
INFORMATICA, 2016, Vol. 27, No. 1, 161–178 161
 2016 Vilnius University

DOI: http://dx.doi.org/10.15388/Informatica.2016.80

On Efficiency Analysis of the OpenFOAM-Based
Parallel Solver for Simulation of Heat Transfer in
and Around the Electrical Power Cables

Vadimas STARIKOVIČIUS1∗, Raimondas ČIEGIS2, Andrej BUGAJEV2

1Laboratory of Parallel Computing, Vilnius Gediminas Technical University

Saulėtekio 11, LT-10223 Vilnius, Lithuania
2Department of Mathematical Modelling, Vilnius Gediminas Technical University

Saulėtekio 11, LT-10223 Vilnius, Lithuania

e-mail: vadimas.starikovicius@vgtu.lt, raimondas.ciegis@vgtu.lt, andrej.bugajev@vgtu.lt

Received: July 2015; accepted: November 2015

Abstract. In this work, we study the efficiency of developed OpenFOAM-based parallel solver for
the simulation of heat transfer in and around the electrical power cables. First benchmark problem
considers three cables directly buried in the soil. We study and compare the efficiency of conjugate
gradient solver with diagonal incomplete Cholesky (DIC) preconditioner, generalized geometric-
algebraic multigrid GAMG solver from OpenFOAM and conjugate gradient solver with GAMG
multigrid solver used as preconditioner. The convergence and parallel scalability of the solvers are
presented and analyzed on quadrilateral and acute triangle meshes. Second benchmark problem
considers a more complicated case, when cables are placed into plastic pipes, which are buried in
the soil. Then a coupled multi-physics problem is solved, which describes the heat transfer in cables,
air and soil. Non-standard parallelization approach is presented for multi-physics solver. We show
the robustness of selected parallel preconditioners. Parallel numerical tests are performed on the
cluster of multicore computers.

Key words: OpenFOAM, parallel algorithms, domain decomposition, preconditioner, multigrid,
multi-physics problem.

1. Introduction

The control of heat conduction processes in high-voltage electrical cables is a very impor-
tant task in operation of electricity transferring infrastructure. Thus a detailed knowledge
of heat generation and distribution in and around the cables is necessary to optimize the
design and exploitation of such infrastructure. Engineers are interested in maximum al-
lowable current in different conditions, optimal cable parameters, cable life expectancy
estimations and many other engineering factors.

Presently used IEC (International Electrotechnical Commission) standards for the de-
sign and installation of electrical power cables are based on the worst case analysis of

*Corresponding author.



162 V. Starikovičius et al.

simplified models (Neher and McGrath, 1957). Such models (mostly given in the form of
analytical formulas) cannot accurately account for the various conditions under which the
cables are actually installed and used. They estimate the cable’s current-carrying capac-
ity with significant margins to stay on the safe side (Makhkamova, 2011). More accurate
mathematical models and simulation tools are needed to meet the latest technical and
economical requirements and to define new, cost-effective design rules and standards.

When we need to deal with mathematical models for the heat transfer in various me-
dia (metals, insulators, soil, water, air) and non-trivial geometries, only parallel computing
technologies can allow us to get results in an adequate time. To solve numerically selected
models, we are developing our numerical solvers by using the OpenFOAM (Open source
Field Operation And Manipulation) package (OpenFOAM, 2015). OpenFOAM is a free,
open source CFD (Computational Fluid Dynamics) software package. It has an exten-
sive set of standard solvers for popular CFD applications. At the same time the user has
a possibility to implement modified nonstandard mathematical models, new numerical
schemes and algorithms, utilizing the rich set of OpenFOAM capabilities (Weller et al.,
1998). However, application of OpenFOAM libraries for solving specific multi-physics
problems still requires an appropriate theoretical and empirical analysis and a nontrivial
selection of optimal numerical algorithms. Examples of such problems are described in
Higuera et al. (2013) and Petit et al. (2011).

The important consequence of this software development approach is that obtained
application solvers can automatically exploit the parallel computing capabilities already
available in the OpenFOAM package. Parallelization of solvers in OpenFOAM is based on
the domain decomposition method and MPI (Message Passing Interface) standard. How-
ever, the modular structure of this package allows the development of parallel applications
for modern hybrid and heterogeneous HPC (High-Performance Computing) platforms.

Due to the growing popularity of OpenFOAM package, the number of various
OpenFOAM-based applications in different fields is constantly increasing. The most im-
portant challenges for parallel solvers implemented with OpenFOAM are scalability and
efficiency on new hybrid and heterogeneous parallel computing systems. There are differ-
ent attempts to reduce the MPI communication overhead and increase the scalability of
parallel solvers by making use of threads parallelism on multicore cluster systems (Liu,
2011). However, MPI+OpenMP (Open Multi-Processing) hybridization does not show
any significant improvement so far (Culpo, 2012; Dagna and Hertzer, 2013).

For hybrid GPU (graphics processing unit) + CPU (central processing unit) parallel
computing systems, modular design of OpenFOAM solvers allows to transfer solution of
linear systems to GPUs (AlOnazi, 2013). Various open and closed source GPU linear
algebra libraries provide coupling with OpenFOAM. See, for example, Cufflink (Cuda
For FOAM Link) library (Cufflink, 2012) as interface to CUSP (2015) and Thrust (2015)
libraries.

In Rivera et al. (2011) it is noted that the scalability of parallel OpenFOAM solvers
is not very well understood for many applications when executed on massively parallel
systems. We note that an extensive experimental scalability analysis of selected Open-
FOAM applications is one of the tasks solved in PRACE (Partnership for Advanced Com-
puting in Europe) project, see Culpo (2012), Dagna and Hertzer (2013), Dagna (2012).



On Efficiency Analysis of the OpenFOAM-Based Parallel Solver 163

In Dagna (2012) are presented results on IBM BlueGene/Q (Fermi) and Hewlett Packard
C7000 (Lagrange) parallel supercomputers for a few CFD applications with different
multi-physics models. The presented experimental results for selected OpenFOAM ap-
plications are showing a good scaling and efficiency with up to 2048–4096 cores. It is
noted that such results are expected when balancing between computation, message pass-
ing and I/O work is good. Obviously, the next generation of ultrascale computing systems
will cause additional challenges due to their complexity and heterogeneity. Hence the im-
portance of proper workload balancing will only increase.

Another challenge for the efficiency of parallel solvers is causing the fact that most of
the newly developed applications are dealing with multi-physics. For mathematical mod-
els describing coupled multi-physics problems, it is important to investigate two differ-
ent approaches to design robust and efficient solvers for such problems (Muddle et al.,
2012). In coupled approach, monolithic solvers operate directly on one system of nonlin-
ear algebraic equations, obtained after the discretization of system of all PDEs (Partial
Differential Equations). In the partitioning approach, the discrete system is solved by us-
ing the single-physics solvers in decoupled fixed-point iterations. The latter approach is
natively supported in OpenFOAM and used in multi-region solvers. A good review and
comparison of some popular fixed-point methods is given in Kuettler and Wall (2008).

It is well known that for many real world applications, which are described by the sys-
tems of nonlinear PDEs, the biggest part of CPU time is used to solve very large systems
of linear equations with sparse matrices. Thus the quality and scalability of parallel pre-
conditioning algorithms has the major impact on the scalability and efficiency of whole
parallel solver. It is clear that for engineering and scientific community it is important
to know the properties of parallel preconditioning algorithms and their implementations,
which are available in widely used parallel numerical libraries, such as PETSc (2015),
Trilinos (2015) and OpenFOAM.

As already mentioned, scalability studies of some of the standard OpenFOAM appli-
cation solvers can be found in the literature (Rivera et al., 2011; Duran et al., 2015). In this
work, we present the parallel performance analysis of our own OpenFOAM-based solver
for simulation of the heat transfer in and around the electrical power cables. We gradu-
ally develop and test our solver for real multi-physics problem: coupled heat transport in
cables, soil and air. The parallel single-region solver for heat transfer was developed and
studied in Čiegis et al. (2014). In our work, we adapt a non-standard for OpenFOAM cou-
pling approach. Namely, one single temperature equation is solved in numerical solution
scheme for the whole simulated domain, i.e. it is not split between the different regions
like it is done in OpenFOAM multi-region solvers. The remaining processes (e.g. air flow)
are simulated using proper solvers in according local regions.

The main contribution of this paper is a comprehensive study of performance of paral-
lel preconditioners. For our study, we have selected three state of the art combinations of
linear system solvers and preconditioners, commonly used in commercial and open source
simulation software for the heat transfer problems. Namely, we are testing and comparing
the conjugate gradient solver with diagonal incomplete Cholesky (DIC) preconditioner,
which was already studied in Čiegis et al. (2014), the generalized geometric-algebraic



164 V. Starikovičius et al.

multigrid GAMG solver, which is available in OpenFOAM library, and the conjugate gra-
dient solver with GAMG solver used as preconditioner. We study the convergence and
parallel scalability of the linear solvers, the sensitivity of parallel preconditioners with
respect to the mesh size and the number of parallel processes.

Two different types of 2D space meshes are investigated. Quadrilateral meshes are
generated by using OpenFOAM native meshing tools. They lead to classical five-point
stencils in approximation of diffusion operators. Acute triangle meshes are generated by
Acute meshing library (Erten and Ungor, 2009) and converted to OpenFOAM mesh for-
mat. Diffusion operators are approximated on triangle meshes by non-classical four-point
stencils. Our aim is to study the sensitivity of selected preconditioners to the changes in
grid stencils used in numerical approximation.

Our parallel performance tests demonstrate the quality of domain decomposition meth-
ods available in OpenFOAM. We study the ability of OpenFOAM-based parallel solvers
to efficiently deal with the heterogeneity of computer cluster, to provide a proper workload
balancing in case of complicated geometries and multi-physics problem.

In most applications of mathematical modelling technique for simulation and analysis
of various industrial and technological processes and devices, the last and most impor-
tant part of the project consists in implementation of an optimization step. Next, we only
outline the most important aspects and challenges of this step.

The goal of any global optimization algorithm is to find the best possible element in a
search space according to a given objective function. In the case of industrial problem, this
task is very nontrivial and requires to solve some specific challenges. An extensive review
on the parallel optimization algorithms used for solving industrial problems is presented
in Starikovičius et al. (2011). Here, we restrict to mentioning only the most important
aspects.

First, in order to compute one single value of the objective function usually we need to
solve large size discrete problems resulting from the systems of 2D/3D nonlinear PDEs,
what requires large CPU time costs. Second, there is no possibility to get the standard
information on the properties of the objective function, which is normally required to
justify the convergence of optimization algorithms. Third, we are not concentrated on
finding the exact global extremum. It is usually sufficient to get a solution which improves
the known engineering approximation.

In Čiegis et al. (2008), a two level parallel Master–Slave (MS) template was used to
implement optimization algorithms for simulation and optimization of electrical cables
in automotive industry. One of the main tasks for engineers is to determine optimal con-
ductor cross-sections in bundles of electric cables in order to minimize the total weight of
cables. A simple heuristic algorithm based on a greedy type search method was used as
the optimization technique.

In Starikovičius et al. (2011), it is shown how an already existing direct solver for the
3D simulation of flow through the oil filter is integrated into the developed MS template
to obtain a parallel optimization solver. Some capabilities and performance of this solver
are demonstrated by solving geometry optimization problem of a filter element.

It should be noted, that for solving optimization problems for real-world problems a
very popular approach is to use parallel genetic and colony type algorithms, and various



On Efficiency Analysis of the OpenFOAM-Based Parallel Solver 165

modifications. Analysis of new parallel optimization algorithms is done in Lančinskas et

al. (2015) and Filatovas et al. (2015). See also references therein.
In Section 2, we shortly describe the mathematical models selected for our heat transfer

application and two benchmark problems used for parallel numerical tests. In Section 3,
we describe our OpenFOAM-based solver and discuss the parallelization approach. In
Section 4, we present and analyze the parallel performance results on convergence and
scalability of the considered linear solvers and preconditioners for both benchmark prob-
lems. Finally, some conclusions are drawn in Section 5.

2. Mathematical Models and Benchmark Problems

As the first benchmark problem, we solve the heat conduction problem for electrical high
power cables when the cables are directly buried in the soil. It is also assumed that the
thermo-physical properties of the soil remain constant. The heat source is described by the
Joule–Lenz law. Then the mathematical model of non-stationary heat transfer is described
by the following mathematical model (Bergman and Incropera, 2011; Čiegis et al., 2007):



















ρc
∂T

∂t
= ∇ · (λ∇T ) + q, t ∈ [0, tmax], Ex ∈ �,

T (Ex,0) = Tb, Ex ∈ �,

T (Ex, t) = Tb, Ex ∈ ∂�,

(1)

where T (Ex, t) is the temperature, c(Ex) > 0 is the specific heat capacity, ρ(Ex) > 0 is the
mass density, λ(Ex) > 0 is the heat conductivity coefficient, q(Ex, t, T ) is the heat source
function due to the power losses, Tb is the initial and boundary temperature. Coefficients
λ(Ex), c(Ex), ρ(Ex) are discontinuous functions. Their real values of these coefficients can
vary between the metallic conductor, insulators and soil by the several orders of magni-
tude (Makhkamova, 2011).

Due to discontinuity of coefficients, the full formulation of the mathematical model
also includes the following conjugation condition

T , λ∇T are continuous Ex ∈ �. (2)

In this work, we have used 2D geometry for our benchmark problems. Three cables
are buried in the soil in a flat formation as shown in Fig. 1.

The real geometry of the underground electric cable is very complex and contains the
following components: the copper conductor core made of strands, the conductor screen
(made of polyethylene type material), insulation (cross-linked polyethylene), the insula-
tion screen (polyethylene type material), the copper wire screen, the binder tape (polyethy-
lene type material) and oversheath (medium density polyethylene). To deal with compu-
tational meshes of reasonable sizes, the real geometries of the conductor and cooper wire
screen are simplified to the inner cylinder and outer ring (annulus). They are shown in red
in Figs. 1, 2 and 3. Such simplifications are very common in engineering simulations and



166 V. Starikovičius et al.

Fig. 1. First benchmark problem: three electric cables directly buried in the soil in a flat formation.

(a) quadrilateral mesh (b) acute triangle mesh

Fig. 2. A single cable geometry and computational mesh.

Fig. 3. Second benchmark problem: cables are placed into plastic pipes, which are buried in the soil.



On Efficiency Analysis of the OpenFOAM-Based Parallel Solver 167

they allow a significant reduction in the computational time of simulations with satisfac-
tory accuracy.

In Fig. 2 we show the examples of 2D meshes that we will use for parallel performance
evaluation tests in Section 4. Figure 2(a) shows a quadrilateral mesh, which was gener-
ated by using OpenFOAM native meshing tool – blockMesh. Figure 2(b) shows an acute
triangle mesh, which was generated by Acute meshing library (Erten and Ungor, 2009)
and converted to OpenFOAM mesh format.

For the first benchmark problem we have used geometry of the real 10 kV electrical
power cable. The dimensions are as follows: the diameter of copper conductor is 9.8 mm;
the thickness of insulation is 4.6 mm; the thickness of the copper screen is 0.7 mm and the
thickness of oversheath is 2.3 mm. The distance between the centres of cables is 70 mm.
The size of computational domain is 240 mm × 100 mm.

Second benchmark problem considers a more complicated case, when electrical power
cables are placed into special containers – plastic pipes. Three such pipes with cables
inside are buried in the soil in a flat formation as shown in Fig. 3.

In this case, inside the plastic pipes there is an air, which has a different main heat
transfer mechanism compared to cooper, insulation and soil. The main heat transfer in
the air is caused by free air circulation inside the plastic pipe, which is called natural
(free) convection. In general case, buoyancy driven air flow is modeled considering air
as compressible turbulent fluid. However, for relatively small velocities (less than 80–
100 m/s) it is often assumed that flow is incompressible and laminar, viscous dissipation is
negligible, air is Newtonian and constant-property Boussinesq fluid (so called Boussinesq
approximation).

Then natural convection inside two-dimensional enclosure is governed by the Navier-
Stokes and thermal energy conservation equations (Bergman and Incropera, 2011):

∇ · Eu = 0, (3)

ρ
∂ Eu
∂t

+ ρ Eu∇ · Eu − ∇ · (η∇Eu) = −∇p − ρ Eg
(

1 − β(T − T0)
)

, (4)

ρc

(

∂T

∂t
+ ∇ · (EuT )

)

= ∇ · (λ∇T ), (5)

where Eu is two-dimensional velocity of the air, p is air pressure, η is air viscosity, Eg is grav-
ity acceleration vector, β is thermal expansion coefficients, T0 is reference temperature.

To couple the air flow and heat transfer model (3)–(5) in air region with heat conduction
model (1) in neighboring regions (cable’s oversheath and container’s pipe, see Fig. 3), we
apply the no-flow and temperature continuity conditions (2) at the interfaces between these
regions.

For the second benchmark problem we have used the cable of the following dimen-
sions: the diameter of copper conductor is 9.25 mm; the thickness of insulation is 17 mm;
the thickness of the copper screen is 2.9 mm and the thickness of oversheath is 4.05 mm.
The inner radii o the container’s pipe is 53.12 mm. The thickness of the pipe is 20 mm.
The distance between the centres of cables is 200 mm. The size of computational domain
is 3000 mm × 2000 mm.



168 V. Starikovičius et al.

3. Parallel OpenFOAM-Based Solver

OpenFOAM (2015) is a C++ toolbox (open source library) for the development of cus-
tomized numerical solvers for partial differential equations. For numerical solution of
PDEs OpenFOAM uses the Finite Volume Method (FVM) with co-located arrangement
of unknowns (Weller et al., 1998).

We obtain a numerical solver for our first benchmark problem (1) by starting from the
the standard laplacianFoam solver and implementing the following modifications: adding
variable problem coefficients c(Ex), ρ(Ex), λ(Ex) and a nonlinear source term q(Ex, t, T ) de-
pendent on temperature T . A proper interpolation should be used for calculation of discon-
tinuous coefficient λ(Ex) on cooper-insulator and insulator-soil interface walls of according
finite volumes (see Fig. 2). We employ the harmonic interpolation to ensure the continuity
of heat flux λ∇T according to condition (2).

To solve any problem with OpenFOAM, properly generated mesh of problem domain
should be supplied to a solver. If we generate the mesh for domain � using OpenFOAM
preprocessing tool blockMesh, we obtain quadrilateral finite volume mesh, see Fig. 2(a).
FVM discretization of Eq. (1) on this mesh has the classical five-point stencil. If we gen-
erate mesh using Acute meshing library (Erten and Ungor, 2009), after conversion to
OpenFOAM format we obtain acute triangle finite volume mesh, see Fig. 2(b). FVM dis-
cretization of Eq. (1) on triangle mesh has non-classical four-point stencil. In both cases
OpenFOAM FVM discretization module produces systems of linear equations with sym-
metric matrices. These linear systems can be solved by preconditioned conjugate gradient
method with various preconditioners and multigrid method.

Parallelization in OpenFOAM is robust and implemented at a low level using the MPI
library. Solvers are built using high level objects and, in general, don’t require any parallel-
specific coding. They will run in parallel automatically. Thus there is no need for users
to implement standard basic steps of any parallel code: decomposition of the problem
into subproblems, distribution of these tasks among different processes, implementation
of data communication methods. The most important drawback of this approach is that
the user has very limited possibilities to modify the generated parallel algorithm if the
efficiency of the OpenFOAM parallel code is not sufficient.

OpenFOAM employs the domain decomposition method for parallelization of numer-
ical algorithms for solution of PDEs. The mesh and its associated fields are partitioned
into sub-domains, which are allocated to different processes. Parallel computation of the
implicit finite FVM algorithm requires two types of communication. First, the local com-
munication is done between neighboring processes for the approximation of the Laplacian
term on the given stencil and matrix-vector multiplication in iterative linear solvers. Sec-
ond type is the global communication between all processes for computation of scalar
products in iterative linear solvers.

OpenFOAM supports four methods of domain decomposition, which decompose the
data into non-overlapping sub-domains: simple, hierarchical, scotch and manual (Open-
FOAM, 2015). For our parallel tests the mesh is partitioned by using methods from the
Scotch library (Chevalier and Pellegrini, 2008). Scotch is a library for graph and mesh



On Efficiency Analysis of the OpenFOAM-Based Parallel Solver 169

partitioning, similar to the well-known Metis library (Karypis and Kumar, 1999). No geo-
metric input is required from the user and the decomposition method attempts to minimize
the number of boundary edges between sub-domains. In addition, the user can specify
the weights of the sub-domains, what can be useful on heterogeneous clusters of parallel
computers with different performance of processors. We will use this feature to solve our
benchmark problem on heterogeneous cluster.

The OpenFOAM-based multi-physics solver for our second benchmark problem is ob-
tained in a non-standardway. In OpenFOAM, the standard approach is to generate separate
meshes for different regions (air and solid = cable + soil) and to employ single-physics
solvers coupled through interface boundary conditions using fixed-point iterations. We
have developed a solver, which solves a single temperature equation in whole simulated
domain using its mesh. On the mesh of air region we solve only Navier–Stokes equations
(3)–(4) using the according numerical scheme from the OpenFOAM library.

However, this decision has its negative consequences. For solver to work properly in
parallel mode, some additional modifications are needed. First, we require from scotch

domain decomposition method to preserve all air regions of separate cables in single pro-
cess domains, i.e. different processes cannot have “air” finite volumes from the same cable.
Next, we require from all processes to solve whole problem on air region mesh, i.e. without
decomposition. Finally, we create maps between finite volume indexes in air region mesh
and whole domain mesh for all processes. Then we can copy the obtained velocity val-
ues from buoyancy driven air flow solver to heat conduction solver of global temperature
equation in each multi-physics solver iteration without any additional MPI communica-
tions.

Obviously, such parallelization approach can be efficient only when CPU time spent in
air flow solver is small compared to the time spent in temperature equation solver. Note that
due to the huge influence of boundary conditions in heat conduction problems, usually we
need to simulate much bigger problem area compared to the size of cable container. Our
second benchmark problem has real dimensions for simulation in non-parallel mode to
produce accurate temperatures. From the given dimensions, we see that air region makes
up 0.27% of whole problem domain. Hence we can expect good performance results from
the presented parallelization approach.

4. Parallel Performance Tests and Analysis

In this study we want to investigate and compare the convergence and parallel scalabil-
ity of conjugate gradient linear solver with diagonal incomplete Cholesky preconditioner
(DIC/CG), generalized geometric-algebraic multigrid solver (GAMG) and conjugate gra-
dient solver with GAMG solver used as preconditioner (GAMG/CG). We want to study
the scalability of those linear solvers and the influence of the mesh partitioning on par-
allel preconditioners. So, the tolerance of linear solvers is fixed and set to 10

−6. In each
test, we do 10 time steps with different number of iterations, which are dependent on the
convergence rate.



170 V. Starikovičius et al.

Parallel numerical tests were performed on the computer cluster “Vilkas” at the Lab-
oratory of Parallel Computing of Vilnius Gediminas technical university. We have used
eight nodes with Intel® CoreTM i7-860 processors with 4 cores (2.80 GHz) and 4 GB of
RAM per node. Computational nodes are interconnected via Gigabit Smart Switch.

It is well-known that the efficiency of parallel iterative solvers (and the quality of pre-
conditioners) depend strongly on the properties of the adaptive mesh (geometrical issue)
and on the distribution of coefficients of the different materials (material issue).

First, we have investigated the influence of the geometrical factor. We have used uni-
form problem coefficients in our first benchmark problem (1) to study the impact of
geometry and different meshes on the convergence of linear solvers. Performance results
are presented for all selected combinations of linear solvers and preconditioners with in-
creasing finite volume mesh.

In Table 1, we present the total wall time Tp of 10 time steps, the average number
of iterations Nav

p , the average time of one iteration T av
p = Tp/Nav

p /10 obtained with p

processes on quadrilateral mesh. Here p = nd × nc is the number of parallel processes
using nd nodes with nc cores per node. The discrete time step was set to 0.1 seconds.

Note that the case p = 1 × 1 provides data on convergence and elapsed wall time for
the sequential algorithms. There are no data for the mesh size 8192000, because this case
does not fit into memory available on the single node.

The following main conclusions can be done from presented experimental results.

• The number of iterations of DIC/CG solver is increasing as
√

2 when the mesh size
is doubled. This is in accordance with the theory. The number of iterations of GAMG
solver is also growing with the mesh size, but not as fast as in the case of DIC/CG,
compare 24.6/20.4 ≈ 1.21 to 1427/721.9 ≈ 1.99 (2 expected from theoretical anal-
ysis).

• Compared to the GAMG solver the GAMG/CG solver does almost two times
smaller number of iterations. Our hypothesis is that the GAMG solver performs
two iterations as a preconditioner per one conjugate gradient solver iteration in the
GAMG/CG solver. Notably, this number (i.e. 2) is not accessible or modifiable in
the standard user interface of OpenFOAM.

• In our tests, we see that the number of iterations of GAMG/CG solver is also slightly
increasing with the increasing mesh size.

• Comparing the elapsed times Tp we see that the GAMG and GAMG/CG solvers are
significantly faster than the DIC/CG solver for the test case with the constant (uni-
form) problem coefficients. The GAMG solver achieves the biggest advantage over
the DIC/CG solver for sequential tests. For parallel tests, the advantage is constantly
decreasing with increasing number of processes p. We note two reasons for this.
First reason is different degradation in performance of the parallel preconditioner.
For parallel CG method with DIC preconditioner the number of iterations is increas-
ing quite gradually up to 40% going from 1 to 16 processes. At the same time the
number of GAMG and GAMG/CG iterations exhibits significant jumps, altogether
up to 2–3 times going from 1 to 16 processes.

• Another reason for the significant degradation in the parallel performanceof GAMG
and GAMG/CG solvers is the algorithmic scalability of the parallel GAMG algo-



On Efficiency Analysis of the OpenFOAM-Based Parallel Solver 171

Table 1
Performance results of first benchmark problem (1) on quadrilateral mesh.

p 1 × 1 2 × 1 4 × 1 8 × 1 8 × 2

Mesh size – 1018488

DIC/C Tp 265.1 161.7 77.0 41.1 28.5

Nav
p 721.9 839.3 865.4 942.4 1009.7

T av
p 0.0367 0.0192 0.0089 0.0044 0.0028

GAMG Tp 47.8 27.2 16.1 14.2 19.5

Nav
p 20.2 21.6 24.2 36.9 59.0

T av
p 0.2364 0.1258 0.0665 0.0386 0.0331

GAMG/C Tp 47.5 28.5 14.6 11.0 11.5

Nav
p 8.9 10.3 9.9 13.0 16.4

T av
p 0.5333 0.2765 0.1471 0.0848 0.0701

Mesh size – 2048000

DIC/CG Tp 799.3 437.1 237.0 133.4 87.2

Nav
p 1015.6 1140.1 1142.6 1448.2 1401.6

T av
p 0.0787 0.0383 0.0207 0.0092 0.0062

GAMG Tp 100.7 64.6 36.6 27.2 20.9

Nav
p 21.3 26.2 28.0 39.1 38.8

T av
p 0.4726 0.2465 0.1307 0.0696 0.0538

GAMG/CG Tp 94.7 71.7 39.4 24.6 17.8

Nav
p 8.9 13.2 13.9 16.2 15.5

T av
p 1.0643 0.5435 0.2836 0.1518 0.1145

Mesh size – 4102264

DIC/CG Tp 2119.4 1114.9 872.2 414.6 265.8

Nav
p 1427.0 1452.0 1928.4 1939.4 1717.8

T av
p 0.1485 0.0768 0.0452 0.0214 0.0155

GAMG Tp 243.9 134.9 105.6 57.3 47.9

Nav
p 24.6 26.3 38.4 41.2 46.8

T av
p 0.9913 0.5130 0.2751 0.1390 0.1023

GAMG/CG Tp 267.0 130.2 133.1 56.0 41.5

Nav
p 12.4 11.5 22.4 18.4 19.1

T av
p 2.1530 1.1319 0.5942 0.3043 0.2173

Mesh size – 8192000

DIC/CG Tp – 3933.5 2165.9 1126.8 829.6

Nav
p – 2468.9 2463.9 2535.1 2635.1

T av
p – 0.1593 0.0879 0.0445 0.0315

GAMG Tp – 390.9 185.2 106.2 77.4

Nav
p – 38.6 33.7 38.0 40.1

T av
p – 1.0127 0.5495 0.2795 0.2436

GAMG/CG Tp – 431.0 213.6 127.4 80.9

Nav
p – 19.8 17.9 21.0 19.3

T av
p – 2.1766 1.1935 0.6064 0.4191



172 V. Starikovičius et al.

2 4 8 8x2

2

4

6

8

10

12

14

Number of processes

Sp
ee

du
p

 

 

DIC/CG
DIC/CG, algorithmic
 GAMG
GAMG, algorithmic
GAMG/CG
GAMG/CG, algorithmic

(a) on quadrilateral mesh with 1018488 elements

2 4 8 8x2
1

2

3

4

5

6

7

8

9

10

Number of processes

Sp
ee

du
p

 

 

DIC/CG
DIC/CG, algorithmic
GAMG
GAMG, algorithmic
GAMG/CG
GAMG/CG, algorithmic

(b) on quadrilateral mesh with 4102264 elements

Fig. 4. Parallel speedup Sp = T1/Tp and algorithmic speedup S
alg
p = T av

1
/T av

p of the linear solvers on quadri-
lateral mesh.

rithm. In Fig. 4(a) and (b), we show the parallel speedup Sp = T1/Tp and algorithmic

speedup S
alg
p = T av

1
/T av

p of the linear solvers for two meshes with sizes of 1018488
and 4102264, respectively. We see that as the size of the sub-domain reduces the
parallel algorithm of DIC/CG solver scales much better than the parallel algorithms
of GAMG and GAMG/CG solvers.

Next, we have studied the ability of our OpenFOAM-based parallel solver to utilize
the full power of heterogeneous cluster made of computational nodes of different speeds.
For these numerical tests we have used eight additional nodes with Intel Quad Q6600
processors, 4 cores (2.4 GHz) per node.



On Efficiency Analysis of the OpenFOAM-Based Parallel Solver 173

Table 2
Performance results of first benchmark problem (1) on quadrilateral mesh using heterogeneous cluster.

Mesh size – 8192000

p 16 × 1 16 × 1 16 × 2 16 × 2 16 × 4 16 × 4

i7(w) 1.6 1.7 1.6 1.7 1.6 1.7

DIC/CG Tp 647.2 728.6 574.6 536.6 540.7 524.7

Nav
p 2340.7 2589.5 2790.7 2659.9 2630.2 2643.9

T av
p 0.0277 0.0281 0.0206 0.0202 0.0206 0.0199

GAMG Tp 77.6 93.6 81.2 83.8 121.0 139.5

Nav
p 42.0 50.9 53.7 55.7 55.3 60.4

T av
p 0.1848 0.1840 0.1512 0.1505 0.2189 0.2310

GAMG/CG Tp 81.9 90.9 77.9 78.7 100.4 115.0

Nav
p 20.2 22.3 24.2 24.5 22.0 24.2

T av
p 0.4055 0.4077 0.3221 0.3213 0.4561 0.4752

Computing nodes with Intel Core i7-860 processors are up to 1.6–1.7 times faster than
the Intel Quad Q6600 processors for solving our benchmark problem. To achieve the load
balancing between i7 and q nodes, we employ the weights in the mesh partitioning algo-
rithm from the Scotch library (Chevalier and Pellegrini, 2008). The performance results
of the tests on heterogeneous cluster are presented in Table 2. Here i7(w) is the weighting
factor used in mesh partitioning algorithm for faster i7 nodes.

• Solving our biggest case in this work with 8192 000 finite volumes, we obtain a real
speedup only with DIC/CG linear solver. The performance of GAMG linear solver is
further degrading. It is interesting to note that slight changes in the weighting factor
w, can cause significant changes in the convergence of GAMG: from 43.2 to 51.7
iterations per time step with 16 × 1 processes.

• If we investigate the algorithmic speed-up, i.e. the averaged time for one iteration,
the load balancing strategy gives speed-up for both GAMG and GAMG/CG solvers
up to 16 × 2 processes.

In Table 3, we present the same performance data obtained for the first benchmark
problem (1) on acute triangle meshes with similar number of elements: 1 million and
4 millions finite volumes. We have applied matrix renumbering algorithm (Cuthill and
McKee, 1969) to reduce the matrix bandwidth. The following main conclusions can be
done.

• The DIC/CG solver on acute triangle meshes has shown slightly bigger number of
iterations than on quadrilateral meshes. However, due to the slightly smaller averaged
time for one iteration T av

p , the total running times Tp are quite similar. Smaller times
T av

p are obtained due to the better caching.
• However, the major difference is in the performance of GAMG and GAMG/CG

solvers. Both solvers do not show degradation in the performance of parallel pre-
conditioners with increasing number of processes. For both solvers the number of
iterations Nav

p stays almost constant on acute triangle meshes. This makes a big dif-
ference in real speedup and efficiency of those linear solvers.



174 V. Starikovičius et al.

Table 3
Performance results of first benchmark problem (1) on acute triangle mesh.

p 1 × 1 2 × 1 4 × 1 8 × 1 8 × 2

Mesh size – 1023775
DIC/CG Tp 291.1 160.5 81.9 39.5 23.6

Nav
p 933.2 980.2 1112.1 1109.0 1035.7

T av
p 0.0312 0.0164 0.0074 0.0036 0.0023

Sp – 1.81 3.55 7.37 12.32

S
alg
p – 1.91 4.23 8.75 13.68

GAMG Tp 31.9 17.0 8.7 5.0 3.6

Nav
p 13.4 13.4 13.0 12.8 12.6

T av
p 0.2382 0.1267 0.0666 0.0389 0.0283

Sp – 1.88 3.69 6.41 8.95

S
alg
p – 1.88 3.58 6.13 8.41

GAMG/CG Tp 35.9 20.7 9.6 5.6 3.9

Nav
p 6.9 7.6 6.8 6.9 6.7

T av
p 0.5195 0.2720 0.1406 0.0814 0.0579

Sp – 1.73 3.75 6.38 9.24

S
alg
p – 1.91 3.70 6.38 8.97

Mesh size – 4102264
DIC/CG Tp 2094.1 1483.1 801.3 371.8 268.3

Nav
p 1655.5 2129.4 2120.0 1974.4 1990.6

T av
p 0.1265 0.0697 0.0378 0.0188 0.0135

Sp – 1.41 2.61 5.63 7.80

S
alg
p – 1.82 3.35 6.72 9.38

GAMG Tp 161.3 82.2 42.6 21.8 15.12

Nav
p 16.4 16.0 15.6 15.0 15.0

T av
p 0.9834 0.5140 0.2732 0.1456 0.1008

Sp – 1.96 3.78 7.39 10.67

S
alg
p – 1.91 3.60 6.76 9.76

GAMG/CG Tp 175.0 91.5 45.1 23.7 15.8

Nav
p 8.2 8.3 7.7 7.6 7.4

T av
p 2.1343 1.1029 0.5863 0.3114 0.2128

Sp – 1.91 3.88 7.40 11.12

S
alg
p – 1.94 3.64 6.86 10.03

Finally, we test our OpenFOAM-based parallel multi-physics solver on second bench-
mark problem. Due to observed clear advantages of acute triangle meshes in parallel
performance of GAMG and GAMG/CG solvers, we have chosen this type of finite vol-
ume mesh for our multi-physics benchmark problem. Another advantage of acute triangle
meshes is that we can generate such meshes for complicated geometries with our own
meshing tool, which is making calls to Acute meshing library (Erten and Ungor, 2009).

We have generated acute triangle mesh with 1021873 cells. We remind that air region
makes up 0.27% of whole simulated domain area. However, due to employed in our mesh-
ing tool adaptation heuristics, see Fig. 3, the number of cells in the air region is 116062,
i.e. 11%.



On Efficiency Analysis of the OpenFOAM-Based Parallel Solver 175

Table 4
Performance results of multi-physics solver for second benchmark problem on acute triangle mesh.

p 1 × 1 2 × 1 4 × 1 8 × 1 8 × 2

Mesh size – 1021873
DILU/BiCG Tp 1618.0 946.2 378.6 204.8 135.3

Tp(T e) 1610.7 938.6 373.7 200.1 128.6

Nav
p 2604.1 2848.7 2320.8 2634.9 2584.1

T av
p 0.0619 0.0330 0.0161 0.0076 0.0050

Sp – 1.71 4.27 7.90 11.96

S
alg
p – 1.88 3.84 8.15 12.23

GAMG Tp 222.8 125.9 18.2 14.5 13.7

Tp(T e) 215.6 118.4 13.2 9.9 7.1

Nav
p 108.1 109.5 20.6 19.7 19.1

T av
p 0.1995 0.1081 0.0641 0.0503 0.0372

Sp – 1.77 12.24 15.37 16.26

S
alg
p – 1.85 3.11 3.97 5.37

Note that due to the fact that global temperature equation in “air” cells has convec-
tive term (see equation (5)) and approximation of it is not symmetric (upwind), we obtain
monotone but non-symmetric matrices in our linear systems. To solve this systems we use
preconditioned bi-conjugate gradient solver (BiCG) with diagonal incomplete LU (DILU)
preconditioner – DILU/BiCG and multigrid GAMG solver with DILU smoother. Combi-
nation of Bi-conjugate gradient solver (BiCG) with GAMG preconditioner is currently
not implemented in OpenFOAM.

The obtained parallel performance results of our multi-physics solver are shown in
Table 4. Here we show the total wall time Tp of 10 time steps with p processes, the
time Tp(T e) of 10 time steps of global temperature equation solver with p processes,
the average number of iterations Nav

p in global temperature equation solver with p pro-
cesses, the average time of one iteration of global temperature equation solver – T av

p =
Tp(T e)/Nav

p /10, parallel speedup of multi-physics solver - Sp = T1/Tp and algorithmic

speedup of global temperature equation solver – S
alg
p = T av

1
/T av

p with p processes for
DILU/BiCG and GAMG linear solvers.

Performance results in Table 4 show that developed OpenFOAM-based multi-physics
solver is very efficient, especially, with parallel multigrid GAMG solver. Obviously, the
parallel scalability of the developed parallel solver remains to be tested on a bigger number
of parallel processors.

5. Conclusions

We have tested the parallel performance of the conjugate gradient solver with diag-
onal incomplete Cholesky preconditioner (DIC/CG), generalized geometric-algebraic
multigrid (GAMG) solver and the conjugate gradient solver with GAMG preconditioner
(GAMG/CG) in the OpenFOAM-based application for heat transfer in and around elec-



176 V. Starikovičius et al.

trical power cables. The best running times in our tests were obtained with GAMG/CG
and GAMG solvers. However, DIC/CG linear solver has shown to be less sensitive to the
parallel preconditioning degradation. It has also shown a better algorithmic scalability.

The weighting factors in mesh partitioning algorithm allow efficient utilization of het-
erogeneous computing nodes for our parallel application. More research is needed on the
influence of different graph partitioning algorithms.

Acknowledgments. The work of authors was supported by Eureka project E!6799
POWEROPT “Mathematical modelling and optimization of electrical power cables for
an improvement of their design rules” and by EU under the COST programme Action
IC1305, “Network for Sustainable Ultrascale Computing (NESUS)”.

References

AlOnazi, A. (2013). Design and optimization of OpenFOAM-based CFD applications for modern hybrid and

heterogeneous HPC platforms. Master’s thesis, University College Dublin, Dublin, Ireland.
Bergman, T.L., Incropera, F.P. (2011). Fundamentals of Heat and Mass Transfer. Wiley, New York.
Chevalier, C., Pellegrini, F. (2008). PT-Scotch: a tool for efficient parallel graph ordering. Parallel Computing,

34(6–8), 318–331.
Cufflink (2012). Library for linking numerical methods based on Nvidia’s CUDA C programming language and

OpenFOAM. https://code.google.com/p/cufflink-library/.
Culpo, M. (2012). Current bottlenecks in the scalability of OpenFOAM on massively parallel clusters. Prace

white papers, CINECA, Bologna.
CUSP (2015). Library for sparse linear algebra and graph computations based on Thrust library. http:// cus-

plibrary.github.io/.
Cuthill, E., McKee, J. (1969). Reducing the bandwidth of sparse symmetric matrices. In: Proceedings 24th

National Conference of the ACM, 157–172.
Čiegis, R., Ilgevičius, A., Liess, H., Meilūnas, M., Suboč, O. (2007). Numerical simulation of the heat conduction

in electrical cables. Mathematical Modelling and Analysis, 12(4), 425–439.
Čiegis, R., Čiegis, R., Meilūnas, M., Jankevičiūtė, G., Starikovičius, V. (2008). Parallel mumerical algorithm

for optimization of electrical cables. Mathematical Modelling and Analysis, 13(4), 471–482.
Čiegis, R., Starikovičius, V., Bugajev, A. (2014). On parallelization of the OpenFOAM-based solver for the heat

transfer in electrical power cables. In: Euro-Par 2014: Parallel Processing Workshops, Lecture Notes in

Computer Science, Vol. 8805, pp. 1–11.
Dagna, P. (2012). OpenFOAM on BG/Q porting and performance. Prace report, CINECA, Bologna.
Dagna, P., Hertzer, J. (2013). Evaluation of multi-threaded OpenFOAM hybridization for massively parallel

architectures. Prace white papers, wp98, CINECA, Bologna.
Duran, A., Celebi, M.S., Piskin, S., Tuncel, M. (2015). Scalability of OpenFOAM for bio-medical flow simula-

tions. The Journal of Supercomputing, 71(3), 938–951.
Erten, H., Ungor, A. (2009). Quality triangulations with locally optimal Steiner points. SIAM Journal of Scientfic

Computing, 31(3), 2103–2130.
Filatovas, E., Kurasova, O., Sindhya, K. (2015). Synchronous R-NSGA-II: an extended preference-based evolu-

tionary algorithm for multi-objective optimization. Informatica, 26(1), 33–50.
Higuera, P., Lara, J., Losada, I. (2013). Realistic wave generation and active wave absorption for Navier–Stokes

models: application to OpenFOAM. Coastal Engineering, 71(1), 102–118.
Karypis, G., Kumar, V. (1999). A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM

Journal on Scientific Computing, 20(1), 359–392.
Kuettler, U., Wall, W.A. (2008). Fixed-point fluid-structure interaction solvers with dynamic relaxation. Com-

putational Mechanics, 43, 61–72.
Lančinskas, A., Ortigosa, P.M., Žilinskas, J. (2015). Parallel optimization algorithm for competitive facility

location. Mathematical Modelling and Analysis, 20(5), 619–640.



On Efficiency Analysis of the OpenFOAM-Based Parallel Solver 177

Liu, Y. (2011). Hybrid parallel computation of OpenFOAM solver on multi-core cluster systems. Master’s thesis,
KTH Royal Institute of Technology, Stockholm.

Makhkamova, I. (2011). Numerical investigations of the thermal state of overhead lines and underground cables

in distribution networks. PhD thesis, Durham University, Durham.
Muddle, R., Milhajlovic, M., Heil, M. (2012). An efficient preconditioner for monolithically-coupled large-

displacement fluid-structure interaction problems with pseudo-solid mesh updates. Journal of Computa-

tional Physics, 231, 7315–7334.
Neher, J., McGrath, M. (1957). The calculation of the temperature rise and load capability of cable systems.

AIEE Transactions, 76, 752–772.
OpenFOAM (2015). Open source field operation and manipulation, CFD toolbox. http://www.openfoam.org.
Petit, O., Bosioc, A., Nilsson, H., Muniean, S., Susan-Resigo, R. (2011). Unsteady simulations of the flow in

a swirl generator using OpenFOAM. International Journal of Fluid Machinery and Systems, 4(1), 199–208.
PETSc (2015). Portable, Extensible Toolkit for Scientific Computation PETSc: a suite of data structures and

routines for the scalable parallel solution of scientific applications modeled by partial differential equations.
http://www.mcs.anl.gov/petsc/petsc-as/.

Rivera, O., Fürlinger, K., Kranzlmüller, D. (2011). Investigating the scalability of OpenFOAM for the solution
of transport equations and large eddy simulations. In: Algorithms and Architectures for Parallel Processing,
Lecture Notes in Computer Science, Vol. 7017, pp. 121–130.

Starikovičius, V., Čiegis, R., Iliev, O. (2011). A parallel solver for design of oil filters. Mathematical Modelling

and Analysis, 16(2), 326–342.
Thrust (2015). C++ template library for parallel platforms based on the Standard Template Library (STL).

Http://Thrust.Github.Io/.
Trilinos (2015). Project to develop scalable (parallel) solver algorithms and libraries within an object-oriented

software framework for the solution of large-scale, complex multi-physics engineering and scientific appli-

cations. http://trilinos.org/.
Weller, H.G., Tabor, G., Jasak, H., Fureby, C. (1998). A tensorial approach to computational continuum me-

chanics using object-oriented techniques. Journal of Computational Physics, 12(6), 620–631.



178 V. Starikovičius et al.

V. Starikovičius has graduated from Vilnius University Faculty of Mathematics in 1998.
He received the PhD in mathematics from the Vilnius University in 2002. He is currently
the head of Laboratory of Parallel Computing and associate professor at Department of
Mathematical Modelling of Vilnius Gediminas Technical University. His main research
interests include parallel and distributed computing, numerical methods for solving partial
differential equations, mathematical modelling, porous media flows, hemodynamics.

R. Čiegis has graduated from Vilnius University Faculty of Mathematics in 1982. He
received the PhD degree from the Institute of Mathematics of Byelorussian Academy of
Science in 1985 and the degree of Habil. Doctor of Mathematics from the Institute of
Mathematics and Informatics, Vilnius in 1993. He is a professor and the head of Math-
ematical Modelling department of Vilnius Gediminas Technical University. His research
interests include numerical methods for solving nonlinear PDE, parallel numerical meth-
ods, mathematical modelling in nonlinear optics, porous media flows, technology, image
processing, biotechnology.

A. Bugajev has graduated from Vilnius Gediminas Technical University, where achieved
bachelor (2009) and master (2011) degree in mathematics. He is currently PhD student
at the Department of Mathematical Modelling, Vilnius Gediminas technical university.
He works at the Department of Mathematical Modelling of Vilnius Gediminas Technical
University since 2011. His main research interests include theory of algorithms, numerical
methods, parallel computing, computing using GPU, mathematical modelling.

Elektros kabelių modeliavimui skirtų lygiagrečiųjų sprendiklių,
sukurtų OpenFoam pagrindu, efektyvumo analizė

Vadimas STARIKOVIČIUS, Raimondas ČIEGIS, Andrej BUGAJEV

Šiame darbe sprendžiamas šilumos pasiskirstymo elektros kabeliuose uždavinys. Lygiagretusis
sprendiklis yra sukurtas panaudojant OpenFOAM įrankį. Ištirtas šio sprendiklio algoritmų efekty-
vumas. Pirmajame uždavinyje modeliuojami trys elektros kabeliai, kurie tiesiogiai pakloti žemėje.
Palyginti trys tiesinių lygčių sistemų sprendikliai – jungtinių gradientų metodas su dviem matri-
cos sąlygotumo modifikatoriais, įstrižaininis nepilno Chalesky skaidymo algoritmas ir algebrinis
daugiatinklis sprendiklis. Taip pat naudotas daugiatinklis metodas kaip savarankiškas sprendiklis.
Lygiagrečiųjų sprendiklių konvergavimo ir išplečiamumo savybės ištirtos aproksimuojant diferen-
cialinį uždavinį keturkampiuose ir Acute įrankiu generuotuose trikampiuose tinkluose. Antrasis už-
davinys yra sudėtingesnis, elektros kabeliai yra patalpinti į plastikines movas, kurios paklotos žemė-
je. Nagrinėjamas šilumos sklidimas elektros kabelyje, ore ir žemėje. Šiam multi-fizikos uždaviniui
pateikiamas nestandartinis lygiagretusis sprendiklis. Ištirtas pasirinktų modifikatorių efektyvumas ir
išplečiamumas. Skaitiniai eksperimentai atlikti klasteryje, sudarytame iš daugiabranduolinių skai-
čiavimo mazgų.


