INFORMATICA, 1992, Vol.3, No.2, 225- 240

HEURISTICS WITH A WORST-CASE
BOUND FOR UNCONSTRAINED
QUADRATIC 0-1 PROGRAMMING

Gintaras PALUBECKIS

Department of Pracuca.l Informatics
Kaunas University of Technology
3028 Kaunas, Studenty St. 50, Lithuania

Abstract. In this paper, we present two heuristics for solving the un-
constrained quadratic 0-1 programming problem. First heuristic realizes the
steepest ascent from the centre of the hypercube, while the second constructs
a series of solutions and chooses the best of them. In order to evaluate their
worst-case behaviour we define the performance ratio ¥ which uses the objec-
tive function value at the reference point z=1/2. We show for both heuristics
that K is bounded by 1 from above and this bound is sharp. Finally, we report
on the results of a computational study with proposed and local improvement
heuristics.

Key words: quadratic 0-1 programming, heunst;cs, performance ratio,
local improvement algorithms.

1. Introd actlon. The unconstrained quadratic 0-1 program-
ming problem is formulated as

max f(z) = #7Qz +C"z, o

s.t. z € {0,1}", | | (2

where Q= (¢i) is an n x n upper trxangular matrix having zero
dla,gonal and C = (¢;) is a column n-vector This model has a
variety of applications in' economics, operatlon research, physics,
design automation and other areas (some examples are pointed out
by Hansen (1979), Gallo, Hammer and Simeone (1980), Korner
and Richter (1982), Gulati, Gupta and Mittal (1984)). A number

226. 'Heu}ictic: with a worst-case bound

of exact algorithms for solving (1), (2) have been developed so far,
e.g., McBride and Yormark (1980), Carter (1984), Gulati, Gupta
- and Mittal (1984), Barahona, Jinger and Reinelt (1989). However,
little is known about heuristic solution methods despite of the fact
that the exact algorithms may consistently succeed in getting a
solution and proving its optimality in a reasonable amount of time
for the problems with at most 50 — 60 variables only (Barahona,
Jinger and Reinelt, 1989). The most natural heuristic is the local
improvement algorithm given in Gulati, Gupta and Mittal (1984).
The main operation of it consists in the evaluation of the change
in the value of some variable from 0 to 1 or vice versa. Another
example is a greedy heuristic which starts at z = 0 and forces to
1 at each step one or two variables maximizing the increase in the
value of f. Those heuristics and a more powerful local improvement
algorithm as well were investigated by Palubeckis (1989, 1990).
Hennet (1982) suggests a heuristic algorithm extracted from the
dynamic programming scheme for the problem (1), (2) with one
additional requirement that the sum of variables cannot exceed a
prescribed limit. o

It should be/mentioned also that to date no polynomial-time
algorithm is kno{wn for computing a local optimum for (1), (2). In
fact, this problem is shown to be PLS-complete (Pardalos and Jha,
1992). ; :

In this pape"r, .we propose two alternative heuristics for solving
the problem (1), (2). We adopt as a performance ratio a new so-
lution quality measure (yet mentioned in Palubeckis, 1990) which
uses the value of f at the reference point z = 1/2. We show for both
heuristics that the ratio is bounded by 1 from above and this bound
is sharp. In Section 4, computational results are reported compar-
ing both heuristics against the local improvement algorithms on
two sets of randomly generated problems with up to 300 variables.

2. Measuring the ‘quality ofa solutioxlz. A commoniy used
criterion for the evaluation of the solutions whenever applied to our
problem is K'(f,z) = (f(°) ~ f(2))/f(z°) = 1 - f(z)/f(°). where z

and z° are any and, respectively, optimal 0-1 n-vectors. However,

G. Palubeckis 227

following the definition from Zemel (1981) we may conclude that
this measure is not proper for (1), (2), since it cannot guarantee
that K'(f,z) = K'(f',2’) for any f,z and for any f’,z’ obtained from
. f,z by complementing some variables, i.e., replacing some z; with
1 — z; and releasing a constant appearing in the expression for f’
(in fact, we have f(z) = f/(z') + ¢, where ¢ is obtained by summing
some of g;j,¢;). Yet the above condition is, obviously, satisfied
by an alternative measure K(f,z) = (f(2°) — f(2))/(f(z°) — £(1/2))-
Morcover, K also meets all other conditions from Zemel (1981) qu
a measure to be proper. On the other hand, K is not free from
drawbacks too. The main criticism levelled at K is the lack of
sensitivity for some types of problems. Consider, for instance, the
problem of finding a maximal clique in a graph. It, clearly, may
be put in the form (1), (2). Suppose that an n-vertex graph has
an edge set E of cardinality din?, a maximal clique consisting of
bn? edges, and dz2n” nonadjacent pairs of vertices. Here dy,d2, 5,0 <
dy,dy + dy = (n — 1)/(2n), are some positive constants. By choosing
¢; = 0forall i, ¢;; = 1,if (,j) € E, and ¢;; = —cn with an appropriate
constant ¢ < 1, if (i, j) € E, (observe that ¢;; = —c does not work) we
reduce a problem to (1), (2) with f(1/2) = —n®(cd—d,/n)/4 = —dn?,
where d is a positive constant for sufficiently large n. For any edge
(which gets a very bad solution to (1), (2)) of a graph, we have

K = (bn? — 1)/(bn? + dn®) — +0, v

as n — co. Hence, whenever estimated by K this bad solution is
almost equally good as an optimal one. The lack of sensitivity of
K was also observed for the second set of test problems used in our
computational experiments (see Section 4). For those problems,
—f(1/2)/f(z°) is about 9. In both examples, the measure K’ seems
to be more appropriate. k

- One of the tasks associated with K is to look for the heuristics
that for any f would produce z with '

K(f,.z) <L ‘ ‘ (3)

Two heuristics of such a type are described in the following Section.
In order to evaluate the perforraance of some heuristic A for (1), (2)

228 Heuristics with a worst-case bound

we use the worst-case performance ratio of A, denoted K,(4), which
is defined for each integer n to be the maximum of K(f,z) over all
"n variable functions f and corresponding solutions z delivered by
A for (1), (2) with this f.

3. Heuristics. A natural way to find a 0-1 vector satisfying
(3) is to start at the centre of the n-dimensional hypercube and
compel the variables to equal 0 or 1 one at a time, selecting at each
step that variable which maximizes the increase in the value of f.
This steepest ascent concept is realized in the following algorithm
(referred to as Al later on).

Step 1. Let I = {1,2,...,n}, & = ¢; and b = ¥;1)¢i +
Y= Gijs 1€ ‘

Step 2. Let k; = 2a; +b; and k} = a;, i € I. For each i € I,
if k; > 0, or ki = 0 and k! > 0, set v; = 1; otherwise set k; = —k;,
k; = —k}, v; = 0. Find j € I such that k; > k; for all i € I and k} > k|
forallie {l|le I, k = k). '
. Step 8. Fix zj = vj. Delete j from I. If I = &, go to Step 4.
Otherwise for each i € I, subtract ¢; (or g;, if j < i) from b; and,
if z; = 1, add ¢;; for gji) to a;. Return to Step 2.

Step 4. Stop; the solution to (1), (2) is z4, = (zJ).

This algoritam, obviously, runs in time O(n?). Its worst-case
behaviour is characterized by the following statement.

PropositioN T. For n > 2 and any fixed positive number €,
1-1/(2n-3)-e < Kn(Al) < 1.

_Proof. (i) Denote by u; the value of k; during the i-th arrival
at Step 2 of A1l. Changing the value of z; from 1/2 to v; in Step 3
increases f by k;/4. Therefore

fza) = F(1/2)+ D wi/4.
R =1
Since u; 2 0 for all i, and us >0o0rus >0 (if k; =0, i = 1,2,...,n,
initially), it follows that f(z41) > f(1/2). This establishes the upper
bound. : o

G. Palubeckis - 229

. (ii) Let m = n— 1. Define a = /3, 8 = (¢ +2)/(m + 1).
Consider the problem (1), (2) with f having ¢i; = (2 - 8)/m, i =
2,...n, ¢ij=2a/[m(m-1]], i=2,....m, j=i+1,...,n, ¢ = -1,
and all other ¢; equal to 0. On the first iteration of Al, ky =
B> ki=2a/m+(2-pB)/m, i€{2,...,n}, and thus the variable z;
is chosen and forced to 0. All the remaining variables are fixed
at 1. Therefore f(z4;) = a, while f(z°) = 1 + o — 8. Furthermore
f(1/2) = (e - B)/4. Hence

K(f,za1) = (4—48)/(4+¢-38) = 1= (2+em+2€)/(4m — 2+ em — 2¢)
from what the lower bound follows. |

REMARK. Note that the use of the additional criterion &} in
Al has, in fact, no impact on the worst-case behaviour of Al (with
respect to A'). This rule of breaking the ties enhances the efficiency
of Al on random and, hopefully, real problems.

.Now we approach the problem (1), (2) in a different way. De-
fine the r-th shell of the hypercube to be the set of vertices z with
exactly r coordinates equal to 1. Let F,, r € {0,1,...,n}, be an
average value of f on the r-th shell. The underlying idea of the
second algorithm is to find for each r a solution z(r) that belongs
to the r-th shell and satisfies f(z(r)) > F,, and pick out the best of
them as an output. :

For some r > 0 assume that some s — 1 < r variables are forced
to 1 while the other being free. In order to reveal a proper criterion
for the choice of the s-th variable we have to explore the average
F, ,-1(l) of f over the set of extensions of this partial assignment to
those vertices of the r-th shell that have z; = 1 for a free variable
z1. Let I, (respectively I;) stand for the set of indices of the fixed
(free) variables. Let u,_1,v,-1,2,-1 be the averages over

{gijli<j,i€h, jel, or i€l, jeh}, {gli<j€h}

and {c¢;|¢ € I} respectively. Given any free z; with the sums a}, b
of ¢;;.or g with ¢ in I; and I, respectively, we may write

Frac1(l) = ¢+ 6} + ¢1 + ups(r — 8) + v, ("; ,‘) +z(r—5), @

230 Heuristics with a worst-case bound

where u, = [u,.1(s—1)(n—s+1)—a}+b;}/[s(n—35)], v, = [v,-j("'{,'”)—
-51]/(";’), zy = [z,-1(n — s+ 1) = c))/(n — 5) and c is a term not
depending on l. It is readily checked that the right hand side of (4)
is maximized by z; having largest a} + ¢; + bi(r ~ 5)/(n — s — 1). This
fact is exploited in the following algorithm (on occasion, referred
to as A2). (

Step 1. Choose z,4; to be that from (0,...,0) and (1,...,1),
which has a larger va.lue of f.Setr=1. '

Step 2. Let a; = ¢ and b; = 21:1 q,. +ZJ_,+1 gGj, 1€l =
{1,...,n},and set s=1.

Step 3. Let k; = a.+b(r—s)/(n-s—1) or ki = a, if
s=n-1, 1€l Find j € I such that k; > k; for all i € I and
aj 2 a; forall ie {I'l el }1 = k,} .

Step 4. Set z; = 1. Delete j from I. If |I| = n — r, force all
z;, i € I, to 0 and go to Step 5. Otherwise for each i € I, subtract
gij (or gji, if j < i) from b; and add to a;. Set s = s+ 1 and return
to Step 3. ‘

Step 5. If f(z) > f(zu), set 2oy =z Set r=r+1, I={1,...,n},
and, if r < n, retyrn to Step 2. -

Step 6. Stop with the solution z 4.

The compleilty of this algorithm is O(n3). Yet the upper bound
on K, remains the same as for Al.

PROPOSITIOI\II 2. For n > 3 and any fixed positive number ¢,
1-1/(2n—5)—¢€ < Kn(A2) < 1. : (5)
Proof. (i) To settle (3) we have to show that |
- f(za2) > £(1/2). (6)

Letting B = E,<, gj, D =3; ¢, F = max{F.|0 < r < n}, we may
write the following chain of inequalities ,

f(za2) > F > £(1/2) + |B|/l4n - 1)} > f(1/2) = B/4+ D/f2, (T,

where v = 0 for n odd and v = 1 for n even. The first f;.nédt'xal-
ity follows directly from the derivation of the criterion k; and the

G. Palubeckis 231

» definition of 42. To prove the second we distinguish between three
cases according to the signs of B and D. Denote by H the third
member in (7). If B> 0 and B > -D, then F > F, > H. Moreover,

- the last inequality is strict provided B # 0 or D # 0. If D < 0 and
B < =D, then F > Fo > H. Finally, let B < 0, D > 0. Then for n
being even, F > F,;, = H. For n odd, F,_1)2 = H, if —-B > D, and
F('l+1)/" =H,if ~-BKD. ,

Now, (6) follows from the last inequality in (7) when B # 0,
from the second when B = 0, D # 0, and from the first when
B =0, D=0 (in this case, f(z(1)) > 0 or f(z(2)) > 0 depending on
the existence of a linear part in (1)).

(ii) Let m = n — 2. For some positive a < ¢ consider the
problem (1), (2) with f having the following nonzero coefficients:
aa=14a, cg = -m, q2=m, ¢ =1, qi = ~1, i=3,...,n For
any r € {1,...,n — 1}, the first variable selected in Step 3 is z).
Consequently, f(za2)=14a and

=[m-(1+a)/[m-(1+a)/2=1-(1+a)/@m—-1-a)

is greater than the leftmost term in (5).

CoroLLaRY. For any instance of (1), (2), heuristic A2 yields a
solution z 4, satisfying

\

fea)>F ad fea)>5 Y S(2)

z€{0,1}*

_Proof. From (7) and definition of F we have

f(za2) 2 '2% 2 f(=).

z€{0,1}»

The second relation becomes an equality only when B = D = 0.
But in this case, F = 0 while f(z43) > 0 since f(z(i)) >0 fori=1
or 2 (as already established in the proof of Proposition 2)

The first estimate in Corolla.ry is best possible for A2 as the
following fact implies.

232 Heuristics with a worst-case bound

~ProPosITION 3. (Palubeckis, 1990, p. 98-99). If P # NP, then
no polynomial-time heuristic for (1), (2) can guarantee a solution
z with f(z) > F (though such a solution exists).

The assertion below shows that Al cannot be estimated simi-
larly.

PROPOSITION 4. Let ¢ be any fixed positive number. For each
n > 3, there exists an instance of (1), (2) such that for z 4, computed
by Al :
.f(zAl)/F <€

Proof. The same instance as in the proof of Proposition 1 works
well. Indeed, F = F,, and f(z4,)/F = a/(14a-8)=¢/(3+e-38) < ¢
since (3+¢-30)>1 forn34.

In closing this section, we will note that the local improvement
algorithms, contrary to Al,A2, cannot guarantee (3) to be held
for any f. Denote by L(m) the local improvement algorithm that
changes in each step the values of at most m variables (if this ieads
to a better solution, of course). The above operation with exactly
k < m variables will be called the k-change.

PROPOSITION[I 5. For n > m and any fixed positive number ¢,
J : 4 . '
Kn(L(m)) > 5(1 - (m=1)/@3n—2m—1)—¢).

Proof. Define a = ¢/n and consider the problem (1), (2) with
¢ ==(m=-1)/2-a,i=1,...,n,¢;=1,i=1,...,n=1, j=i+l,...,n.
Suppose that L(m) starts at z = 0. Then k-changes, k < m, cannot
improve this solution and therefore f(z) = 0, f(z°) = n(n—m)/2—na.
Consequently

K = 4(n-m-2a)/(3n—2m—1—4a) = g[1—(m—1+2a)/(3n—2m—1—4a)]

and the result follow: ‘

4. Computational results. The main purpose of the com-
putational experiments was to compare heuristics A1, A2 described
in Section 3 against the local improvement aigorithms L(1), L(2)

G. Palubeckis 233

_ perceived as the most natural and at the same time rather good
heuristics for (1), (2). All the algorithms were coded in the C
language and tested on two sets of randomly generated problems,
using an IBM PC/AT. Initially, two versions of L(1) (and L(2) also)
differing in the 1-change (also 2-change for L(2)) selection strategy
were compared on 60 smaller size problems from those used in the
main experiments. The first of them seeks at each step for the
1-change that maximally increases the value of f, while the other
one selects the first 1-change found that leads to an improvement.
In the case of L(2), both versions start at each step to examine 2-
changes only when all 1-changes failed to improve a solution. When
applied to z = 0, the second version of L(1) was able to produce
superior solutions than the first for 35 problems and equally good
for 6. For L(2), the corresponding numbers were 28 and 13. So, the
second version was kept as a representative of L(i), i =1,2.

The test problems forming the first set are constructed sim-
ilarly as in Carter (1984), Barahona, Jiinger and Reinelt (1989).
All the coefficients ¢;; and ¢; are integral and chosen uniformly dis-
tributed in the interval [-100,100]). Note that the problems with @
having full density are most difficult for exact solution methods
(see Barahona, Jiinger and Reinelt, 1984). Tables 1 and 2 present
averaged results for this set of problems. In Table 1, for all the
algorithms except L(1) the average difference between the function
value achieved by an algorithm and that for L(1) is given. In Ta-
ble 2, the same is done with respect to L(2). The couple Al + L(1),
for example, denotes that L(1) is applied to a solution delivered by
Al. Yet, either of the local improvement algorithms alone has z = 0
initially. : ‘ -

Table 1 shows that the heuristic A1 is better than L(2) on both
counts ~ the quality of the solutions and the computing time. L(2)
following A1 further improves a solution, and for larger n this couple
is less expensive than L(2) applied to z = 0. The heuristic A2 turns
out to be by far more computer-time consuming (what agrees with
the time bound given in Section 3). Nevertheless, for the first set
of problems the performance of A2 is inferior to that of Al.

Table 1. Performance and CPU time comparison among L(1), L(2) and Al for the first set of
problems (Averages over 10 tést problems for each n) -

-

.Dimension n

Heuristic 70 100 130 160 199 220 250 . 300
Function value . . - :
L(1) 12711 18041 29028 36819 47604 61143 69578 94188
L(2) +43 +9 +41 +150 +82 4210 +168 4244
Al 4226 436 4173 4361 +309 +444 +609 +356
Al+L(1) +255 +150 4228 - 4483 - +564 4576 +930 4782
Al + L(2) +270 +152 +257 1 +496 +606 4630 +985 +818
CPU time (sec.) under IBM PC/AT :
LQ) - 26 5.9 '10.9 17.1 25.6 38.0 49.8 75.0
L(2) 7.9 162 2.1 48.0 69.7 100.9 1304 202.6
Al 48 9.8 16.5 24.9 35.1 47.0 60.5 86.8
Al + L(1) 6.0 12.0 20.2 30.2 428 56.9 73.5 105.9

A1+ L(2) 94 18.7 311 473 65.9 90.5 115.2 -163.8

¥eT

punoq'amquom D ypm soysUNIY

- ~Table 2. Performance and CPU time comparison among L(2), Al and A2 for smaller size problems
' from the first set (Averages over 10 test problems for each n)

Dimension n

Heuristic 50 60 70 80) 100
Function value- , ') S '
L(2) 6275 8703 11314 12057 17032 18050
Al +106 —4 +183 +169, +76 +27
Al + L(2) +118 +33 +227 257 +109 o 4143
A2 +77 -6 +157 +213 —~592 -32
A2 4+ L(2) +121 +38 +205 +259 +77 +130
CPU time (sec.) under IBM PC/AT : B -
L(2) 35 5.8 79 10.5 13.0 16.2
Al . - 2.5 .35 48 6.3 8.0 9.8
. AL+ L(2) 48 6.5 9.4 116 15.8 T 187
A2 75.8 130.9 207.7 3102 4415 605.2
A2+ L(2) 78.0 134.0° 212.1 315.4 450.2 614.3

syeqnpod D

1144

236 Heuristics with a worst-case bound

* The algorithms were also tested on the special problems pro-
duced by a generator described in Palubeckis (1990). Along with
Q and C defining an instance of (1), (2) it delivers also a solution
which is known to be provably optimal for this instance. The el-
ements of randomness fitted in the generator allow to produce a
sequence of different problems for fixed n. The second set of test
problems is constructed using the generator with the following val-
ues of parameters (see Palubeckis, 1990): » = 100, A = 101, é6 =1,
to =01, m, =5, if n < 100, m, = 6, if n = 132,156, m, =7, if
n = 182,210, m, = 8, if n = 256, m, = 9, if n = 306. Tables 3 and
4 summarize the computational results on these problems. In each
table, the row corresponding to f(1/2) makes it possible to calcu-
late the value of the performance criterion K. However, to avoid
doubling of information those values for different algorithms are
not shown. Clearly, in most cases K is very close to 0.

As can be seen from Table 3, the heuristic A1 consistently
outperforms L(2) on the second set of problems and coupled with
L(2) produces the solutions that are not far from the optimum.
For smaller n (and we believe for larger as well), the heuristic A2
beats Al in perfq(rma,nce and when followed by L(2) in about 93%
of the cases leads to an optimal solution. It seems that the main
reason of such an excellent behaviour of A2 lies in the nature of the
test problem generator. The problems constructed by it have all
near optimal (and optimal, of course) solutions in the |n/2-th and
neighbouring shells (despite of the fact that F = Fo = F,, = 0 for
‘chosen h,). :

-8. Conclusions. We have presented and tested two heuristics
for solving the unconstrained quadratic 0-1 programming problem
(1), (2). Both of them for any instance of (1), (2) meet the per-
formance bound given by (3). An open problem is to devise an
efficient algorithm with a better worst-case bound, say K, < 0.5,
or to show that no polynomial-time algorithm for (1), (2) can have
unless P = NP, a performance ratio K, < 1-~¢ for small positive ¢.

We conclude from the results of experimentation thai the ste-
epest ascent heuristic shows robust behaviour and juintly with the

Table 3 Performa,nce and CPU time comparison among L(1), L(2) and Al for the second set of

problems (Averages over 10 test problems for each n)

Dimension n

Heuristic 132 156 182 210 256 306
Function value :

Optimal 4356 6084 8281 11025 . 16384 23409

L(1) 1954 1933 2245 2891 6369 9014

L(2) 2634 2980 3357 6340 8316 11878

Al 3169 5319 6142 8695 13787 18606

Al + L(1) 3508 5784 7153 9441 15047 20551

Al + L(2) 3838 6050 7662 10074 15887 22288

£(1/2) ~38877 —54405 —~74115 ~98728 ~146880 —-209962
CPU time (sec.) under IBM PC/AT ‘ :

L(1) - - 1.0 1.0 1.1 1.7 4.1 5.8

L(2) 11.4 16.4 21.0 42.9 48.4 88.1

Al 16.3 9227 30.8 41.2 61.1 87.3

Al + L(1) 18.2 26.0 34.7 46.0 69.1 97.6

Al + L(2) 30.5 46.2 60.0 82.9 124.7 196.1

s1399n0g °H

18T

Table 4. Performance and CPU time comparison among L(2), Al and A2 for smaller size problems

from the second set (Averageag\@i 10 test problems for each n)

SN

Heuristic

Dimension n

50 60 70 80 - 90 100
Function value , - T :

Optimal 625 900 - 1225 1600 2025 2500
L(2) 612 659 © 894 973 1032 1035
Al 535 762 917 1376 1576 2198

Al + L(2) 605 876 151 - 1514 1868 2475
A2 616 857 1151 . 1592 1929 2383

A2 + L(2) 625 883 1225 . . 1600 2025 . 2480

FQ/?) - ~5487 ~7965 ~10842 -14220 17998 -22275
CPU time (sec.) under IBM PC/AT

L(2) - 2.0 2.2 3.0 3.9 42 5.1

Al 2.4 34 46 6.1 7.6 9.4

Al + L(2) 4.2 59 8.5 © 111 13.9 18.0
A2 77.1 130.8 208.5 309.7 440.2 602.6

133.4 2120 313.8 446.0 '610.1

A2+ L(2) 78.9

882

PUnog 9800-1340M D YIIMm SOKSINIY

G. Palubeckis ’ 239

simple local improvement algorithm produces good solutions with
modest computational requirements. We note that the local im-
provement algorithms applied to a fairly good starting solution z
achieve in most cases a better final one than that obtained when
algorithms are applied to z = (.

In future, the experiments may be continued in a way of test-
ing 'some new, perhaps more sophisticated, heuristics and using
additional sets of instances of (1), (2), e.g., those constructed by
Pardalos (1991).

REFERENCES

Barahona, F., M.Jiinger and G.Reinelt (1989). Experiments in quadratic 0-1
programming. Mathematical Programming, 44(2), 127-137.

Carter, M.W. (1984). The indefinite zero-one quadratic problem. Discrete Ap-
plied Mathematics, 7(1), 23-44.

Gallo, G., P.L.Hammer and B.Simeone (1980) Quadratlc knapsack problems.
Mathematical Programming Study, 12, 132-149.

Gulati, V.P., S.K.Gupte and A.K.Mittal (1984). Unconstrained quadratic bi-
valent programming problem. European J. of Operational Research, 15(1),
121-125.

Hansen, P. (1979). Methods of nonlmear 0-1 programming. Annals of Discrete
Mathematics, 5, 53-70.

Hennet, J.C. (1982). Resolntion of a quadratic combinatorial problem by dy-
namic programming. Lecture Notes in Control and Information Sciences,
38, 455-464.

Kérner, F., and C.Richter (1982). Zur effektiven 16sung von booleschen, quadra-
tischen optimierungsproblemen. Numerische Mathematik, 40(1), 99-109.
McBride, R.D., and J.S.Yormark (1980). An implicit enumeration algorithm
for quadratic integer programming. Management Science, 26(3), 282-296.
Palubeckis, G. (1989). Analysis of algorithms in quadratic unconstrained
0-1 optimization. Litovsksj Matematicheskg'j Sbarm'k, '29(2), .‘.’o36_346~ (in
Russian).
‘alubeckis, G. (1590).. Quadratic 0-1 optimization. Informatica, 1(1) 89-106.

™ardalos, P.M. (1991). Construction of test problems in quadratic bivalent
programming. ACM Transactions on Math. Software, 17(1), T4-87.

240 Heuristics with a worst-case bound

Pardalos, P.M., and S.Jha (1992). Complexity of uniqueness and local search
in quadratic 0-1 programming. To appear in Operations Research Letters,
11(2).

Zemel, E. (1981). Measuring the quality of approximate solutions to zero-one

' programming problems. Math. of Operations Research, 6(3), 319-332.

Received March 1992

’

G. Palubeckis received the degree of Candidate of Tech-
nical Sciences from the Kaunas Polytechnic Institute, Kaunas, Lit-
huania, in 1987. His major research interests are in graph theory,
combinatorial optimization and computer-aidea design.

