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Abstract. Heronian mean (HM) has the characteristic of capturing the correlations of the aggregated
arguments and the neutrosophic set can express the incomplete, indeterminate and inconsistent in-
formation, in this paper, we applied the Heronian mean to the neutrosophic set, and proposed some
Heronian mean operators. Firstly, we presented some operational laws and their properties of single
valued neutrosophic numbers (SVNNs), and analyzed the shortcomings of the existing weighted
HM operators which have not idempotency, then we propose the improved generalized weighted
Heronian mean (IGWHM) operator and improved generalized weighted geometric Heronian mean
(IGWGHM) operator based on crisp numbers, and prove that they can satisfy some desirable proper-
ties, such as reducibility, idempotency, monotonicity and boundedness Further, we proposed the sin-
gle valued neutrosophic number improved generalized weighted Heronian mean (NNIGWHM) op-
erator and single valued the neutrosophic number improved generalized weighted geometric Hero-
nian mean (NNIGWGHM) operator, and some desirable properties and special cases of them are
discussed. Moreover, with respect to multiple attribute group decision making (MAGDM) prob-
lems in which attribute values take the form of SVNNs, the decision making approaches based on
the proposed operators are developed. Finally, an application example has been given to show the
decision making steps and to discuss the influence of different parameter values on the decision-
making results.

Key words: multiple attribute group decision making (MAGDM), neutrosophic set, Heronian mean,
geometric Heronian mean, the generalized Heronian mean (GHM) operator.

1. Introduction

Multiple attribute decision group making (MAGDM) problems widely exist in the fields
of management, economy, military and engineering techniques. Because of the complex-
ity of object things and fuzziness of human thinking, the attribute values involved in the
decision problems are often incomplete, indeterminate and inconsistent. With respect
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to the fuzzy information, Zadeh (1965) firstly proposed the fuzzy set theory to process
this kind of information. On the basis of fuzzy set theory, Atanassov (1986, 1989) pro-
posed the intuitionistic fuzzy set (IFS) by adding a non-membership function to over-
come the shortcoming in which fuzzy set only has a membership function. The intu-
itionistic fuzzy set is composed of the membership (or called truth-membership) TA(x)

and non-membership (or called falsity-membership) FA(x), and satisfies the conditions
TA(x), FA(x) ∈ [0,1] and 0 6 TA(x) + FA(x) 6 1. However, IFSs can only handle in-
complete information not the indeterminate information and inconsistent information. In
IFSs, the indeterminacy (or called Hesitation degree) is 1 − TA(x) − FA(x) by default.
Further, Smarandache (1999) proposed the neutrosophic set (NS) by adding an indepen-
dent indeterminacy-membership, i.e., NS is composed of the truth-membership TA(x),
falsity-membership FA(x) and indeterminacy-membershipIA(x). Obviously, NS is a gen-
eralization of FS and IFSs. In NS, the indeterminacy is quantified explicitly, and truth-
membership, indeterminacy membership, and false-membership are completely indepen-
dent. Recently, NSs have attracted the wide concerns. Wang et al. (2005b) further pro-
posed a single valued neutrosophic set (SVNS) by changing to the conditionsTA(x),IA(x),
FA(x) ∈ [0,1], and 0 6 TA(x)+ IA(x) +FA(x)6 3. Obviously, the SVNS is an instance
of the neutrosophic set, and SVNSs can easier apply in scientific and engineering prob-
lems than NSs since neutrosophic components T , I , F in NSs are nonstandard interval
]0,1[ and these components T , I , F in SVNSs are standard interval [0,1]. Similar to
extension from IFS to interval-valued intuitionistic fuzzy set (IVIFS) (Atanassov, 1994;
Atanassov and Gargov, 1989), Wang et al. (2005a) gave the definition of the interval neu-
trosophic sets (INSs) in which the truth-membership, indeterminacy-membership, and
false-membership were extended to interval numbers, and various properties of INSs were
discussed. Ye (2014a) defined the similarity measures between INSs on the basis of the
Hamming and Euclidean distances, and based on the similarity measures, a multi-criteria
decision-making method was proposed.

The information aggregation operators are an interesting research topic, and have been
widely applied in MAGDM problems (Liu, 2013, 2014; Liu and Jin, 2012; Liu and Wang,
2014; Liu and Yu, 2014; Liu et al., 2014). In general, they are divided into two types, i.e.,
arithmetic aggregation operators and geometric aggregation operators. Xu (2007), Xu and
Yager (2006) proposed some arithmetic aggregation operators and geometric aggregation
operators for intuitionistic fuzzy information; however, these operators cannot consider
the correlations of the aggregated arguments. Heronian mean (HM) operator is an impor-
tant aggregation operator which has the characteristic of capturing the correlations of the
aggregated arguments. Beliakov et al. (2007) had firstly proved that Heronian mean was an
aggregation operator, but he did not do further researches. Sykora (2009a, 2009b) further
extended to the generalized Heronian means, and discussed two special cases of them.
Yu and Wu (2012) extended Heronian mean, which can only deal with crisp numbers,
to process intuitionistic fuzzy numbers, and proposed a generalized interval-valued intu-
itionistic fuzzy Heronian mean (GIIFHM) and a generalized interval-valued intuitionistic
fuzzy weighted Heronian mean (GIIFWHM). However, the GIIFWHM has not idempo-
tency and reducibility which seem to be counterintuitive. Liu and Pei (2012) extended
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HM to the generalized Heronian OWA operator, which were similar to Bonferroni mean
operator and BON-OWA operator which are originally proposed by Bonferroni (1950)
and Yager (2009). Yu (2013) proposed some intuitionistic fuzzy aggregation operators
based on HM, including the intuitionistic fuzzy geometric Heronian mean (IFGHM) oper-
ator and the intuitionistic fuzzy geometric weighed Heronian mean (IFGWHM) operator.
Similarly, IFGWHM operator has also not reducibility and idempotency.

As mentioned above, in the real decision making problems, the interactions phenom-
ena among the attribute values commonly exists. Because Heronian mean operator can
deal with the interactions among the attribute values and the SVNNs can easier express
the incomplete, indeterminate and inconsistent information. Therefore, in this paper, we
will extend the Heronian mean to SVNNs, and propose some Heronian mean operators for
SVNNs, including the improved generalized weighted Heronian mean (IGWHM) opera-
tor and generalized weighted geometric Heronian mean (IGWGHM) operator which can
satisfy some desirable properties, such as reducibility, idempotency, monotonicity and
boundedness, then applies them to multi-attribute group decision-making problems.

To do this, the structure of this paper is shown as follows. In Section 2, we briefly
review some basic concepts and operational rules of SVNNs, and on the basis of analyz-
ing the shortcoming of the generalized weighted Heronian mean (GWHM) operator and
the generalized weighted geometric Heronian mean (GWGHM) operator, we propose the
improved generalized weighted Heronian mean (IGWHM) operator and the improved gen-
eralized weighted geometric Heronian mean (IGWGHM) operator. Section 3 will extend
IGWHM and IGWGHM operators to SVNNS, and proposes the neutrosophic number im-
proved generalized weighted Heronian mean (NNIGWHM) operator and the neutrosophic
number improved generalized weighted geometric Heronian mean (NNIGWGHM) oper-
ator. In Section 4, we develop the decision making methods for multi-criteria group de-
cision making based on the proposed operators. Section 5 gives an example to illustrate
the decision steps and discusses the influence of different parameters in these operators
on the decision-making results. In Section 6, we give the conclusions and future research
directions.

2. Preliminaries

2.1. The Single Valued Neutrosophic Set

Definition 1. (See Wang et al., 2005b.) Let X be a universe of discourse, with a generic
element in X denoted by x . A single valued neutrosophic setA inX is

A =
{
x
(
TA(x), IA(x),FA(x)

)∣∣x ∈ X
}

(1)

where, TA is the truth-membership function, IA is the indeterminacy-membership func-
tion, and FA is the falsity-membership function. For each point x in X, we have TA(x),
IA(x), FA(x) ∈ [0,1], and 0 6 TA(x) + IA(x) + FA(x)6 3.



88 Y. Li et al.

For convenience, we can simply use x = (Tx, Ix ,Fx) to represent an element x in
SVNS, and the element x can be called a single valued neutrosophic number (SVNN).

In order to compare two SVNNs, Smarandache and Vladareanu (2011) gave the defi-
nition of the partial order relationship on the neutrosophic numbers shown as follows.

Definition 2. (See Smarandache and Vladareanu, 2011.) Suppose x = (T1, I1,F1) and
y = (T2, I2,F2) are two SVNNs, iff (if and only if) T1 6 T2, I1 > I2, F1 > F2 then x 6 y .

Obviously, in real applications, it is very difficult to meet the above conditions for
many cases. With respect to these, Ye (2014b) proposed a comparison method based on
the cosine similarity measure for a SVNN x = (T , I,F ) to ideal solution (1,0,0), and
gave the definition of the cosine similarity S(x) = T√

T 2+I 2+F 2
.

Definition 3. (See Ye, 2014b.) Suppose x = (T1, I1,F1) and y = (T2, I2,F2) are two
SVNNs, if S(x) 6 S(y), then x 6 y .

Definition 4. Let x = (T1, I1,F1) and y = (T2, I2,F2) be two SVNNs, then the opera-
tional laws are defined as follows.

(1) The complement of x is x = (F1,1 − I1, T1), (2)

(2) x ⊕ y = (T1 + T2 − T1T2, I1I2,F1F2), (3)

(3) x ⊗ y = (T1T2, I1 + I2 − I1I2,F1 + F2 − F1F2), (4)

(4) nx =
(
1 − (1 − T1)

n, (I1)
n, (F1)

n
)
, n > 0, (5)

(5) xn =
(
(T1)

n,1 − (1 − I1)
n,1 − (1 − F1)

n
)
, n > 0. (6)

Theorem 1. Let x = (T1, I1,F1) and y = (T2, I2,F2) be two SVNNs, and η,η1, η2 > 0,

then we have

(1) x ⊕ y = y ⊕ x, (7)

(2) x ⊗ y = y ⊗ x, (8)

(3) η(x ⊕ y) = ηx ⊕ ηy, (9)

(4) η1x ⊕ η2x = (η1 + η2)x, (10)

(5) xη ⊗ yη = (x ⊗ y)η, (11)

(6) xη1 ⊗ xη2 = xη1+η2 . (12)

2.2. Heronian Mean (HM) Operator

Heronian mean (HM) operator, which can capture the interrelationship of the individual
arguments, was defined as follows (Liu and Pei, 2012; Sykora, 2009a).
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Definition 5. (See Liu and Pei, 2012; Sykora, 2009a.) A HM operator of dimension n is
a mapping HM : In → I . Such that,

HM(x1, x2, . . . , xn) =
2

n(n + 1)

n∑

i=1

n∑

j=i

√
xixj , (13)

where I = [0,1]. Then the function HM is called Heronian mean (HM) operator.

Definition 6. (See Liu and Pei, 2012; Sykora, 2009a.) A GHM operator of dimension n

is a mapping GHM : In → I . Such that,

GHM(x1, x2, . . . , xn) =

(
2

n(n + 1)

n∑

i=1

n∑

j=i

x
p

i x
q

j

) 1

p+q

, (14)

where p,q > 0 and I = [0,1]. Then the function GHMp,q is called generalized Heronian
mean (GHM) operator.

It is easy to prove that the GHM operator has the following properties (Liu and Pei,
2012).

Theorem 2 (Idempotency). Let xj = x for all j = 1,2, . . . , n, then GHMp,q(x1, x2,

. . . , xn) = x .

Theorem 3 (Monotonicity). Let (x1, x2, . . . , xn) and (y1, y2, . . . , yn) be two collections

of the nonnegative numbers, if xj 6 yj for all j = 1,2, . . . , n, then GHMp,q(x1, x2,

. . . , xn)6 GHMp,q(y1, y2, . . . , yn).

Theorem 4 (Bounded). GHM operator lies between the max and min operators, i.e.

MIN(x1, x2, . . . , xn)6 GHMp,q(x1, x2, . . . , xn)6 MAX(x1, x2, . . . , xn).

Since the HM and GHM operators only consider the interrelationship of the input ar-
guments and don’t take their own weights into account. In the following, we will introduce
another Heronian mean operator which is called the weighted generalized Heronian mean
(WGHM) operator to overcome this shortcoming.

Yu and Wu (2012) proposed the generalized weighted Heronian mean (GWHM)
operator shown as follows.

Definition 7. (See Yu and Wu, 2012.) Let p,q > 0, and xi (i = 1,2, . . . , n) be a
collection of nonnegative numbers. W = (w1,w2, . . . ,wn)

T is the weight vector of xi

(i = 1,2, . . . , n), and satisfies wi > 0,
∑n

i=1
wi = 1. If

GWHMp,q(x1, x2, . . . , xn) =
(

2

n(n + 1)

n∑

i=1

n∑

j=i

(wixi)
p
(
wjx

q
j

)
) 1

p+q

(15)

then GWHMp,q is called a generalized weighted Heronian mean (GWHM) operator.
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Obviously, GWHMp,q operator has not the idempotency. It seems to be counterin-
tuitive. Liu (2012) propose an improved generalized weighted Heronian mean (IGWHM)
operator to overcome this drawback.

Definition 8. (See Liu, 2012.) Let p,q > 0, and xi (i = 1,2, . . . , n) be a collection of
nonnegative numbers. W = (w1,w2, . . . ,wn)

T is the weight vector of xi (i = 1,2, . . . , n),
and satisfies wi > 0,

∑n
i=1

wi = 1. If

IGWHMp,q(x1, x2, . . . , xn) =
(∑n

i=1

∑n
j=i wiwjx

p

i x
q

j

) 1

p+q

(∑n
i=1

∑n
j=i wiwj

) 1

p+q

(16)

then IGWHMp,q is called the improved generalized weighted Heronian mean (IGWHM)
operator.

The IGWHM operator has the properties, such as idempotency, monotonicity and
boundedness (Liu, 2012).

Theorem 5 (Idempotency). Let xj = x , j = 1,2, . . . , n then

IGWHMp,q(x1, x2, . . . , xn) = x. (17)

Theorem 6 (Monotonicity). Let xi (i = 1,2, . . . , n) and yi (i = 1,2, . . . , n) be two col-

lections of nonnegative numbers. If xi > yi for all i , then

IGWHMp,q(x1, x2, . . . , xn)> IGWHMp,q(y1, y2, . . . , yn). (18)

Theorem 7 (Boundedness). The IGWHMp,q operator lies between the max and min

operators, i.e.,

min(x1, x2, . . . , xn)6 IGWHMp,q(x1, x2, . . . , xn)6 max(x1, x2, . . . , xn). (19)

In the following, we can analyze some special cases of the IGWHM operator.

(1) When q = 0, then

IGWHMp,0(x1, x2, . . . , xn) =
(∑n

i=1

∑n
j=i wiwjx

p
i

) 1

p

(∑n
i=1

∑n
j=i wiwj

) 1

p

. (20)

Further, when p = 1, there is

IGWHM1,0(x1, x2, . . . , xn) =
∑n

i=1

∑n
j=i wiwjxi∑n

i=1

∑n
j=i wiwj

. (21)



Some Single Valued Neutrosophic Number Heronian Mean Operators 91

(2) When p = 0, then

IGWHM0,q(x1, x2, . . . , xn) =
(∑n

i=1

∑n
j=i wiwjx

q
j

) 1

q

(∑n
i=1

∑n
j=i wiwj

) 1

q

. (22)

From here, we see that the parameters p and q don’t have the interchangeability.
(3) When p = q = 1, then

IGWHM1,1(x1, x2, . . . , xn) =
(∑n

i=1

∑n
j=i wiwjxixj

) 1

2

(∑n
i=1

∑n
j=i wiwj

) 1

2

. (23)

2.3. The Geometric Heronian Mean (GHM) Operator

Based on HM and GHM operators, Yu (2013) propose the generalized geometric Heronian
mean (GGHM) operator shown as follows.

Definition 9. (See Yu, 2013.) Let p,q > 0, and xi (i = 1,2, . . . , n) be a collection of
nonnegative numbers. If

GGHMp,q(x1, x2, . . . , xn) =
1

p + q

n∏

i=1

n∏

j=i

(pxi + qxj )
2

n(n+1) (24)

then GGHMp,q is called the generalized geometric Heronian mean (GGHM) operator.
Similar to GHM operator, the GGHM operator also only takes the correlations of the

aggregated arguments into account and ignores their own weights. Yu (2013) further pro-
posed the generalized geometric weighted Heronian mean (GGWHM) operator.

Definition 10. (See Yu, 2013.) Let p,q > 0, and xi (i = 1,2, . . . , n) be a collection of
nonnegative numbers. W = (w1,w2, . . . ,wn)

T is the weight vector of xi (i = 1,2, . . . , n)

and satisfies wi > 0,
∑n

i=1
wi = 1. If

GGWHMp,q(x1, x2, . . . , xn) =
1

p + q

n∏

i=1

n∏

j=i

(
(pxi)

wi + (qxj )
wj
) 2

n(n+1) (25)

then GGWHMp,q is called the generalizedgeometric weighted Heronianmean (GGWHM)
operator.

Similarly, the GGWHM operator has not the reducibility and idempotency, and it seem
to be counterintuitive. Further, Liu (2012) proposed the improved generalized geometric
weighted Heronian mean (IGGWHM) operator.

Definition 11. (See Liu, 2012.) Let p,q > 0 , and xi (i = 1,2, . . . , n) be a collection
of nonnegative numbers. W = (w1,w2, . . . ,wn)

T is the weight vector of and satisfies
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wi > 0,
∑n

i=1
wi = 1. If

IGGWHMp,q(x1, x2, . . . , xn) =
1

p + q

n∏

i=1

n∏

j=i

(pxi + qxj )

2(n+1−i)
n(n+1)

wj∑n
k=i

wk (26)

then IGGWHMp,q is called the improved generalized geometric weighted Heronian mean
(IGGWHM) operator.

The IGGWHM has the properties, such as reducibility, idempotency, monotonicity
and boundedness (Liu, 2012).

Theorem 8 (Reducibility). Let W = ( 1

n
, 1

n
, . . . , 1

n
)T then

IGGWHMp,q(x1, x2, . . . , xn) = GGHMp,q(x1, x2, . . . , xn). (27)

Theorem 9 (Idempotency). Let xj = x , j = 1,2, . . . , n, then

IGGWHMp,q(x1, x2, . . . , xn) = x. (28)

Theorem 10 (Monotonicity). Let xi (i = 1,2, . . . , n) and yi (i = 1,2, . . . , n) be two

collections of nonnegative numbers. If xi > yi for all i , then

IGGWHMp,q(x1, x2, . . . , xn)> IGGWHMp,q(y1, y2, . . . , yn). (29)

Theorem 11 (Boundedness). The IGGWHMp,q operator lies between the max and min

operators, i.e.,

min(x1, x2, . . . , xn)6 IGGWHMp,q(x1, x2, . . . , xn)6 max(x1, x2, . . . , xn). (30)

In the following, we can analyze some special cases of the IGGWHM operator.

(1) When q = 0, then

IGGWHMp,0(x1, x2, . . . , xn) =
n∏

i=1

(xi)
2(n+1−i)
n(n+1) . (31)

From here, we see that WGGWHMp,0 does not have any relationship with p.
(2) When p = 0, then

IGGWHM0,q(x1, x2, . . . , xn) =
n∏

i=1

n∏

j=i

(xj )

2(n+1−i)
n(n+1)

wj∑n
k=i

wk . (32)

Similarly, IGGWHM0,q does not have any relationship with q .
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(3) When p = q = 1, then

IGGWHM1,1(x1, x2, . . . , xn) =
1

2

n∏

i=1

n∏

j=i

(xi + xj )

2(n+1−i)
n(n+1)

wj∑n
k=i

wk . (33)

3. Some Heronian Mean Operators Based on the Single Valued Neutrosophic

Number

As mentioned above, the IGWHM and IGGWHM operators have better properties than
GWHM and GGWHM ones. However, they can only aggregate the input arguments which
take the form of crisp numbers, and cannot aggregate the single valued neutrosophic num-
bers. In this section, we will extend the IGWHM and IGGWHM operators to aggregate
the single valued neutrosophic numbers, and propose a single valued neutrosophic num-
ber improved generalized weighted Heronian mean (NNIGWHM) operator and a single
valued neutrosophic number improved generalized geometric weighted Heronian mean
(NNIGGWHM) operator which can be described as follows.

3.1. The NNIGWHM Operator

Definition 12. Let p,q > 0, and ãj = (Tj , Ij ,Fj ) (j = 1,2, . . . , n) be a collec-
tion of SVNNs with the weight vector W = (w1,w2, . . . ,wn)

T such that wj > 0 and∑n
j=1

wj = 1, then a single valued neutrosophic number imprvoed generalized weighted
Heronian mean (NNIGWHM) operator of dimension n is a mapping NNIGWHM:
�n → �, and has

NNIGWHMp,q (̃a1, ã2, . . . , ãn)

=

(
1∑n

i=1

∑n
j=i wiwj

n⊕

i=1

n⊕

j=i

(
wiwj ã

p

i ⊗ ã
q

j

)
) 1

p+q

, (34)

where � is the set of all SVNNs.
Based on the operational rules of the SVNNs, we can derive the result shown as

Theorem 12.

Theorem 12. Let p,q > 0, and ãj = (Tj , Ij ,Fj ) (j = 1,2, . . . , n) be a collection

of SVNNs with the weight vector W = (w1,w2, . . . ,wn)
T such that wj > 0 and∑n

j=1
wj = 1, then, the result aggregated from Definition 12 is still a SVNN, and even

NNIGWHMp,q (̃a1, ã2, . . . , ãn)

=
((

1 −
(

n∏

i=1

n∏

j=i

(
1 − T

p
i T

q
j

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,
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1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − Ii)

p(1 − Ij )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,

1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − Fi)

p(1 − Fj )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q
)

. (35)

Proof. Since

ã
p
i =

(
T

p
i ,1 − (1 − Ii)

p,1 − (1 − Fi)
p
)
,

ã
q
j =

(
T

q
j ,1 − (1 − Ij )

q ,1 − (1 − Fj )
q
)
,

ã
p
i ã

q
j =

(
T

p
i T

q
j ,1 − (1 − Ii)

p(1 − Ij )
q ,1 − (1 − Fi)

p(1 − Fj )
q
)

and

wiwj ã
p
i ⊗ ã

q
j =

(
1 −

(
1 − T

p
i T

q
j

)wiwj ,
(
1 − (1 − Ii)

p(1 − Ij )
q
)wiwj ,

(
1 − (1 − Fi)

p(1 − Fj )
q
)wiwj

)

then

n⊕

i=1

n⊕

j=i

(
wiwj ã

p

i ⊗ ã
q

j

)

=

(
1 −

n∏

i=1

n∏

j=i

(
1 − T

p
i T

q
j

)wiwj ,

n∏

i=1

n∏

j=i

(
1 − (1 − Ii)

p(1 − Ij )
q
)wiwj ,

n∏

i=1

n∏

j=i

1 − (1 − Fi)
p(1 − Fj )

q

)wiwj

.

Further

1∑n
i=1

∑n
j=i wiwj

n⊕

i=1

n⊕

j=i

(
wiwj ã

p
i ⊗ ã

q
j

)

=
(

1 −
(

n∏

i=1

n∏

j=i

(
1 − T

p
i T

q
j

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

,

(
n∏

i=1

n∏

j=i

(
1 − (1 − Ii)

p(1 − Ij )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

,

(
n∏

i=1

n∏

j=i

(
1 − (1 − Fi)

p(1 − Fj )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

)
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and

(
1∑n

i=1

∑n
j=i wiwj

n⊕

i=1

n⊕

j=i

(
wiwj ã

p

i ⊗ ã
q

j

)
) 1

p+q

=

((
1 −

(
n∏

i=1

n∏

j=i

(
1 − T

p

i T
q

j

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,

1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − Ii)

p(1 − Ij )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,

1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − Fi)

p(1 − Fj )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q
)

so,

NNIGWHMp,q (̃a1, ã2, . . . , ãn)

=
(

1∑n
i=1

∑n
j=i wiwj

n⊕

i=1

n⊕

j=1

(
wiwj ã

p
i ⊗ ã

q
j

)
) 1

p+q

=
((

1 −
(

n∏

i=1

n∏

j=i

(
1 − T

p
i T

q
j

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,

1 −
(

1 −
(

n∏

i=1

n∏

j=i

(
1 − (1 − Ii)

p(1 − Ij )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,

1 −
(

1 −
(

n∏

i=1

n∏

j=i

(
1 − (1 − Fi)

p(1 − Fj )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q
)

which completes the proof of Theorem 12. �

Moreover, the NNIGWHM operator also has the following properties.

Theorem 13 (Idempotency). Let ãj = (T , I,F ) (j = 1,2, . . . , n), then

NNIGWHMp,q (̃a1, ã2, . . . , ãn) = (T , I,F ). (36)

Proof. Since ãj = (T , I,F ) (j = 1,2, . . . , n), then according to (35), we have

NNIGWHMp,q (̃a1, ã2, . . . , ãn)

=
((

1 −
(

n∏

i=1

n∏

j=i

(
1 − T pT q

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,
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1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − I)p(1 − I)q

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,

1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − F)p(1 − F)q

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q
)

=

((
1 −

(
n∏

i=1

n∏

j=i

(
1 − T p+q

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,

1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − I)p+q

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,

1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − F)p+q

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q
)

=
((

1 −
((

1 − T p+q
)∑n

i=1

∑n
j=i wiwj

) 1∑n
i=1

∑n
j=i

wiwj
) 1

p+q ,

1 −
(
1 −

((
1 − (1 − I)p+q

)∑n
i=1

∑n
j=i wiwj

) 1∑n
i=1

∑n
j=i

wiwj
) 1

p+q ,

1 −
(
1 −

((
1 − (1 − F)p+q

)∑n
i=1

∑n
j=i wiwj

) 1∑n
i=1

∑n
j=i

wiwj
) 1

p+q
)

=
((

1 −
(
1 − T p+q

)) 1

p+q ,1 −
(
1 −

(
1 − (1 − I)p+q

)) 1

p+q ,

1 −
(
1 − (1 − (1 − F)p+q)

) 1

p+q
)

=
((

T p+q
) 1

p+q ,1 −
(
(1 − I)p+q

) 1

p+q ,1 −
(
(1 − F)p+q

) 1

p+q
)

= (T , I,F )

which completes the proof of Theorem 13. �

Theorem 14 (Monotonicity). Let ãj = (Tj , Ij ,Fj ) and ã′
j = (T ′

j , I
′
j ,F

′
j ) (j =

1,2, . . . , n) be two collections of SVNNs. If ãj > ã′
j for all j (suppose Tj > T ′

j , Ij 6 I ′
j

and Fj 6 F ′
j ), then

NNIGWHMp,q (̃a1, ã2, . . . , ãn)> NNIGWHMp,q
(
ã′

1
, ã′

2
, . . . , ã′

n

)
. (37)

Proof. (1) Since Tj > T ′
j for all j , and p,q > 0, then we have

T
p
i T

q
j > T

′p
i T

′q
j , 1 − T

p
i T

q
j 6 1 − T

′p
i T

′q
j ,
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n∏

i=1

n∏

j=i

(
1 − T

p
i T

q
j

)wiwj
6

n∏

i=1

n∏

j=i

(
1 − T

′p
i T

′q
j

)wiwj

and

(
n∏

i=1

n∏

j=i

(
1 − T

p
i T

q
j

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

6

(
n∏

i=1

n∏

j=i

(
1 − T

′p
i T

′q
j

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

,

1 −
(

n∏

i=1

n∏

j=i

(
1 − T

p
i T

q
j

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

> 1 −
(

n∏

i=1

n∏

j=i

(
1 − T

′p
i T

′q
j

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

so

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − T

p

i T
q

j

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

>

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − T

′p
i T

′q
j

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

.

(2) Since Ij 6 I ′
j for all j , and p,q > 0, then we have

(1 − Ii)
p >

(
1 − I ′

i

)p

and

(1 − Ij )
q >

(
1 − I ′

j

)q

then

(1 − Ii)
p(1 − Ij )

q >
(
1 − I ′

i

)p(
1 − I ′

j

)q
,

1 − (1 − Ii)
p(1 − Ij )

q 6 1 −
(
1 − I ′

i

)p(
1 − I ′

j

)q
,

n∏

i=1

n∏

j=i

(
1 − (1 − Ii)

p(1 − Ij )
q
)wiwj

6

n∏

i=1

n∏

j=i

(
1 −

(
1 − I ′

i

)p(
1 − I ′

j

)q)wiwj ,
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(
n∏

i=1

n∏

j=i

(
1 − (1 − Ii)

p(1 − Ij )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

6

(
n∏

i=1

n∏

j=i

(
1 −

(
1 − I ′

i

)p(
1 − I ′

j

)q)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

,

1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − Ii)

p(1 − Ij )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

> 1 −

(
n∏

i=1

n∏

j=i

(
1 −

(
1 − I ′

i

)p(
1 − I ′

j

)q)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

,

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − Ii)

p(1 − Ij )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

>

(
1 −

(
n∏

i=1

n∏

j=i

(
1 −

(
1 − I ′

i

)p(
1 − I ′

j

)q
V
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,

so

1 −
(

1 −
(

n∏

i=1

n∏

j=i

(
1 − (1 − Ii)

p(1 − Ij )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

6 1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 −

(
1 − I ′

i

)p(
1 − I ′

j

)q)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

.

(3) Similar to (2), we can prove

1 −
(

1 −
(

n∏

i=1

n∏

j=i

(
1 − (1 − Fi)

p(1 − Fj )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

6 1 −
(

1 −
(

n∏

i=1

n∏

j=i

(
1 −

(
1 − F ′

i

)p(
1 − F ′

j

)q)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

.

According to (1)–(3), we can get

((
1 −

(
n∏

i=1

n∏

j=i

(
1 − T

p
i T

q
j

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,

1 −
(

1 −
(

n∏

i=1

n∏

j=i

(
1 − (1 − Ii)

p(1 − Ij )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,
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1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − Fi)

p(1 − Fj )
q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q
)

>

((
1 −

(
n∏

i=1

n∏

j=i

(
1 − T

′p
i T

′q
j

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,

1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 −

(
1 − I ′

i

)p(
1 − I ′

j

)q)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q

,

1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 −

(
1 − F ′

i

)p(
1 − F ′

j

)q)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p+q
)

i.e., NNIGWHMp,q (̃a1, ã2, . . . , ãn) > NNIGWHMp,q (̃a′
1
, ã′

2
, . . . , ã′

n) which completes
the proof of Theorem 14. �

Theorem 15 (Boundedness). Let ãj = (Tj , Ij ,Fj ) (j = 1,2, . . . , n) be a collection of

SVNNs, and

ã− =
(

min(Tj ),max(Ij ),max(Fj )
)
, ã+ =

(
max(Tj ),min(Ij ),min(Fj )

)

then

ã− 6 NNIGWHMp,q (̃a1, ã2, . . . , ãn)6 ã+. (38)

Proof. Since ãj > ã−, then based on Theorems 13 and 14, we have

NNIGWHMp,q (̃a1, ã2, . . . , ãn)> NNIGWHMp,q (̃a−, ã−, . . . , ã−) = ã−.

Likewise, we can get

NNIGWHMp,q (̃a1, ã2, . . . , ãn)6 NNIGWHMp,q
(
ã+, ã+, . . . , ã+)= ã+.

Then

ã− 6 NNIGWHMp,q (̃a1, ã2, . . . , ãn)6 ã+

which completes the proof of Theorem 15. �

In the following, we will discuss some specials of the NNIGWHM with respect to the
parameters p and q .

(1) When p = 0, then

NNIGWHM0,q (̃a1, ã2, . . . , ãn)

=
((

1 −
(

n∏

i=1

n∏

j=i

(
1 − T

q
j

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

q

,
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1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − Ij )

q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

q

,

1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − Fj )

q
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

q
)

. (39)

(2) When q = 0, then

NNIGWHMp,0(̃a1, ã2, . . . , ãn)

=
((

1 −
(

n∏

i=1

n∏

j=i

(
1 − T

p
i

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p

,

1 −
(

1 −
(

n∏

i=1

n∏

j=i

(
1 − (1 − Ii)

p
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p

,

1 −
(

1 −
(

n∏

i=1

n∏

j=i

(
1 − (1 − Fi)

p
)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

p
)

. (40)

(3) When p = q = 1, then

NNIGWHM1,1(̃a1, ã2, . . . , ãn)

=

((
1 −

(
n∏

i=1

n∏

j=i

(1 − TiTj )
wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

2

,

1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − Ii)(1 − Ij )

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

2

,

1 −

(
1 −

(
n∏

i=1

n∏

j=i

(
1 − (1 − Fi)(1 − Fj )

)wiwj

) 1∑n
i=1

∑n
j=i

wiwj

) 1

2
)

. (41)

3.2. NNIGWGHM Operator

Definition 13. Let p,q > 0, and ãj = (Tj , Ij ,Fj ) (j = 1,2, . . . , n) be a collec-
tion of SVNNs with the weight vector W = (w1,w2, . . . ,wn)

T such that wj > 0

and
∑n

j=1
wj = 1, then a single valued neutrosophic number imprvoed generalized

weighted geometric Heronian mean (NNIGWGHM) operator of dimension n is a map-
ping NNIGWGHM: �n → �, and has

NNIGWGHMp,q (̃a1, ã2, . . . , ãn) =
1

p + q

n⊗

i=1

n⊗

j=i

(pãi ⊕ ãj )

2(n+1−i)
n(n+1)

wj∑n
k=i

wk

(42)

where � is the set of all SVNNs.
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Based on the operational rules of the SVNNs, we have the following Theorem 16.

Theorem 16. Let p,q > 0, and ãj = (Tj , Ij ,Fj ) (j = 1,2, . . . , n) be a collection

of SVNNs with the weight vector W = (w1,w2, . . . ,wn)
T such that wj > 0 and∑n

j=1
wj = 1, then the aggregated value by (42) can be expressed as

NNIGWGHMp,q (̃a1, ã2, . . . , ãn)

=

(
1 −

(
1 −

n∏

i=1

n∏

j=i

(
1 −

(
1 − T

p
i

)(
1 − T

q
j

)) 2(n+1−i)
n(n+1)

wj∑n
k=i

wk

) 1

p+q

,

(
1 −

n∏

i=1

n∏

j=i

(
1 − I

p
i I

q
j

) 2(n+1−i)
n(n+1)

wj∑n
k=i

wk

) 1

p+q

,

(
1 −

n∏

i=1

n∏

j=i

(
1 − F

p
i F

q
j

) 2(n+1−i)
n(n+1)

wj∑n
k=i

wk

) 1

p+q
)

. (43)

Similar to the proof of Theorem 12, the proof of Theorem 12 is omitted.
Moreover, similar to the proofs of Theorems 13–15, it is easy to prove that the

NNIGWGHM operator also has the following properties.

Theorem 17 (Reducibility). Let W =
(

1

n
, 1

n
, . . . , 1

n

)T
, then

NNIGWGHMp,q (̃a1, ã2, . . . , ãn) = NNGGHMp,q (̃a1, ã2, . . . , ãn). (44)

Theorem 18 (Idempotency). Let ãj = (T , I,F ) (j = 1,2, . . . , n), then

NNIGWGHMp,q (̃a1, ã2, . . . , ãn) = (T , I,F ). (45)

Theorem 19 (Monotonicity). Let ãj = (Tj , Ij ,Fj ) and ã′
j = (T ′

j , I
′
j ,F

′
j ) (j =

1,2, . . . , n) be two collections of SVNNs. If ãj > ã′
j for all j (suppose Tj > T ′

j , Ij 6 I ′
j

and Fj 6 F ′
j ), then

NNIGWGHMp,q (̃a1, ã2, . . . , ãn) > NNIGWGHMp,q (̃a′
1
, ã′

2
, . . . , ã′

n). (46)

Theorem 20 (Boundedness). Let ãj = (T , I,F ) (j = 1,2, . . . , n) be a collection of

SVNNs, and

ã− =
(

min(Tj ),max(Ij ),max(Fj )
)
, ã+ =

(
max(Tj ),min(Ij ),min(Fj )

)

then

ã−
6 NNIGWHMp,q (̃a1, ã2, . . . , ãn)6 ã+. (47)
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In the following, we will discuss some specials of the NNIGWGHM with respect to
the parameters p and q .

(1) When p = 0, then

NNIGWGHM0,q (̃a1, ã2, . . . , ãn)

=

(
1 −

(
1 −

n∏

i=1

n∏

j=i

(
1 − (1 − Tj )

q
) 2(n+1−i)

n(n+1)

wj∑n
k=i

wk

) 1

q

,

(
1 −

n∏

i=1

n∏

j=i

(
1 − I

q
j

) 2(n+1−i)
n(n+1)

wj∑n
k=i

wk

) 1

q

,

(
1 −

n∏

i=1

n∏

j=i

(
1 − F

q
j

) 2(n+1−i)
n(n+1)

wj∑n
k=i

wk

) 1

q
)

. (48)

(2) When q = 0, then

NNIGWGHMp,0(̃a1, ã2, . . . , ãn)

=
(

1 −
(

1 −
n∏

i=1

n∏

j=i

(
1 − (1 − Ti)

p
) 2(n+1−i)

n(n+1)

) 1

p

,

(
1 −

n∏

i=1

(
1 − I

q
i

) 2(n+1−i)
n(n+1)

) 1

p

,

(
1 −

n∏

i=1

(
1 − F

q
i

) 2(n+1−i)
n(n+1)

) 1

p
)

. (49)

Obviously, when q = 0, NNIGWGHMp,0 does not have any relationship with w.
In addition, the parameters p and q don’t have the interchangeability.
(3) When p = q = 1, then

NNIGWGHM1,1(̃a1, ã2, . . . , ãn)

=

(
1 −

(
1 −

n∏

i=1

n∏

j=i

(
1 − (1 − Ti)(1 − Tj )

) 2(n+1−i)
n(n+1)

wj∑n
k=i

wk

) 1

2

,

(
1 −

n∏

i=1

n∏

j=i

(1 − IiIj )

2(n+1−i)
n(n+1)

wj∑n
k=i

wk

) 1

2

,

(
1 −

n∏

i=1

n∏

j=i

(
1 − FiFj

) 2(n+1−i)
n(n+1)

wj∑n
k=i

wk

) 1

2
)

. (50)



Some Single Valued Neutrosophic Number Heronian Mean Operators 103

4. The Approach to Multiple Attribute Group Decision Making with SVNNs

In this section, we shall propose the approach to multiple attribute group decision making
with SVNNs by NNIGWHM operator or NNIGWGHM operator.

Consider a multiple attribute group decision making problem with SVNNs. Let
A = {A1,A2, . . . ,Am} be the collection of alternatives, C = {C1,C2, . . . ,Cn} be the
collection of attributes, and E = {e1, e2, . . . , eλ} be the collection of decision makers.
Suppose that rk

ij = (T k
ij , I

k
ij ,F

k
ij ) is an attribute value given by the decision maker ek

for the alternative Ai with respect to the attribute Cj which is expressed by a SVNN,
w = (w1,w2, . . . ,wn) is the weight vector of attribute set C = {C1,C2, . . . ,Cn}, and
wj ∈ [0,1],

∑n
j=1

wj = 1. Let ω = (ω1,ω2, . . . ,ωλ) be the weight vector of decision

makers {e1, e2, . . . , eλ}, and ωk ∈ [0,1],
∑λ

k=1
ωk = 1. Then we use the attribute weights,

the decision makers’ weights, and the attribute values to rank the order of the alternatives.
The method involves the following steps:
Step 1: Utilize the NNIGWHM operator

rk
i =

(
T k

i , I k
i ,F k

i

)
= NNIGWHM

(
rk
i1, r

k
i2, . . . , r

k
in

)
(51)

or NNIGWGHM operator

rk
i =

(
T k

i , I k
i ,F k

i

)
= NNIGWGHM

(
rk
i1, r

k
i2, . . . , r

k
in

)
(52)

to derive the comprehensive values rk
i (i = 1,2, . . . ,m; k = 1,2, . . . , λ) of each decision

maker.
Step 2: Utilize the NNIGWHM operator

ri = (Ti , Ii ,Fi) = NNIGWHM
(
r1

i , r2

i , . . . , rλ
i

)
(53)

or NNIGWGHM operator

ri = (Ti , Ii ,Fi) = NNIGWGHM
(
r1

i , r2

i , . . . , rλ
i

)
(54)

to derive the collective overall values ri (i = 1,2, . . . ,m).
Step 3: Calculate the cosine similarity S(ri) (i = 1,2, . . . ,m) by Definition 3.
Step 4: Rank all the alternatives A = {A1,A2, . . . ,Am} by the cosine similarity S(ri)

(i = 1,2, . . . ,m).
Step 5: End.

5. An Application Example

In order to demonstrate the application of the proposed method to multi-attribute
group decision making problems, in this part, we will cite an example about the air
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Table 1
Air quality data from station e1 .

C1 C2 C3

A1 (0.265,0.350,0.385) (0.330,0.390,0.280) (0.245,0.275,0.480)

A2 (0.345,0.245,0.410) (0.430,0.290,0.280) (0.245,0.375,0.380)

A3 (0.365,0.300,0.335) (0.480,0.315,0.205) (0.340,0.370,0.290)

A4 (0.430,0.300,0.270) (0.460,0.245,0.295) (0.310,0.520,0.170)

Table 2
Air quality data from station e2 .

C1 C2 C3

A1 (0.125,0.470,0.405) (0.220,0.420,0.360) (0.345,0.490,0.165)

A2 (0.355,0.315,0.330) (0.300,0.370,0.330) (0.205,0.630,0.165)

A3 (0.315,0.380,0.305) (0.330,0.565,0.105) (0.280,0.520,0.200)

A4 (0.365,0.365,0.270) (0.355,0.320,0.325) (0.425,0.485,0.090)

Table 3
Air quality data from station e3 .

C1 C2 C3

A1 (0.260,0.425,0.315) (0.220,0.450,0.330) (0.255,0.500,0.245)

A2 (0.270,0.370,0.360) (0.320,0.215,0.465) (0.135,0.575,0.290)

A3 (0.245,0.465,0.290) (0.250,0.570,0.180) (0.175,0.660,0.165)

A4 (0.390,0.340,0.270) (0.305,0.475,0.220) (0.465,0.485,0.050)

quality evaluation (adapted from Yue, 2011). To find out the trends of the air qual-
ity in Guangzhou for the 16th Asian Olympic Games, there are 3 air-quality moni-
toring stations expressed by (e1, e2, e3) to collect the air quality data in Guangzhou
for the Novembers of 2006, 2007, 2008 and 2009. The 3 air-quality monitoring sta-
tions can be seen as decision makers which have weights ω = (0.314,0.355,0.331)T ,
and there are 3 measured indexes, namely, SO2 (C1), NO2 (C2) and PM10 (C3),
and their weight W = (0.40,0.20,0.40)T . The measured values under these in-
dexes from air-quality monitoring stations are shown in Tables 1, 2 and 3, and they
can be expressed by SVNNs (note: the original data take the form of intuitionis-
tic fuzzy numbers, we can get SVNNs by I = 1 − T − F ). Let (A1,A2,A3,A4) =
{November of 2006, November of 2007, November of 2008, November of 2009} be the
set of alternatives, please give the rank of air quality from 2006 to 2009.

5.1. The Evaluation Steps by NNIGWHM Operator

The steps are shown as follows:
(1) Calculate the comprehensive evaluation values rk

i (i = 1,2,3,4; k = 1,2,3) of
each decision maker by formula (51) of the NNIGWHM operator (suppose p = q = 1),
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we can get

r1

1
= (0.269,0.324,0.415), r1

2
= (0.322,0.303,0.390),

r1

3
= (0.376,0.330,0.308), r1

4
= (0.388,0.369,0.226),

r2

1
= (0.240,0.469,0.288), r2

2
= (0.287,0.438,0.253),

r2

3
= (0.303,0.466,0.247), r2

4
= (0.389,0.403,0.183),

r3

1
= (0.251,0.459,0.286), r3

2
= (0.227,0.412,0.335),

r3

3
= (0.218,0.558,0.228), r3

4
= (0.408,0.420,0.149).

(2) Calculate the collective overall values ri (i = 1,2,3,4) by formula (53) of the
NNIGWHM operator (suppose p = q = 1), we can get

r1 = (0.253,0.418,0.360), r2 = (0.279,0.385,0.360),

r3 = (0.300,0.448,0.275), r4 = (0.395,0.398,0.195).

(3) Calculate the cosine similarity S(ri) (i = 1,2,3,4) of the collective overall val-
ues ri (i = 1,2,3,4), we can get

S(r1) = 0.417, S(r2) = 0.468, S(r3) = 0.496, S(r4) = 0.665.

(4) Rank the alternatives.
According to the cosine similarity ri (i = 1,2,3,4), we can rank the alternatives

{A1,A2,A3,A4} shown as follows

A4 ≻ A3 ≻ A2 ≻ A1.

So, the best alternative is A4, i.e., the best air quality in Guangzhou is November of 2009
among the Novembers of 2006, 2007, 2008, and 2009.

5.2. The Evaluation Steps by NNIGWGHM Operator

The steps are shown as follows:
(1) Calculate the comprehensive evaluation values rk

i (i = 1,2,3,4; k = 1,2,3) of
each decision maker by formula (52) of the NNIGWGHM operator (suppose p = q = 1),
we can get

r1

1
= (0.276,0.341,0.390), r1

2
= (0.333,0.303,0.367),

r1

3
= (0.387,0.327,0.289), r1

4
= (0.398,0.368,0.250),

r2

1
= (0.207,0.462,0.329), r2

2
= (0.287,0.452,0.285),

r2

3
= (0.308,0.487,0.231), r2

4
= (0.380,0.394,0.239),
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r3

1
= (0.246,0.457,0.299), r3

2
= (0.234,0.411,0.374),

r3

3
= (0.223,0.564,0.228), r3

4
= (0.385,0.431,0.200).

(2) Calculate the collective overall values ri (i = 1,2,3,4) by formula (54) of the
NNIGWHM operator (suppose p = q = 1), we can get

r1 = (0.243,0.419,0.347), r2 = (0.288,0.390,0.344),

r3 = (0.309,0.461,0.254), r4 = (0.388,0.395,0.233).

(3) Calculate the cosine similarity S(ri) (i = 1,2,3,4) of the collective overall val-
ues ri (i = 1,2,3,4), we can get

S(r1) = 0.408, S(r2) = 0.485, S(r3) = 0.506, S(r4) = 0.646.

(4) Rank the alternatives.
According to the cosine similarity ri (i = 1,2,3,4), we can rank the alternatives

{A1,A2,A3,A4} shown as follows

A4 ≻ A3 ≻ A2 ≻ A1.

So, the best alternative is A4, i.e., the best air quality in Guangzhou is November of
2009 among the Novembers of 2006, 2007, 2008, and 2009.

Obviously, this ranking result is the same as that in Yue (2011). However, the proposed
method can consider the correlations of the aggregated arguments.

5.3. The Influence of the Parameters p and q on Decision Making of this Example

In order to illustrate the influence of the parameters p and q on decision making of this
example, we use the different values p and q in steps 1 and 2 of above methods to rank
the alternatives. The ranking results are shown in Tables 4 and 5.

From Tables 4 and 5, we know parameters p and q can influence the aggregation
result in the NNIGWHM and NNIGWGHM operators. In general, we can take the values
of the two parameters as p = q = 1, which is not only intuitive and simple but also the
correlations of the aggregated arguments can be fully taken into account.

6. Conclusions

The neutrosophic set can be easier and better to express the incomplete, indeterminate and
inconsistent information, and Heronian mean can capture the correlations of the aggre-
gated arguments, in this paper, we applied the Heronian mean to the neutrosophic set, and
proposed some Heronian mean operators based on SVNNs. Further, we applied the pro-
posed operators to multi-attribute group decision making problems, and proposed some
decision making methods. Firstly, with respect to the defects of the existing generalized
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Table 4
Ordering of the alternatives by the different parameters p and q in NNIGWHM operator.

p, q Cosine similarity S(ri) (i = 1,2,3,4) Ranking

p = 0

q = 0.01

S(r1) = 0.428, S(r2) = 0.387

S(r3) = 0.417, S(r4) = 0.665
A4 ≻ A1 ≻ A3 ≻ A2

p = 0

q = 1

S(r1) = 0.436, S(r2) = 0.406

S(r3) = 0.429, S(r4) = 0.670
A4 ≻ A1 ≻ A3 ≻ A2

p = 0

q = 2.1

S(r1) = 0.446, S(r2) = 0.429

S(r3) = 0.445, S(r4) = 0.676
A4 ≻ A1 ≻ A3 ≻ A2

p = 0

q = 2.2

S(r1) = 0.44830, S(r2) = 0.43418

S(r3) = 0.44832, S(r4) = 0.67743
A4 ≻ A3 ≻ A1 ≻ A2

p = 0

q = 10

S(r1) = 0.5272, S(r2) = 0.5817

S(r3) = 0.5821, S(r4) = 0.7297
A4 ≻ A3 ≻ A2 ≻ A1

p = 0.01

q = 0

S(r1) = 0.3911, S(r2) = 0.5168

S(r3) = 0.5482, S(r4) = 0.6764
A4 ≻ A3 ≻ A2 ≻ A1

p = 1

q = 0

S(r1) = 0.4021, S(r2) = 0.5251

S(r3) = 0.5558, S(r4) = 0.6808
A4 ≻ A3 ≻ A2 ≻ A1

p = 10

q = 0

S(r1) = 0.4864, S(r2) = 0.5902

S(r3) = 0.6391, S(r4) = 0.7287
A4 ≻ A3 ≻ A2 ≻ A1

p = 1

q = 1

S(r1) = 0.4167, S(r2) = 0.4677

S(r3) = 0.4956, S(r4) = 0.6654
A4 ≻ A3 ≻ A2 ≻ A1

p = 2

q = 1

S(r1) = 0.4226, S(r2) = 0.4972

S(r3) = 0.5257, S(r4) = 0.6728
A4 ≻ A3 ≻ A2 ≻ A1

p = 10

q = 1

S(r1) = 0.4878, S(r2) = 0.5796

S(r3) = 0.6278, S(r4) = 0.7227
A4 ≻ A3 ≻ A2 ≻ A1

p = 1

q = 2

S(r1) = 0.4306, S(r2) = 0.4667

S(r3) = 0.4881, S(r4) = 0.6706
A4 ≻ A3 ≻ A2 ≻ A1

p = 1

q = 10

S(r1) = 0.5147, S(r2) = 0.5816

S(r3) = 0.5893, S(r4) = 0.7274
A4 ≻ A3 ≻ A2 ≻ A1

weighted Heronian mean operator and generalized weighted geometric Heronian mean
operator, for example, there have not reducibility and idempotency which seem to be
counterintuitive, we have proposed the improved generalized weighted Heronian mean
(IGWHM) operator and generalized weighted geometric Heronian mean (IGWGHM) op-
erator. Further, we extended IGWHM and IGWGHM operators to SVNNs, and proposed
the neutrosophic number improved generalized weighted Heronian mean (NNIGWHM)
operator and the neutrosophic number improved generalized weighted geometric Hero-
nian mean (NNIGWGHM) operator, and some desirable properties of these operators have
been investigated in detail, including idempotency, monotonicity and boundedness. At the
same time, some special cases of them with respect to the parameter values p and q are
discussed. Moreover, with respect to multiple attribute decision making group problems
in which the attribute values take the form of SVNNs, some approaches based on the de-
veloped operators are proposed. The important characteristic of the proposed approaches
is that they could consider the correlations of the aggregated arguments. Finally, an appli-
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Table 5
Ordering of the alternatives by the different parameters p and q in NNIGWGHM operator.

p, q Cosine similarity S(ri) (i = 1,2,3,4) Ranking

p = 0

q = 0.01

S(r1) = 0.4308, S(r2) = 0.3740

S(r3) = 0.4088, S(r4) = 0.6534
A4 ≻ A1 ≻ A3 ≻ A2

p = 0

q = 1

S(r1) = 0.4242, S(r2) = 0.3616

S(r3) = 0.4015, S(r4) = 0.6430
A4 ≻ A1 ≻ A3 ≻ A2

p = 0

q = 2

S(r1) = 0.4165, S(r2) = 0.3486

S(r3) = 0.3935, S(r4) = 0.6309
A4 ≻ A1 ≻ A3 ≻ A2

p = 0

q = 10

S(r1) = 0.3628, S(r2) = 0.2805

S(r3) = 0.3395, S(r4) = 0.5706
A4 ≻ A1 ≻ A3 ≻ A2

p = 0.01

q = 0

S(r1) = 0.4076, S(r2) = 0.5574

S(r3) = 0.5785, S(r4) = 0.6757
A4 ≻ A3 ≻ A2 ≻ A1

p = 1

q = 0

S(r1) = 0.4019, S(r2) = 0.5476

S(r3) = 0.5669, S(r4) = 0.6668
A4 ≻ A3 ≻ A2 ≻ A1

p = 2

q = 0

S(r1) = 0.3956, S(r2) = 0.5354

S(r3) = 0.5535, S(r4) = 0.6571
A4 ≻ A3 ≻ A2 ≻ A1

p = 10

q = 0

S(r1) = 0.3447, S(r2) = 0.4257

S(r3) = 0.4636, S(r4) = 0.5896
A4 ≻ A3 ≻ A2 ≻ A1

p = 1

q = 1

S(r1) = 0.4171, S(r2) = 0.4688

S(r3) = 0.4918, S(r4) = 0.6491
A4 ≻ A3 ≻ A2 ≻ A1

p = 2

q = 1

S(r1) = 0.4080, S(r2) = 0.4845

S(r3) = 0.5061, S(r4) = 0.6456
A4 ≻ A3 ≻ A2 ≻ A1

p = 10

q = 1

S(r1) = 0.3515, S(r2) = 0.4135

S(r3) = 0.4529, S(r4) = 0.5896
A4 ≻ A3 ≻ A2 ≻ A1

p = 1

q = 2

S(r1) = 0.4130, S(r2) = 0.4258

S(r3) = 0.4554, S(r4) = 0.6341
A4 ≻ A3 ≻ A2 ≻ A1

p = 1

q = 10

S(r1) = 0.3631, S(r2) = 0.3041

S(r3) = 0.3567, S(r4) = 0.5737
A4 ≻ A3 ≻ A2 ≻ A1

cation example has been given to show the steps of the proposed methods and to discuss
the influence of different parameter values on the decision-making results.

In the future, we shall further consider the relationship among attributes and gen-
eralize some operators by using the well-known quasi-arithmetic, Choquet integral and
Dempster–Shafer belief structure, or extend the potential applications of the developed
operators and methods to other domains, such as pattern recognition, supply chain man-
agement, etc.
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Kai kurie vienareikšmiai neutrosofistinių skaičių Herono vidurkio
operatoriai ir jų taikymas daugiarodikliams grupiniams sprendimams
priimti

Yanhua Lia, Peide Liu, Yubao Chena

Herono vidurkis (HM) turi savybę atspindėti agreguotų argumentų ir neutrosofistinių aibių kore-
liaciją. Jis gali atspindėti neišsamią, neapibrėžtą ir nenuoseklią informaciją. Šiame straipsnyje mes
taikėme Herono vidurkį neutrosofistinėms aibėms, ir pasiūlėme, kai kuriuos Herono vidurkio opera-
torius. Mes pateikėme keletą operacijų dėsnių ir jų vienareikšmių neutrosofistinių skaičių (SVNNs)
savybių, analizavome egzistuojančių svertinių (pasvertų) HM operatorių, kurie nėra pakankamai
tinkami, trūkumus, pasiūlėme geresnį apibendrintą svertinį Herono operatoriaus vidurkį (IGWHM)
ir patobulintą apibendrintą svertinį geometrinį Herono vidurkio (IGWGHM) operatorių, pagrįstus
tiksliaisiais skaičiais, įrodome, kad jie gali tenkinti, kai kurias pageidautinas savybes, tokias kaip
redukuojamumas, pakankamas tinkamumas, monotoniškumas ir apribojimas. Be to, mes pasiūlėme
vienintele reikšme išreikštu ir neutrosofistiniu skaičiumi patobulintą apibendrintą svertinį Herono
vidurkio (NNIGWHM) operatorių, ir viena reikšme įvertintą, neurosofistiniu skaičiumi patobulintą,
apibendrintą svertinį geometrinio vidurkio Herono (NNIGWGHM) operatorių. Aptarėme kai kurias
pageidaujamas jų savybes ir išskirtinius atvejus.

Atsižvelgiant į daugiarodiklių grupinių sprendimų priėmimo (MAGDM) uždavinius, kuriuose
rodiklių reikšmės įgyja SVNNs formą, yra sukurti sprendimų priėmimo metodai, pagrįsti siūlomais
operatoriais. Buvo pateiktas taikymo pavyzdys sprendimų priėmimo žingsniams parodyti, aptarta
įvairių parametrų reikšmių įtaka sprendimų priėmimo rezultatams.


