñij )m×n.
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The weight vector of attributes for the different importance of each attribute is given
as w = (w1,w2, . . . ,wn)

T , where wj > 0, j = 1,2, . . . , n, and
∑n

j=1 wj = 1.
In multiple attribute decision making problems, the concept of ideal point has been

used to help identify the best alternative in the decision set. Although the ideal alternative
does not exist in real world, it does provide a useful theoretical construct against which
to evaluate alternatives (Ye, 2013). Therefore, we can define an ideal INHFE as ñ∗

ij =
{{[1,1]}, {[0,0]}, {[0,0]}} in the ideal alternative A∗. In the proposed decision-method
we can utilize either Eq. (10) or Eq. (11) as the final decision. By applying Eq. (10) the
weighted correlation coefficient between an alternative Ai (i = 1,2, . . . ,m) and the ideal
alternative A∗ is given by

RINHFS5

(

Ai,A
∗)

=

∑n
j=1 wj

[

1
lij

∑lij
k=1(γ

L
ijσ (k) + γ U

ijσ (k))
]









2
∑n

j=1 wj















1
lij

∑lij
k=1[(γ L

ijσ (k)
)2 + (γ U

ijσ (k)
)2]

+ 1
pij

∑pij

k=1[(δL
ijσ (k))

2 + (δU
ijσ (k))

2]
+ 1

qij

∑qij

k=1[(ηL
ijσ (k))

2 + (ηU
ijσ (k))

2]























1/2
(12)

where γ̃ij = [γ L
ij , γ U

ij ] ∈ t̃ij , δ̃ij = [δL
ij , δ

U
ij ] ∈ ĩij , η̃ij = [ηL

ij , η
U
ij ] ∈ f̃ij , lij ,pij , and qij are

the numbers of interval elements in t̃ij , ĩij , f̃ij , respectively, and RINHFS5(Ai,A
∗) ∈ [0,1]

for i = 1,2, . . . , n.
Or by applying Eq. (11), the weighted correlation coefficient between an alternative

Ai (i = 1,2, . . . ,m) and the ideal alternative A∗ is given by

RINHFS6

(

Ai,A
∗)

=

∑n
j=1 wj

[

1
lij

∑lij
k=1(γ

L
ijσ (k) + γ U

ijσ (k))
]

max









2,
∑n

j=1 wj















1
lij

∑lij
k=1[(γ L

ijσ (k))
2 + (γ U

ijσ (k))
2]

+ 1
pij

∑pij

k=1[(δL
ijσ (k))

2 + (δU
ijσ (k))

2]
+ 1

qij

∑qij

k=1[(ηL
ijσ (k))

2 + (ηU
ijσ (k))

2]























.

(13)

Through the correlation coefficient RINHFSk(Ai,A
∗) (k = 5 or 6; i = 1,2, . . . ,m), we

can obtain the ranking order of all alternatives and the best one(s).

6. Illustrative Example

In this section, an illustrative example for the multiple attribute decision-making problem
of investment alternatives is given to demonstrate the application and effectiveness of the
proposed decision-making method.

Let us consider the decision-making problem adapted from (Ye, 2013). There is an
investment company, which wants to invest a sum of money in the best option. There
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Table 1
Interval neutrosophic hesitant fuzzy decision matrix D.

C1 C2 C3

A1 {{[0.3,0.4], [0.4,0.4], {{[0.4,0.5], [0.5,0.6]}, {{[0.2,0.3]}, {[0.1,0.2]},
[0.4,0.5]}, {[0.1,0.2]}, {[0.2,0.3]},{[0.2,0.3], {[0.4,0.5], [0.5,0.6]}}
{[0.3,0.4]}} [0.3,0.4]}}

A2 {{[0.6,0.7]}, {[0.1,0.2]} {{[0.6,0.7]}, {[0.1,0.1]}, {{[0.6,0.7]}, {[0.1,0.2]},
{[0.1,0.2], [0.2,0.3]}} {{[0.2,0.3]}} {[0.1,0.2]}}

A3 {{[0.3,0.4], [0.5,0.6]}, {{[0.5,0.6]}, {[0.2,0.3]}, {{[0.5,0.6]}, {[0.1,0.2],
{[0.2,0.4]}, {[0.2,0.3]}} {[0.3,0.4]}} [0.2,0.3]}, {[0.2,0.3]}}

A4 {{[0.7,0.8]}, {[0,0.1]} {{[0.6,0.7]}, {[0,0.1]}, {{[0.3,0.5]}, {[0.2,0.3]},
{[0.1,0.2]}} {[0.2,0.2]}} {[0.1,0.2], [0.3,0.3]}}

is a panel with four possible alternatives to invest the money: (1) A1 is a car company;
(2) A2 is a food company; (3) A3 is a computer company; (4) A4 is an arms company. The
investment company must take a decision according to the three attributes: (1) C1 is the
risk; (2) C2 is the growth; (3) C3 is the environmental impact. The weight vector of the
attributes is given by w = (0.35,0.25,0.4)T (Ye, 2013). The four possible alternatives are
to be evaluated under the above three attributes by the form of INHFEs, and then we can
obtain the interval neutrosophic hesitant fuzzy decision matrix D, as shown in Table 1.

Then, we utilize the developed approach to obtain the ranking order of the alternatives
and the most desirable one(s).

By using Eq. (12), we can obtain the values of the correlation coefficient
RINHFS5(Ai,A

∗) (i = 1,2,3,4). Take an alternative A1 as an example, we have

RINHFS5

(

A1,A
∗)

=

∑3
j=1 wj

[

1
l1j

∑l1j

k=1(γ
L
1jσ (k) + γ U

1jσ (k))
]









2
∑3

j=1 wj















1
l1j

∑l1j

k=1[(γ L
ijσ (k))

2 + (γ U
1jσ (k))

2]

+ 1
p1j

∑p1j

k=1[(δL
1jσ (k))

2 + (δU
1jσ (k))

2]
+ 1

q1j

∑q1j

k=1[(ηL
1jσ (k))

2 + (ηU
1jσ (k))

2]























1/2

=

0.35(0.3 + 0.4 + 0.4 + 0.4 + 0.4 + 0.5)/3

+ 0.25(0.4 + 0.5 + 0.5 + 0.6)/2 + 0.4(0.2 + 0.3)


















2



































0.35[(0.32 + 0.42 + 0.42 + 0.42 + 0.42 + 0.52)/3

+ (0.12 + 0.22) + (0.32 + 0.42)]
+ 0.25[(0.42 + 0.52 + 0.52 + 0.62)/2

+ (0.22 + 0.32) + (0.22 + 0.32 + 0.32 + 0.42)/2]
+ 0.4[(0.22 + 0.32) + (0.12 + 0.22)

+ (0.42 + 0.52 + 0.52 + 0.62)/2]





















































1/2

= 0.6157.
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Similar to the above calculation, we can obtain the following values of the correlation
coefficient RINHFS5(Ai,A

∗) (i = 2,3,4):

RINHFS5

(

A2,A
∗)= 0.9302, RINHFS5

(

A3,A
∗)= 0.7921, and

RINHFS5

(

A4,A
∗)= 0.8792.

Thus, the ranking order of the four alternatives is A2 ≻ A4 ≻ A3 ≻ A1. Therefore, the
alternative A2 is the best choice among the four alternatives.

Or by using Eq. (13), we can also obtain the values of the correlation coefficient
RINHFS6(Ai,A

∗) (i = 1,2,3,4). Take an alternative A1 as an example, we have

RINHFS6

(

A1,A
∗)

=

∑3
j=1 wj

[

1
l1j

∑l1j

k=1(γ
L
1jσ (k) + γ U

1jσ (k))
]

max




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j=1 wj
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
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





1
l1j
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k=1[(γ L
1jσ (k))

2 + (γ U
1jσ (k))

2]
+ 1

p1j

∑p1j

k=1[(δL
1jσ (k)

)2 + (δU
1jσ (k)

)2]

+ 1
q1j

∑q1j

k=1[(ηL
1jσ (k))

2 + (ηU
1jσ (k))

2]























=

0.35(0.3 + 0.4 + 0.4 + 0.4 + 0.4 + 0.5)/3

+ 0.25(0.4 + 0.5 + 0.5 + 0.6)/2 + 0.4(0.2 + 0.3)

max
















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2,














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

















0.35[(0.32 + 0.42 + 0.42 + 0.42 + 0.42 + 0.52)/3

+ (0.12 + 0.22) + (0.32 + 0.42)]
+ 0.25[(0.42 + 0.52 + 0.52 + 0.62)/2

+ (0.22 + 0.32) + (0.22 + 0.32 + 0.32 + 0.42)/2]
+ 0.4[(0.22 + 0.32) + (0.12 + 0.22)

+ (0.42 + 0.52 + 0.52 + 0.62)/2]
















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

































= 0.365.

Similar to the above calculation, we can obtain the following values of the correlation
coefficient RINHFS6(Ai,A

∗) (i = 2,3,4):

RINHFS6

(

A2,A
∗)= 0.65, RINHFS6

(

A3,A
∗)= 0.515, and

RINHFS6

(

A4,A
∗)= 0.585.

Therefore, the ranking order of the four alternatives is A2 ≻ A4 ≻ A3 ≻ A1. Obviously,
the alternative A2 is also the best choice among the four alternatives.

From the above results we can see that the above two kinds of ranking orders of
the four alternatives and the best choice are the same with respect to using different
correlation coefficients, which are in agreement with the results of Ye’s method (Ye
2013). The above example indicates that the proposed decision-making method is ap-
plicable and effective under interval neutrosophic hesitant fuzzy environment. As men-
tioned above, INHFSs are the extension of the existing sets such as HFSs, IVHFSs,
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DHFSs, SVNSs, INSs, which are special cases of the INHFSs. Therefore, the correla-
tion coefficients of INHFSs proposed in this paper are the further extension of the exist-
ing correlation coefficients (Gerstenkorn and Manko, 1991; Bustince and Burillo, 1995;
Hong, 1998; Chiang and Lin, 1999; Wang and Li, 1999; Hung and Wu, 2002; Hong, 2006;
Park et al., 2009; Szmidt and Kacprzyk, 2010; Ye, 2010; Wei et al., 2011; Chen et al.,
2013a; Ye, 2013, 2014a). On the one hand, compared with the decision making meth-
ods based on the correlation coefficients (Park et al., 2009; Ye, 2010; Wei et al., 2011;
Ye, 2013, 2014a), the decision-making method based on the correlation coefficients
of INHFSs further extend the existing decision making methods (Park et al., 2009;
Wei et al., 2011; Ye, 2010, 2013, 2014a) since the later is special cases of the former.
Therefore, the proposed interval neutrosophic hesitant fuzzy decision-making method is
more general and more practical than existing decision-makingmethods (Park et al., 2009;
Wei et al., 2011; Ye, 2010, 2013, 2014a). On the other hand, compared with the decision
making methods based on the aggregation operators (Xia and Xu, 2011; Ye, 2014d), our
decision making method based on the correlation coefficients can avoid complex informa-
tion aggregation and can directly use the derived correlation coefficient formula to rank
the alternatives. Therefore, the decision making approach in this paper is more simple and
more convenient than the decision making methods in Xia and Xu (2011), Ye (2014d).
Thus, the comparisons clearly demonstrate the benefits of the proposed decision-making
approach based on correlation coefficients of INHFSs. Furthermore, in the proposed deci-
sion making method, the decision makers can select any one of two correlation coefficients
of INHFSs according to their preference to obtain the final decision.

7. Conclusions

This paper proposed the concept of INHFSs and their basic operations. Then, we de-
veloped some correlation coefficients between INHFSs as a further generalization of the
correlation coefficients for SVNSs and IVHFSs and investigated their properties and the
relation between some similarity measures and the correlation coefficients for INHFSs.
Furthermore, a multiple attribute decision-making method based on the correlation co-
efficients of INHFSs has been established under interval neutrosophic hesitant fuzzy en-
vironment. Through the correlation coefficients between each alternative and the ideal
alternative, we can obtain the ranking order of all alternatives and the best one. Finally,
an illustrative example demonstrated the application and effectiveness of the developed
decision-making approach. The proposed interval neutrosophic hesitant fuzzy decision-
making method is more suitable for decision making problems with the incomplete, inde-
terminate, and inconsistent information and more general and more practical than existing
decision-making approaches. Therefore, the techniques proposed in this paper extend ex-
isting correlation coefficients and decision-making methods and can provide a new way for
decision-makers. In the future, we shall apply the correlation coefficients between INHFSs
to other domains, such as expert system, clustering analysis, and medical diagnosis.
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Koreliacijos koeficientai intervalinėms neutrosofinėms atspariosioms
aibėms ir jų taikymas daugiakriterinio sprendimų priėmimo metode

Jun YE

Šiame straipsnyje pasiūlyta intervalinių neutrosofinių atspariųjų aibių (INAA) koncepcija ir api-
brėžtos operacijos su INAA. Apibrėžiami INAA koreliacijos koeficientai ir tiriamas jų ryšys su
panašumo matais. Be to, pasiūlytas daugiakriterinio sprendimų priėmimo metodas, paremtas kore-
liacijos koeficiento taikymu. Atsižvelgiant į koreliacijos koeficientus tarp alternatyvų ir idealiosios
alternatyvos, surandami alternatyvų rangai. Pateikiamas pasiūlyto metodo taikymo investiciniams
sprendimams priimti pavyzdys.


