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Abstract. Denial-of-service (DoS) attacks against server resources exhaustion are a major security

threat to the Internet. A number of defense mechanisms have been proposed against such attacks.

Recently, Aura et al. proposed a solution to resist DoS attacks against an authentication protocol.

However, their puzzle solution cannot guarantee that all of their clients have fair computation time

to solve a puzzle. The solution may even render some clients unable to obtain the puzzle solution

within the lifetime, resulting in a lack of service from the server. In this paper, a simple solution as

well as an applied authentication protocol was proposed.
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1. Introduction

Recently, denial-of-service (DoS) attacks have become a major problem (Agah and Das,

2007; Patel and Jinwala, 2015; Ren, 2007; Xuan et al., 2010). These attacks degrade the

services’ quality or temporarily deny the victim’s resource availability, rather than subvert

the victim’s data or service permanently (Douligeris and Mitrokotsa, 2004). Such attacks

are difficult to solve because they are not aimed at any specific weakness of a computer

system (Wang and Shin, 2003).

Through a very simple and powerful technique, distributed denial-of-service (DDoS),

an attacker can easily exhaust the resources of a victim within a short time (Douligeris

and Mitrokotsa, 2004; Jeyanthi and Iyengar, 2012). A DDoS attack system can usu-

ally be treated as a many-to-one dimension of the DoS problem (Gupta et al., 2012;

Lee et al., 2009; Udhayan and Hamsapriya, 2011). In this attack mode, an attacker controls
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multiple handlers (masters) with a special program. With automatic scanning and prop-

agation techniques, a handler is able to dominate multiple agents by searching out their

system security holes and injecting malicious instructions (Wang and Shin, 2003). The

agents then generate the bogus packets and send them to the victim. This consequently

paralyzes the services provided by the victim.

DoS attacks to server resources exhaustion have become a major threat in today’s In-

ternet and other open communication systems (Aura et al., 2001; Malekzadeh et al., 2011;

Mihajlov and Bogdanoski, 2014). These valuable resources usually include CPU cycles,

disk space, memory, network bandwidth, network connectivity, and certain environmental

resources such as power (Wang and Reiter, 2003). The service capabilities of a server are

usually limited to the resources it holds.

Because the resources of a server are limited and valuable, eliminating a client can ar-

bitrarily access the server resources. Therefore, the server usually implements an authen-

tication protocol to verify the client before allocating any resources to it. Unfortunately,

this creates a new opportunity for DoS attacks (Aura et al., 2001). During the verification

process, the server typically needs to spend its resources, such as buffer, storage (to store

some specific session state), and some expensive computation (e.g. public-key-based op-

erations) to accomplish an authentication before the client can gain access to the server.

Therefore, an attacker can exploit DDoS techniques to launch and send many bogus au-

thentication requests to a victim server. As a result, the server is paralyzed because of the

exhaustion of its limited resources.

Client puzzles (Abliz and Znati, 2009; Aura et al., 2001; Bocan, 2004; Fallah, 2010;

Juels and Brainard, 1999; Wang and Shin, 2003) are one of the eminent solutions created

to preclude such attacks. To solve the server resource exhaustion attacks by client puzzles

protocol, a client is required to commit his or her resources to solve the puzzle before

acquiring any reliable authentication from the server. Therefore, the protocol imposes a

large computation burden on potential attackers, by requesting them to generate large vol-

umes of legitimate service requests to exhaust the server resources. The client puzzles will

increase the difficulty whether authentications are malicious or honest. The difference is

that an honest client needs only to solve the puzzle once, so he/she has little influence; but

a malicious client to launch Dos attack will be overloaded because many puzzles need to

be solved by him; and therefore the server could also get breathing time.

Recently, Aura et al. (2001) proposed a client puzzle to defend the authentication pro-

tocol of a server from DoS attacks. However, this puzzle solution cannot guarantee that

all of the clients will have adequate fairness computation time to solve the puzzle. Con-

sidering the different input parameters in Aura et al.’s protocol, it is found that the client

may not be able to solve a puzzle solution within a particular period of time. That is, there

are numerous opportunities for some clients to receive no service from the server.

In this paper, a moderately difficult client puzzle protocol has been proposed to solve

such problems. By utilizing a unique puzzle for each client, the solution guarantees that

each client will receive services from the server within a particular period of time. Thus,

legitimate clients only slightly degrade a connection request confirmation when the server

is under attack, while attackers have to commit a large computational resource to interrupt

the normal services of the server.
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The remainder of the paper is organized as follows: Section 2 presents related work,

including a brief description of the weakness of Aura et al.’s client puzzles protocol. The

flaws of Bocan’s protocol are also included in this section. Section 3 describes the attack

model to assist us in formulating the client puzzle protocol. Section 4 introduces the client

puzzle protocol. Section 5 demonstrates a simple but efficient authentication protocol,

which absorbs the characteristics of cryptographically generated address (CGA) into the

proposed client puzzle protocol to defend against serial DoS attacks, for example, resource

exhaustion attacks in server sites and malicious flooding. Section 6 valuates the security

of the proposed protocol, and Section 7 concludes the paper.

2. Related Works

First, existing client puzzle techniques were explored. Second, the weaknesses of Aura et

al. protocol were briefly described. To enhance the protocol, the flaws of Bocan’s protocol

were analyzed and some improvements to the weaknesses were made in Section 2.3.

2.1. Client Puzzles

The most effective defense mechanisms of eradicating security loopholes is from their ori-

gins. The Internet is based on TCP/IP that was not designed for security in original version,

so its insecurity is unavoidable (Baltatu et al., 2000). Although IPSec was introduced to

protect the packet, it still has many problems that need to be solved (Baltatu et al., 2000;

Deng et al., 2002; Nikander, 2001b). Internet service providers (ISPs) are typically not

motivated to embed router-based defense schemes into their routers because there are no

direct benefits for them, or for their clients (Wang and Shin, 2003). DoS as well as DDoS

has now fully exploited the security weaknesses mentioned above to launch attacks by

engaging in flooding attacks with IP spoofing.

Therefore, the most effective way is to develop the server-based defense mechanisms

because this side usually experiences the greatest weight of an attack. For this reason,

potential victims are always willing to sacrifice some of their resources and performances

to reinforce their defense capability (Douligeris and Mitrokotsa, 2004). Client-puzzle was

designed to enhance the capability of the server to defend against DoS and DDoS attacks.

According to Bocan (2004), the idea of cryptographic puzzles was developed from

Merkle (1978). However, his puzzles were only applied to key agreement, not authentica-

tion. Juels and Brainard (1999) proposed their client puzzles to protect victims’ machines.

Their protocol focuses on defense against connection depletion attacks. This protocol is

capable of combating attackers on internal networks, as well as the SSL protocol, which

is vulnerable to computational exhaustion attacks. However, to complete a verification, a

server requires m hash computations (m is number of sub-puzzles within a puzzle), and

this is considered to be too expensive.

Recently, Aura et al. considered that Juels and Brainard only concentrated on connec-

tion depletion attacks, but ignored DoS attacks against authentication protocols. There-

fore, they made some improvements to the protocol (Aura et al., 2001). Aura et al. mini-
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Fig. 1. Sketch of Aura et al.’s protocol

tacks. Their protocol forces the server to immediately cease communication with
a client who submits the puzzle solution in less than an estimated time for solving
the puzzle.

There are some studies to improve the client puzzles and to apply them to
the actual application environment, for example, the Ma’s Hash-chain-reversal
puzzle (Ma, 2005), and the lei et al.’s Quasi-Partial-Collisions puzzle (Lei et al.,
2006) for the UMTS communication protocol. Since the IP-based network was
already the present network protocol tendency, an applied authentication protocol
based on our client puzzle protocol was also proposed in this paper, and that is
suitable at the IP-based network environment.

A number of approaches concentrate on the client’s memory resources
(Dwork et al., 2003). Although this paper is confined to CPU-intensive puzzles
herein, this research will be explored in future work.

2.2. The Aura et al.’s Protocol
A sketch of Aura et al.’s protocol (Aura et al., 2001) is shown in Figure 1. When
the server suspects that it is under a DoS attack and its resources are becoming
exhausted, it begins to broadcast a puzzle with a difficulty level greater than zero
to all of its clients. The puzzle message contains a nonce from the server, and
a value , which demonstrates the puzzle difficulty level. The server generates a
nonce periodically. The nonce should be unpredictable to prevent an attacker
from pre-computing the puzzle solutions. The server sets if no work is
required for the client.

When a client receives a puzzle message and discovers that the value is
greater than zero, he or she should solve the puzzle according to the puzzle diffi-

Fig. 1. Sketch of Aura et al.’s protocol.

mized the length of the puzzle and the number of hash operations needed in the verifica-

tion phase. They used only one hash operation in their client puzzles protocol. Thus, their

protocol is more efficient than that of Juels and Brainard.

Later, Bocan (2004), Bocan and Fagadar-Cosma (2005) considered that Aura et al.’s

protocol is vulnerable to the “strong attacks”; therefore, he proposed an improvement

known as the threshold puzzle to defend against the attacks. Their protocol forces the

server to immediately cease communication with a client who submits the puzzle solu-

tion in less than an estimated time for solving the puzzle.

There are some studies to improve the client puzzles and to apply them to the actual

application environment, for example, the Ma’s Hash-chain-reversal puzzle (Ma, 1993),

and the Lei et al.’s Quasi-Partial-Collisions puzzle (Lei et al., 2006) for the UMTS com-

munication protocol. Since the IP-based network was already the present network protocol

tendency, an applied authentication protocol based on our client puzzle protocol was also

proposed in this paper, and that is suitable at the IP-based network environment.

A number of approaches concentrate on the client’s memory resources (Dwork et al.,

2003). Although this paper is confined to CPU-intensive puzzles herein, this research will

be explored in future work.

2.2. The Aura et al.’s Protocol

A sketch of Aura et al. (2001) protocol is shown in Fig. 1. When the server suspects that

it is under a DoS attack and its resources are becoming exhausted, it begins to broadcast a

puzzle with a difficulty level greater than zero to all of its clients. The puzzle message con-

tains a nonce Ns from the server, and a value k, which demonstrates the puzzle difficulty

level. The server generates a nonce Ns periodically. The nonce should be unpredictable to

prevent an attacker from pre-computing the puzzle solutions. The server sets k = 0 if no

work is required for the client.

When a client receives a puzzle message and discovers that the value k is greater than

zero, he or she should solve the puzzle according to the puzzle difficulty level k. The client

first generates a nonce Nc , then tries to solve the puzzle by finding the hash result in which

the most significant bits are conformed to zero. For example, if k = 16, the client should

find a hash result in which the most significant bits are composed of 16 zero bits. The

client must repeatedly apply a hash function with a various values of X until a solution
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is found. This is the only efficient way to find a puzzle solution. No other short cuts exist

(Aura et al., 2001; Bocan, 2004; Juels and Brainard, 1999; Wang and Reiter, 2003).

After the client finds the puzzle solution X, he or she sends Nc and X to the server.

The server first verifies that Ns is fresh, and that C, Ns , and Nc have not been used be-

fore. Afterwards, the server verifies the solution by employing only one hash function

computation. If the solution is correct, the server stores C, Ns , and Nc. The server stores

the correctly solved instances C, Ns , and Nc to prevent the client from re-using the same

solution for many service requests.

2.3. The Bocan’s Improved Protocol

Bocan first proposed a “strong attack” (Bocan, 2004; Bocan and Fagadar-Cosma, 2005)

in 2004. A strong attack is defined as a DoS attack launched by an attacker who is able to

access a massive computing power. With this attack, an attacker can gradually raise the

puzzle up to impossible difficulty. Therefore, legitimate clients will never solve the puzzle.

Bocan realized that protocol of Aura et al. (2001) was vulnerable to such strong attacks.

Therefore, he suggested that when a server received a puzzle solution from a client, it

should estimate the time that a client needed to solve a puzzle of difficulty k, using the

formula:

Testimated =
(

2
k − 1

)

∗ Toperation.

In the formula, Testimated represents the estimated time for solving the puzzle, and Toperation

indicates the minimum time needed to perform a cryptographic operation. Bocan named

a client puzzle by the above formula as threshold puzzle.

2.4. The Flaw of Their Protocols

In the Aura et al.’s protocol, the puzzle difficulty is represented by parameter k. To solve

a puzzle of difficulty k, the expected number of steps for a client will be 2
k/2 = 2

k−1,

whilst the worst case will be 2
k . Because the server changes the value of NS periodically,

we consider if some clients need to solve a puzzle under the worst case with insufficient

lifetime of NS , these clients will get nothing after they solve the puzzle. In Aura et al.’s

protocol, the server decides only the value Ns and the puzzle difficulty level k. The other

parameters such as C and Nc are unique to each client. Because each client will employ

their own C and Nc to find the solution X, it is known that inputting various parameters

into a hash function cannot guarantee a fair computation time. With improper settings

of NS , some clients may still be rejected by the server.

However, Bocan’s protocol originated from Aura et al.’s idea, therefore, the weak-

nesses mentioned above were inherited. That is, Bocan’s protocol may also cause a differ-

ence probability in solving the puzzle. It is difficult to estimate the time needed to solve

a puzzle.

It is noted, however, that our moderately difficult client puzzle protocol needs two

additional hash computations in the server site when compared with Aura et al. (2001) and
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Bocan (2004). However, the protocol ensures that each client will have fair and adequate

computation time to find the puzzle solution. Furthermore, the protocol provides a better

way to estimate the time for solving the puzzle, which enhances the capability of Bocan’s

threshold puzzle.

3. Attack Model

To formulate our client puzzle protocol, the following assumptions were made: It is as-

sumed that clients Ci come from the Internet, intending to receive some services from

server S. Server S provides the services to Ci after he or she has been verified. An at-

tacker Adv (who controls a number of attack daemon agents) from a public network is

trying to exploit the weaknesses of the authentication protocol, and launches a DDoS at-

tack to deplete the resources (CPU cycles and memory) of the server S. The following

assumptions were made about the situation of the attacker Adv and server S.

Assumption 1. The attack daemon agents controlled by Adv are generally external to the

victim’s own network.

The attack daemon agents are commonly located outside the victim’s own network.

This helps the attacker avoid detected by the victim’s network operator, and avoid any

liability if the attack source is traced back (Douligeris and Mitrokotsa, 2004).

Assumption 2. The attack daemon agents commonly perform IP spoofing.

IP spoofing is a fundamental component of many DDoS attacks. Adv sends a high-

volume of authentication request messages to S with fake or randomized IP address

sources to render the victim unable to locate attackers.

Assumption 3. When participating in a DDoS attack, a normal user cannot feel any dis-

comfort using the agent computer.

When participating in a DDoS attack, the agent program, located in the attack daemon

agents, should use only a small amount of the resources (e.g. CPU cycle, memory and

bandwidth). This assumption is related to Assumption 2. If Assumption 2 does not hold,

the daemon agents would make efficient responses to S. As a result, a user of the agent

computer will experience minimal changes in the computer’s performance. The agent pro-

gram may be removed later so to affect the attack plan of Adv.

Assumption 4. The daemon agents will not receive the messages sent to the spoofed IP

address.

According to Assumptions 1 and 2, it is assumed that the daemon agents, which use

the spoofed source IP address, will not receive and can only intercept a limited number

of messages sent to the spoofed IP address. Adv may control the default router nearby S

and attempt to copy the related messages; however, if he or she can do that, then he or she

can mount a DoS attack by blocking all the traffic originating from S without having to

overload it.
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Assumption 5. S is able to cope with any puzzle generation and verification.

Although this is a strong assumption, it remains reasonable for a current technology,

and is essential for many defense protocols (Aura et al., 2001; Juels and Brainard, 1999;

Montenegro and Castelluccia, 2004; Wang and Reiter, 2003). If Adv can flood S with a

large volume of related messages and paralyze the puzzle generation or verification, none

of the defense protocols could resist the attacks. This assumption is considered to express

the same idea in different words with Assumption 3 of Juels and Brainard (1999), and

Assumption 2 of Wang and Reiter (2003).

It is believed that DoS attack instances can be reduced significantly if the source can

be verified through authentication protocols. However, the authentication process may

become another potential source of DoS attacks (Nikander, 2001b). Therefore, to provide

a DoS-resistant mechanism despite the authentication protocol employed by the server, a

client puzzle mechanism to mitigate the destruction of DoS attacks was proposed.

4. The Proposed Client Puzzle Protocol

To provide DoS-resistant to authentication protocols, the client puzzle protocol is de-

scribed fully in this section. Our protocol mitigates the destructiveness of DoS attacks

to authentication protocols, which perform computationally expensive operations when

verifying a client. The defense protocol can be employed not only to authenticate proto-

cols, but also to other protocols vulnerable to DoS attacks during their execution.

We do not intend to introduce the authentication protocol suitable for our defense pro-

tocol in this paper. A server administrator should make this decision if he or she believes

that the server is vulnerable to DoS attacks. The administrator can implement the defense

protocol independently, or integrate the defense protocol into the authentication protocol,

as described in Section 5.

The notations used in the proposed protocol and the remainder of this article are listed

in Table 1. Note that some of the notations, already defined in Section 3, are ignored here.

Table 1

The notations used in the proposed protocol.

Notations Description

vi Solution of the puzzle, represents the puzzle difficulty

tl Lifetime of vi

ts Time stamp of server S, extracts from tl
tr Round-trip time issues a puzzle and receives its solution

Toperation Time needed to perform a hash operation

Testimated Acceptance threshold of the puzzle solution response time

IPc IP address of client Ci

h(·) One-way Hash function, e.g. SHA-1

hl104 Leftmost 104-bit of hash output

hr24 Rightmost 24-bit of hash output

sks 128-bit secret key conserved by S

cookiessc Message authentication code (MAC) issues by S to Ci
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Client Server

(1) Auth. requestCi
✲

(2) Checks Ci, ts

hl104 = h(Ci, IPCi
, ts, vi)

cookiessc = h(hr24, IPCi
, ts, sks, vi)

(2) puzzle(hl104, cookiessc, ts)
✛

(3) h(Ci, IPCi
, ts, vi)? = hl104

(3) h′

r24, ts, cookiessc
✲

(4) Checks Ci, ts

Verify estimated time
Verify solution
Stores Ci, ts

Fig. 2. The proposed client puzzle protocol

der attack), it sends a puzzle to solve. Otherwise, authenticates
directly. We consider under attack herein.

Before starting any computation, first checks the entry - stored
in its memory. This is to ensure that one can only launch a cor-
responding puzzle generation before expires. Afterward computes

, using a hash operation. obtains . then uses
the remainder of to form cookies . Note that are
issued for each authentication request. To combat IP spoofing, extracts
the from the authentication request message as an input parameter
into . sends , and as a puzzle to . re-
mains stateless to any authentication request from . The server gives the
client the answer expected in the proposed protocol, then uses
the secret key and Hash function to protect this answer. Therefore,
the server does not need to store any information concerning the client ap-
plying the connection. This reduces the overload of server. Therefore, is
stateless to any authentication request from .

Step 3: After receives the puzzle, he or she finds the solution , which is

Fig. 2. The proposed client puzzle protocol.

In the proposed client puzzle protocol, server S should decide the puzzle difficulty vi ,

according to its computational loading. The vi is an N bits random number generated

according to the puzzle difficulty level. N is determined by the difficulty of puzzle. S stores

vi–tl as an entry in its memory. If tl has expired, S will change vi into a new value,

according to its computational loading. Moreover, S keeps both the current value of vi–tl

and a set of previous entries vi−1–tl−1. The storage of vi−1–tl−1 prevents some puzzles

from being issued close to the expired time of vi−1. S should accept the solution generated

within tl−1 according to Testimated . For the sake of simplicity, vi/tl is exploited instead of

the situation of vi−1/tl−1 in the description below. Readers should be cautious of this

abbreviation. Details of the defense protocol are described below. Figure 2 demonstrates

our client puzzle protocol.

Step 1: To request services from server S, client Ci sends its authentication request to

server S.

Step 2: When S receives the authentication request, if it is overloaded (e.g. under attack),

it sends Ci a puzzle to solve. Otherwise, S authenticates Ci directly. We consider S

under attack herein.

Before starting any computation, S first checks the entry Ci -ts stored in its memory.

This is to ensure that one Ci can only launch a corresponding puzzle generation

before vi expires. Afterward S computes h(Ci , IPCi , ts , vi), using a hash operation.

S obtains hl104. S then uses the remainder of hr24 to form cookies cookiessc. Note

that cookiessc are issued for each authentication request. To combat IP spoofing,

S extracts the IPCi from the authentication request message as an input parameter

into cookiessc. S sends hl104, cookiessc and ts as a puzzle to Ci . S remains stateless

to any authentication request from Ci . The server gives the client the answer ex-

pected cookiesSC in the proposed protocol, then uses the secret key SKS and Hash

function to protect this answer. Therefore, the server does not need to store any in-

formation concerning the client applying the connection. This reduces the overload

of server. Therefore, S is stateless to any authentication request from Ci .
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Step 3: After Ci receives the puzzle, he or she finds the solution vi , which is the leftmost

104-bit of a hash result equivalent to hl104, received in Step 2. The way of client

usually to find solutions is the brute-force attack to test one by one until all possi-

ble solutions have to meet to find the solution. Once the solution has been found,

Ci sends the remaining 24-bit h′
r24

of the hash result, ts and cookiessc to S.

Step 4: Upon receipt of the puzzle solution, S first checks Ci and ts to prevent double

verification. If ts is fresh, S verifies the estimated time that Ci should take to solve a

puzzle of difficulty vi through a formula Testimated = (vi ∗Toperation+ tr ). Any puzzle

solution, which arrives earlier than Testimated , is rejected, and the remaining verifica-

tion process is ignored. Then, S verifies the puzzle solution using h′
r24

, the IPCi of

the response message and another related value as the input parameter to compute

cookies′sc = h(h′
r24

, IPCi , ts, sks , vi). If cookiessc ≡ cookies′sc, then the puzzle so-

lution is correct. S stores C and ts as long as the corresponding vi/vi−1 and tl/tl−1

remain in its memory. S may now commit its resources to execute authentication

protocol to verify Ci .

In the simple modification of Aura et al. (2001) and Bocan (2004), we proposed the

client protocol described above. Through a basic method placing the solution vi into the

puzzle, the defense protocol guarantees that all clients have adequate time to solve the

puzzle. Any client engaging in malpractice is rejected by S, according to Testimated.

Note that the value of vi is represented by a set of binary numbers. S should control

the value of vi as an appropriate length. Most importantly, S should ensure that its client

can solve the puzzle within tl . For Ci , he or she should start guessing from 1-bit, and

gradually increase the bit length, for example, 0,1,01,10,11, . . . . Of course, Ci should

know the rules of how to begin the value of vi . Because vi is set as the solution of a puzzle,

Ci could ultimately achieve the solution vi . Because S knows the accurate value of vi , it

can be pre-computed and stored Testimated for future use.

5. The Proposed Authentication Protocol

In the next section, an authentication protocol based on IPv6 (Deering and Hinden, 1998)

is proposed. The protocol absorbs the characteristics of CGA and employs them in the pro-

posed moderately difficult client puzzle mechanism to defend against serial DoS attacks,

for example, resource exhaustion attack in a server site and malicious flooding.

To open the forthcoming discussion, some understanding of the IPv6, as well as the

related background, is necessary. We assume the reader is familiar with basic IPv6 archi-

tecture and function. Thus, we concentrate on stateless auto-configuration, how the CGA

can be used in IPv6 and how it can be integrated into our client puzzle protocol to provide

a simple authentication function.

In the basic stateless auto-configuration process, a booting host chooses its 64-bit

interface identifier from the interface’s MAC address as a link local IP address. The

host then performs Duplicate Address Detection. Once the host has a link local ad-

dress, it enters into the Router Discovery phase. The host learns the routing prefixes
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from the Router Advertisements. It is able to create globally routing addresses for it-

self. Therefore, the 128-bit IP address is divided into a routing prefix and an interface

identifier. Because a host cannot change the routing 64-bit address prefix, the CGA

focuses on the lower 64-bit interface identifier (link local IP address). The CGA ad-

dress holds some good characteristics to prove that the address is not only used but

also owned by a host. Therefore, IP spoofing can be eliminated (Chen et al., 2008;

Montenegro and Castelluccia, 2004).

CGA was first proposed by O’Shea and Roe (2001) to secure binding updates in Mo-

bile IP Version 6 (MIPv6) (Johnson et al., 2004) when IPSec AH was not available. The

later improvements can be found in Deng et al. (2002), Nikander (2001b). In CGA, it as-

sumes that a global or centralized public key infrastructure (PKI) or key distribution cen-

tre (KDC) is not available. All of its securities are based on the probability difficulty of

producing duplicate addresses, as described in Montenegro and Castelluccia (2004). We

make some variations herein to make CGA not only solve the address ownership problem

(Nikander, 2001a), but also to authenticate itself to the server. We named the CGA with a

certificate from a trust third party as VCGA (Variant-CGA).

To request services from server S, client Ci should ensure that the IP address (more

accurately, the part of interface identifier) is derived from the following computation:

host ID = HASH62(public key|imprint).

The imprint acts like a salt in UNIX system to limit certain types of attacks (Montenegro

and Castelluccia, 2004). As suggested in Nikander (2001b), O’Shea and Roe (2001), only

62 bits of the lower IPv6 address can be used to store a cryptographic hash of a public

key. The other two bits have the semantics defined for EUI-64 global identifiers (O’Shea

and Roe, 2001). We use these 62 bits host ID instead of the interface identifier in IPv6.

Through the characteristics of VCGA, an attacker is hard to perform IP spoofing. Addi-

tionally, a simple authentication can be achieved. We show the related security analysis in

Section 6.

The proposed authentication protocol shown in Fig. 3 is a variation of the proposed

client puzzle protocol described in Section 4. It is a practical DoS-resistant authentication

protocol, built to defend against resources exhaustion attacks in server sites.

Step 1: To request services from server S, client Ci sends its authentication request to

server S.

Step 2: When S receives the authentication request, if it is overloaded (e.g. under attack),

it sends Ci a puzzle to solve. Otherwise, S authenticates Ci directly. We consider S

under attack herein.

Before starting any computation, S first checks the entry Ci–ts stored in its mem-

ory. This is to ensure that one Ci can only launch a corresponding puzzle generation

before vi expires. Afterward S computes h(Ci , IPCi , ts , vi), using a hash operation.

S obtains hl104. S then uses the remainder of hr24 to form cookies cookiessc. Note

that cookiessc are issued for each authentication request. To combat IP spoofing,

S extracts the IPCi from the authentication request message as an input parameter
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Client Server

(1) Auth. requestCi
✲

(2) Checks Ci, ts

hl104 = h(Ci, IPCi
, ts, vi)

cookiessc = h(hr24, IPCi
, ts, sks, vi)

(2) puzzle(hl104, cookiessc, ts)
✛

(3) h(Ci, IPCi
, ts, vi)? = hl104

M = h′

r24, ts, imprint, cookiessc

(3) M, (M)sign, certi
✲

(4) Checks Ci, ts

Verify estimated time
Verify IPCi

Verify solution
Verify the signature
Stores Ci, ts

Fig. 3. The proposed authentication protocol

The proposed authentication protocol shown in Figure 3 is a variation of
the proposed client puzzle protocol described in Section 4. It is a practical DoS-
resistant authentication protocol, built to defend against resources exhaustion at-
tacks in server sites.

Step 1: To request services from server , client sends its authentication re-
quest to server .

Step 2: When receives the authentication request, if it is overloaded (e.g. un-
der attack), it sends a puzzle to solve. Otherwise, authenticates
directly. We consider under attack herein.

Before starting any computation, first checks the entry - stored
in its memory. This is to ensure that one can only launch a cor-
responding puzzle generation before expires. Afterward computes

, using a hash operation. obtains . then uses
the remainder of to form cookies . Note that are
issued for each authentication request. To combat IP spoofing, extracts
the from the authentication request message as an input parameter
into . sends , and as a puzzle to . re-

Fig. 3. The proposed authentication protocol.

into cookiessc. S sends hl104, cookiessc and ts as a puzzle to Ci . S remains stateless

to any authentication request from Ci . The server gives the client the answer ex-

pected cookiesSC in the proposed protocol, then uses the secret key SKS and Hash

function to protect this answer. Therefore, the server does not need to store any in-

formation concerning the client applying the connection. This reduces the overload

of server. Therefore, S is stateless to any authentication request from Ci .

Step 3: After Ci receives the puzzle, he or she performs a brute force to search out the

solution vi , which the leftmost 104-bit of a hash result equivalent to hl104 received

in Step 2. Once the solution is found, Ci sends the remaining 24-bit h′
r24

of the hash

result, ts , imprint as well as cookiessc as M to S. A signed M and certi are also

sent to S. The public key PK i and imprint should be the elements used to create the

62 bits host ID. The VCGA employed herein also signifies that Ci is prevented from

using a spoofed IP address IPCi in Step 2.

Step 4: Upon receipt of M , (M)sign and certi , S checks Ci and ts and verifies

Testimated = (vi ∗Toperation + tr). Afterwards, S verifies IPCi by checking host ID? =

HASH62(public key|imprint). If the verification holds, then S takes IPCi into the

puzzle solution verification. Only after determining if the above verification is pos-

itive, S verifies the signature. If the signature verification is correct, S believes that

Ci not only uses but also owns the IP address. S stores C and ts as long as the cor-

responding vi/vi−1 and tl/tl−1 remain in its memory. The services provided by S

may now be accessible by Ci .

Because the authentication protocol employs a public key cryptosystem to verify

client Ci , with a masterly employment of certificate certi , the proposed authentication

protocol not only verifies Ci but also proves that S is communicating with the owner of

the IP address. A malicious client who intends to launch flooding attacks (e.g. requests ser-

vices from video streaming servers) against a victim will be identified by his or her certi

and signature. Because the original CGA assumes that a trustworthy PKI is not available,
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its self-created public or private key by Ci is difficult to declare the crime of an attacker

judicially through the law (because there are no trusted third parties to prove the identity

of an attacker).

Because the server only accepts those clients who can prove their ownership of the

source IP address, the authentication protocol eliminates IP address spoofing. A malicious

client is prevented from flooding a victim, because now he or she needs to prove ownership

of the IP address with a signature.

6. Security Analysis

In the protocols above, upon receipt of the authentication request from client Ci , server S

begins with a h(Ci , IPCi , ts , vi) computation. S will then take the leftmost 104-bit of hash

results to perform a puzzle requirement. Afterward Ci is required to find the vi , which

results in the leftmost 104-bit of the hash output (say h′
l104

) being equal to hl104. S will

then verify the solution of the puzzle. We assume that the hash function h(·) used in the

defense protocol is a random function. For each input, the output of h(·) is uniformly

distributed in {0,1}b , where b is the security parameter.

To simplify our security analysis, we state the analysis in the form of a proposition

and divide it into two aspects: the analysis of the proposed client puzzle protocol, and the

analysis of the authentication protocol.

6.1. Analysis of the Proposed Client Puzzle Protocol

The analysis made in this subsection does not take the succeeding authentication method

into account. We ignore the existence of the proposed authentication protocol, as demon-

strated in Section 5 herein.

Proposition 1. The probability to find a collision of h(·) is no more than 2
−(104−1).

Note that if we curtail the leftmost 104-bit of the hash function output into a small

number of sizes, say 8-bit, for every hash function output, whose leftmost 8-bit fits with

the 8-bit puzzle requirement sent by S, will be an acceptance solution. Therefore the prob-

ability of finding an 8-bit collision of h(·) becomes 2
−(8−1). This is an unacceptable prob-

ability because of its very large size.

We exploit the leftmost 104-bit of hash function output as a puzzle requirement to Ci .

This is to ensure that the collision of the hash function becomes negligibly small. In this

situation, the probability of finding a collision of h(·) is no more than 2
−(104−1). Therefore,

the only efficient way to find hl104 is through brute force until the solution vi is achieved.

Although 104-bit increases the message length in transmission, it can provide a higher

security to resist collision. The server administrator should consider this tradeoff.

Proposition 2. The maximum time taken by Ci to obtain h′
l104

≡ hl104 is limited to vi .
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In the defense protocol, the number of times taken by Ci to find the correct value of vi

is set by S in advance. S can estimate the time needed to complete the corresponding

puzzle, using a simple calculation vi ∗ Toperation. Henceforth S can accurately control a

difficult puzzle. Because S randomly varies vi when tl has expired, the efficient way to

obtain vi is through brute force.

Note that the increasing length of value vi demonstrates that Ci should take more time

to seek out the solution. S should control the size of vi as an appropriate difficulty, and

ensure that each client can solve the puzzle within the lifetime tl of vi .

Proposition 3. Under appropriate estimation to tr , S can assure that each client will have

adequate time to solve the puzzle.

We make Proposition 3 essentially to defeat potential Adv, who can launch strong at-

tacks (Bocan, 2004). We suggest the calculation of Testimated should have some cushioning

to mitigate the affect of various CPU powers of each client, for example, loosen the restric-

tion of Toperation. On the other hand, appropriation of the estimated value of tr is beyond

the scope of this paper. We reject the discussion of tr herein.

Proposition 4. Adv will be defeated if he or she has a puzzle solution vi but lacks

cookiessc.

Although Adv can copy the vi and multiply many puzzle solutions to S, the lack of

cookies issued to each previous authentication request message will make S discover the

deception of Adv. Therefore, to limit the reuse of puzzle solutions, S places its secret key

sks into the computation of cookiessc. Any client who has the puzzle solution should affix

the related cookiessc to S. The server uses the cookiessc to prevent IP spoofing. Therefore,

any Adv who uses spoofed IP must make sure that he or she can obtain the corresponding

cookiessc. Because of Adv with a randomized source of IP is hard to control the flow of

corresponding messages. Adv makes it difficult to obtain enough cookiessc in the environ-

ment of the Internet.

Although Adv can use a real IP address to receive cookiessc and perform the related

puzzle solving, he or she may confront liability if the attack is traced back. In the mean-

time, Adv also violates Assumptions 2 and 3 in Section 3 which are the common rules to

observe when participating in a DDoS attack.

Proposition 5. With stored entry Ci -ts , Ci as well as Adv is prevented from performing

double puzzle generation and verification.

Because the CPU cycles of S is valuable, we examine the Ci and ts in Steps 2 and 4

of the proposed protocol before we began any computation. There are two reasons for

this. First, a client can only achieve his puzzle generation or verification no more than one

time before tl expires. Upon receipt of the authentication request message from Ci , S first

records the particular time stamp, say tc . If tc is placed within the tl of vi , then S ignores

the puzzle generation. Similar action is taken by S when it receives a puzzle solution
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from Ci . The examination of Ci and ts protects against resources wasted by unintentional

clients.

Second, lures S to perform a heavy authentication protocol computation, Adv should

submit a puzzle solution with a different identity to Ci , as well as the corresponding

cookiessc which have not been used before. However, he/she will face difficulties as we

described in Proposition 4.

6.2. Analysis of the Proposed Authentication Protocol

The authentication protocol inherits all of the security virtues of the proposed client puzzle

protocol described above. We ignore the duplicate descriptions herein.

Theorem 1. The probability of the duplicate VCGA address is small and acceptable in

reality.

By birthday paradox, there is a 50% probability of collision after trying 1.2 × 2
n/2

(Menezes et al., 1997). In VCGA addresses, only 62 bits are actually usable to store a

cryptographic hash of a public key. If n = 62, we need 1.2 ×2
31, that is, 2.58 billion hosts

on an average before any two of them produce identical addresses. Therefore, it is accept-

able in reality, if we consider this collision harmful only if the two hosts are in the same

site (e.g. they are using the same 64-bit prefix) and have the same correspondent server.

This probability is very unlikely. Additionally, the duplicate address detection prevents

this collision from happening.

Theorem 2. The owner of an IP address can be identified by VCGA.

In an original CGA, a global or centralized PKI or KDC is not available; therefore

a client self-creates a public or private key pair. The CGA reduces the construction of

trusted third parties. It seems efficient, but it is, in fact, insecure.

The security of CGA is based on the belief that to obtain an IP address via a hash of the

public key is safe, and that it is difficult for an attacker to generate a corresponding private

key to make a signature. Because 62 bits are too few to gain strong security (Nikander,

2001b), and imprint is not a secret value as expected for HMAC use, therefore, by brute

force, an attacker can generate many public or private key pair to find a collision (the hash

result of a public key is a collision with another client, that is, two host ID). As a result,

the attacker can claim that he/she is the owner of some IP addresses, because he or she can

provide a correct signature to the corresponding parties. The lack of trusted third parties

makes these weaknesses unavoidable.

Our authentication protocol is based on general public key cryptosystems; therefore

each client obtains his or her public or private key pair and a corresponding certificate

certi . With certi , there is no way for an attacker to impersonate someone, because now

he or she needs to obtain the actual private key, corresponding to the public key, enrolled

in certi . Because server S verifies its clients when they request services, only the true

clients obtain the authority of S and are permitted to access the resources. According to



The Moderately Hard DoS-resistant Authentication Protocol on Client Puzzles 45

this concept, the proposed authentication protocol employs the public key enrolled in certi

to improve the security of CGA.

Because S can verify the identity of a client via VCGA address and the related signa-

ture, the owner of an IP address can be identified unquestionably through the utilization

of certi . It is useless for an attacker to find a collision of someone’s IP address by brute

force, and claim that he or she is the owner of the IP address with a fake signature.

Theorem 3. With the characteristics of VCGA, the malicious client flooding can be pre-

cluded in the proposed authentication protocol.

Because host ID is derived from HASH62(public key|imprint), with a fixed public key

from the certificate certi , an attacker cannot generate a victim’s IP address and launch

flooding attacks if he or she does not know the victim’s value of imprint . Although the

imprint is not a secret value as expected for HMAC use, it severely limits the attacks to

only those victims with a privileged location and within a certain time period (Montenegro

and Castelluccia, 2004).

The only way to launch malicious client flooding (Deng et al., 2002) is to lure the

server S into believing that the service request is coming from a proper client. By doing so,

an attacker first needs to obtain the designated victim’s imprint and generate the related IP

address. Second, the signature on the related message should be approved by S. Because

the attacker does not know the private key of the victim, a verifiable signature can be

created, using the attacker’s true certi and signature. The consequences of the attacks are

serious, the true certificate certi and signature will make the attacker punishable by law.

The original CGA lacks these advantages.

7. Discussions and Conclusions

To simplify our performance analysis, we state the analysis in two aspects: the analysis of

the proposed client puzzle protocol, and the analysis of the authentication protocol. The

Client (Ci ) of the proposed client puzzle protocol only needs 2 times Hash operations

(h(Ci , IPCi , ts , vi) and h′
r24

) at Step (3) in Fig 2. In a similar way, the Client (Ci ) of the

authentication protocol also only needs 2 times Hash operations (h(Ci , IPCi , ts , vi) and

h′
r24

) at Step (3) in Fig. 3.

Undoubtedly, DDoS attacks against the server resource exhaustion are already becom-

ing a major security threat. In a business environment, a server needs to verify its clients

through various authentication protocols, before providing any services. However, such a

verification may result in DDoS attacks, especially for those heavy loading authentication

protocols, for example, public-key-based operation. Therefore, it is important to provide

a defense mechanism to resist such attacks.

We have presented a defense protocol to combat DDoS attacks. The protocol provides

a guarantee to all the clients, which has adequate computation time to find the puzzle

solutions. We improve the shortcomings of Aura et al.’s protocol by bringing up an idea

fairness computation time. Moreover, S is stateless to any authentication request from Ci
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in the proposed. It can reduce the load of the server even more in the face of numerous

connections of the DoS attack.

To improve the weaknesses of CGA, we propose an idea called VCGA. The proposed

authentication protocol with VCGA not only eliminates the drawbacks from IP spoofing

and malicious client flooding, but also inherits all the security virtues of the proposed

client puzzle protocol.

Each client is able to access the authentication protocol after he or she solves the puz-

zle. However, an attacker who intends to lure a server into performingheavy authentication

protocol computations will be confronted with various difficulties.
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Autentifikavimo protokolas, apsaugantis vartotojus nuo atakų prieš
serverį

Min-Shiang HWANG, Song-Kong CHONG, Hsia-Hung OU

Interneto saugumui svarbi grėsmė yra ataka prieš serverio išteklius, kuri sumažina aptarnavimo ko-

kybę arba net laikinai neleidžia vartotojui naudotis serverio paslaugomis. Prieš šias atakas kovoti

yra sunku, nes jos nepriklauso nuo kompiuterinės sistemos parametrų. Buvo pasiūlyta keletas ap-

saugos būdų nuo šių atakų. Neseniai Aura ir kt. kovai su tokiomis atakomis pasiūlė autentifikavimo

protokolą, tačiau šis protokolas negarantuoja, kad visi vartotojai turės pakankamai laiko apsiginti

nuo atakos, o kai kurių vartotojų serveris netgi neaptarnaus. Straipsnyje pasiūlytas paprastas šios

problemos sprendimas ir jį įgyvendinantis autentifikavimo protokolas.


