
INFORMATICA, 111)92, Vol.a, No.2, 225-·240

HEURISTICS WITH A WORST-CASE
BOUND FOR UNCONSTRAINED

QUADRATIC 0-1 PROGRAMMING

Giilta.ras PALUBECKIS

Department of Practical Informatica
Kaunas University of Technology
3028 Kaunas, Studentll St.. 50, Lit.huania

Abstraet. In this paper, we present two heuristics for80lving the un­
constrained quadratic 0-1 programming problem. First heuristic realizes ~he
steepest ascent from the centre of the hypercube, while the second constructs
a series of solutions and chooses the best of them. In order to evaluate their
worst-case behaviour We define the performance ratio K which uses the objec­
tive function value at the reference point z=1!2. We show for both heuristics
that K is bounded by 1 from above and this bound is sharp. Finally, we report
on the results of a computational study with proposed and local improvement
heuristics.

Key words: quadratic 0-1 programming, heuristics, performance ratio,
local improvement algorithms.

1. Introdaction.The unconstrained quadratic 0-1 program­
ming problem is formulated as

s.t. z E {O,I}ft,

(1)

(2)

where Q = (qij) is an n x n upper triangular matrix having zero
diagonal and C = (cd is a column n-vector. This model has a
variety of applications in· economics, operation research, physics,
design automation an<;l other areas (some examples are pointed out
by Hansen (1979), GaJlo, Hammer and SimeQne (1980), Korner
and Richter (1982), Gulati, Gupta and MittaJ' (1984». A number

226.

of exact algorithms for solving (1). (2) have been developed so far.
e.g., McBride and Yormark (1980), Carter (1984), Gulati, Gupta

. and Mittal (1984), Barahona, Junger and Reinelt (1989). However,
little is known about heuristic solution methods despite of the fact
that the exact algorithms may consistently succeed in getting a
solution and proving its optima.lity in a reasonable amount of time
for the problems with at most 50 - 60 variables only (Barahona,
Junger and Reinelt, 1989). The most natural heuristic is the local
improvement algorithm given in Gulati, Gupta and Mittal (1984).
The main operation of it ~nsists in the evaluation of the change
in the value of some varia.ble from 0 to 1 or vice versa. Another
exam pie is a greedy heuristic which starts at z == 0 and forces to
1 at each step one or two variables maximizing the increase in the
value of I. Those heuristics ahd a more powerful local improvement
algorithm as well were investigated by Palubeckis (1989, 1990).
Hennet (1982) suggests a heuristic algorithm extracted from the
dynamic programming scheme for the problem (1),(2) with one
additional requirement that the sum of variables cannot exceed a
prescribed limit.

It should be/mentioned also that to-date no polynomial-time
algorithm is knorn .for computing a local optimum for (1), (2). In
fact, this problem is shown to be PLS-complete (Pardalos and Jha,
19~2). I

In this papet, .we propose two alternative heuristics for solving
the problem (1), (2). We adopt as a performance ratio a new so­
lution quality measure (yet mentioned in Palubeckis, 1990) which
uses the value of 1 at the reference point z = 1/2. We show for both
heu.ristics that the ratio is bounded by 1 from above and this bound
is sharp. In Section 4, computational results are reported compar­
ing both heuristics against the local improvement algorithms on
two sets of rand~mly generated problems with up to 300 variables.

,
2. Measuring the quality of a solutioll. A commonly used

criterion for the evaluation ofthe solutions whenever applied to our
problem is K'(/,z) = (/(ZO) - J(z»/I(zO) == 1- J(z)fJ(z°)' where x
and zO are a.ny and, respectively, optimal 0-1 n-vectors. However,

G. PalubecIM 227

.following the definition from Zemel (1981) we may conclud~ that
this m~asure is not proper for (1), (2), since it cannot guarantee
that K'(I,z) = K'(I',z') for any I,z and for any I',z' obtained from

, I, z by complementing some variableS, i.e., replacing some Zi with
1 -:- :l:i and releasing a constant appearing in the expression for I'
(in fact, we. have i(z) = I'(z')'+ e, where e is obtained by summing
some of qij,CI). Yet the above condition is, obviously, satisfied
by an alternative measu~e K(I, z) = (I(zO) -/(z»/(/(zO) -/(1/2».
Morcover,.K als9 meets all other conditions from Zemel (1981) for
a measure to be proper. On the other hand, K is not free from
drawbacks too. The main criticism levelled' at i< is the lack of
sensitivity for some types ,of problems. Consider, for instance, the
problem of finding a maxirpal clique in a graph. It, dearly, may
be put in the form (1), (2). Suppose that ~n n-vertex graph has
an edge set E of cardinality d1n2 , a maximal clique consisting of
1m2 edges, and d2n2 nonadjacent pairs of vertices. Here d1 , d2 , b, b ~

d1, d1 + d2 = (n - 1)/(2n), are some positive constants. By choosing
Ci = 0 for all i, qij = 1, if (i,j) e E, and qij = --en with an appropriate
constant c < 1~ if (i,j) ~ E, (observe that qij = -c dOes not work) we
reduce a problem to (1); (2) with 1(1/2) = -nS(cd2 -dl/n)/4 = _dns,
where d is a positive constant for sufficiently large n. For any edge
(which gets a very bad solution to (1), (2»of a. graph, we have

K = (bn2 -1)/(bn2 + dnS) -+ +0, \ :

as n -+ .00. Hence, whenever estimated by K this bad solution is
almost equally good as an optimal one. The lack of sensitivity of
K was also observed for the second set of test problems used in our
computational experiments (see Section 4). For those problems,
-/(1/2)/I(zO) is about 9. In both examples, the measure K' seems
to be more appropriate.

, One of the tasks associated with K is t~ look for the heuristics
that for any I would produce z with

K(/,z) < 1. (3)

Two heuristics of such a type are described in the following Section.
In order to evaluate the performance of some heuristic A for (1),(2)

228 Heu,vtic. fllitll CI wont-cue bound

we use the worst-case performanCe ratio of A, denoted Kn(A), which
is defined for each integer n to bethe maximum of K(J,z) over all
rr variable functions / and corresponding solutions z delivered by
A for (1), (2) with this /.

3. Heuristics. A natural way to find a 0-1 vector. satisfying
(3) is to start at the centre of the n-dimensional hypercube and
compel the variables to equal 0 or 1 ooe at a time, selecting at each
step that. variable which maximizes the increase in the value of /.
This steepest ascent conce~t is realized in the following algorithm
(referred to as Al later on). .

Step 1. Let 1 ~ {I, 2, .. :, nJ, OJ :;:: Ci and 6i :;:: E;;~ llji +
Ej=i+l qij. i e I.

Step B. Let lei = 20; + bi and Ie; ::: 0;, i E 1. For each i E 1,
if lei >0, or lei = 0 and Ie; ~ 0, set Vi :;:: 1; otherwise'set lei = -lei,

~ = -V;, Vi = O. Find j E 1 such that lej ~ lei for ail i eland lej ~ Ie~
for all i E {Ill e 1, Ie, = lej}.
, Step 3. Fix Zj = Vj' Delete j from I. If 1 = 0, go to Step 4.
Otherwise for each i E I, subtract qii (or qji, if j < i) from bi and,
it Zi'= 1, add qii !Ior !ii) to OJ. Return to'Step 2.

Step 4, Sto~; the sol1l:tion to (1), (2) is ZAI = (Zi"
This algoritnm; obviously,. runs in time O(n2). Its worst-case

beh.aviour is chataderized by the following statement.
, i

PROPOSITION !. For n > 2 and any fixed positive number e:,

1 - 1/(2n - 3) - e < Kn(A1) < 1.

. Proof. (i) Denote by US the value of lei during the i-th arrival
at Step 2 of AI. Changing the value of Zj from 1/2 to Vi in Step 3
increases / by Iej /4. Therefore

n

/(ZA1) = /(1/2) + E us/4. I

;=1

Since us ~ 0 for all i, and Ul > 0 or U2 > o (if lei = 0, i ~ 1,2, .. :~ n,
initially), it follows that /(ZA1) > /(1/2). This establishes the upper
bound. . .

G. Palubeca. 229

(ii) Let m = n - 1. Define a = e/3,p = (e +2)/(m'+1).
Consider the problem (1), (2) with / having qli = (2 - fJ)/m, i =;:
2, ... , n, flii = 2a/[m(m - lll,i = 2,.0. I m, j = i + 1, ... ,n, Cl = -1,

. and all other Ci equal to O~ On the first iteration of AI, kl =
P > ki = 2a/m + (2 - fJ)/m, i e {2, ... , n}, and thuS the variable Zl

is chosen a!ld forced to O. All the remaining variables are fixed
at 1. Therefore I(ZA1) = a, while /(zO) = 1 + a - fJo Furthermore
/(1/2) = (a - fJ)/4. Rena:

K(f,zAl) == (4-4fJ)/(4+e-3P);::; 1-(2+em+2e)/(4m-2+eni-2£)

from what the lower bound follows.

REMARK. Note that the' use of the additional criterion ~ in
Al has, in fact, no impact on the worst-case behaviour of Al (with
respect to K). This rule of breaking the ties enhances the efficiency
of Al on random and, hopefully, real problems .

. Now we approach the problem (1), (2) in a different way~ De­
fine the ,...th shell· of the hypercube to be the set of vertices Z with
exactly r coor.dinates equal to 1. Let Fr. r e {a, 1, ... , n}, be an
average value of / on the r-th shell. The underlying idea. of the
second algorithm is to find for each r a solution z(r) that belongs
to the roth shell and satisfies /(z(r» ~ Fr , and pick out the best of
them as an output.

For some r > 0 assume that some 8 - 1 < r variables are forced
to I while the other being free. In order to reveal a proper criterion
for the choice of the 8-th variable we have. to explore t~e average
Fr .• _1(l) of f over the set of extensions of this partial assignment to
those vertices of the roth shell that have z, = 1 for a free variable
z,. Let 11 (respectively 12) stand for the set of indices of the Dxed
(free) variables. Let U._l, tJ._I, %.-1 be the averages over

{qiili<j, ieII, ieI2 or ieI2' ie'IIl, {qiili<ie I2}

and {cili E I,} respectively. Given any' free ie, with the sums aLb,
of qil·or flli with i in 11 and 12 respectively, .we may write

Fr •• _l(/) = C +~; + Cl + u.,(r -.) +v. (r; ~). + z.(r -.), (4)

where u. ;:: [u.~1(s-I)(n-s+l)-~+6,l/[B(n-8)l, ·v. = [tI'_l('a-~+l)_
.6,]/ ('·2'), z, = [z._l(n -s + 1) - c,l/(n - 8) and cis a term n~t
depending on I. It is readily checked that the right hand side of (4)
is maximized by z, having largest a~ + c, + hi(r - .)/(n - 8 -1). This
.fact is exploited in the following ;t.lgorithm(on occasion, referred
to as A2). ,

Step 1. Choose ZA3 to be that from (0, ... ,0) and (1, ... ,1~
which has a larger value of /. Set r = 1.

Step~. Let Gi == Ci ~d 6; = E;~~ t;i + Ei=i+l tii, i e I =
{l, ...• n}, and set.;:: 1. . .

Step 3. Let ~ = Gi + 6i(r - s)/(n ~ 8 - 1) or ki = Gi, if
B = n - 1. i e 1. Find j e 1 such that lei ~ lei for all i eland
GJ ~ Gi for all i e {Ill e 1 •. 1, = Ie;}.

Step 4., Set zi = 1. Delete j from 1. If III = n - r, force all
Zi, i e 1, to 0 and go to Step 5. Otherwis~ for each i e I, subtract
tii (or fji. if j< i) from 6i and add to ai. Set B = • + I and return
to Step 3. .

Step 5~ If j(z) > j(ZA3), set ZA3 = z. Set '!' = r+ 1, I = {I, ... , n},
and, if r < n, ret1fn ~ Step 2~ -

Step 6. Stoq witb the solution ZA2' .
The comple*ityofthis algorithm is O(n3). Yet the upper bound

on Kn remains the same as for AI.

PROPOSITIOJ .2. For n > 3 and any fixed positive number e,

1 - 1/(2n - 5) - e < Kn(A2) < 1. (5)

Proof. (i) To settle (3) we have to show tha.t

(6)

Letting B = E;~ fij, D = E; Ci, F = max{F,.IO lEt r lEt n}, we may
write the following chain of inequalities . .

/(ZA2) ~ F ~ /(1/2) + IBI/[4(n - 'Y)] ~ /(Y2) = Bi4 + D/2, . S7)

where 'Y ;:: 0 for n odd a.nd 'Y = I for n even. T~e first i 'l~~al­
ity follows directly from the derivation of the criteri.)n ki and the

G. Palubeckis 231

" definition of A2. To prove the second we distinguish between three
cases according to the signs of B and D. Denote by H the third
member in (7). If B ~ 0 and B ~ -D, then F ~ Pn ~ H. Moreover,

. the last inequality is strict provided B :f; 0 or D t o. If D ~ 0 and
B. < -D, then F ~ Fo > H. F.inally, let B < 0, D > o. Then for n

being evens F ~ Fn/2 = H. For n odd, F(n-l)/2 = H, if-B ~ D,and
F(n+l)/2 = H, if """B ~ D.

Now, (6) follows from the last inequality in (7) when B :f; 0,
from the second when B = 0, D :f; 0, and from the first when
B = 0, D = 0 (in this case, l(x(1.» > 0 or l(x(2» > 0 depending on
the existence of a linear part in (1».

(ii) Let m = n - 2. For some positive 0' < e consider the
problem (1), (2) with 1 having the following nonzero coefficients:
Cl = 1 +- 0', C2 = -m, q12 = m, Ci = 1, qli = -1, i = 3, ... , n. For
any I' E {1, ... , n - 1}, the first variable selected in Step 3 is XI·

Consequently, I(XA2) = 1 + 0' and

. K = [m -,(1 + a)]/[m -{I + 0')/2] = 1- (1 + a)J(2m - 1 - 0')

is greater than the leftmost term in (5).

COROLLARY. For any instance 'of (1), (2), heuristic A2 yields a
solutionzA2 satisfying .

. Proof. From (7) and definition ofF we have

!(XA2) ~ F ~ ~ L !(x).
ze{O,l}-

The second relation becomes an equ<tlity ~nly when B = D .= O.
But in this case, F = 0 while !(XA2) > 0 since !(x(i» > 0 for i = 1
or 2 ' (as already established in the proof of Proposition 2).

The first estimate in Corollary is best possible for A2 as the
following fact implies. .

232 Heuriltics fI1ith 0 ",orst-case bound

"PROPOSITION 3. (Palubeckis, 1990, p. 98-99). If P :f:. N P, then
no polynomial-time heuristic:: for (1), (2) can guarantee a solution
z with fez) > F (though such a solution exists).

The assertion below shows that A1 cannot be estimated simi­
larly.

PROPOSITION 4. Let t be any fixed positive number. For each
n> 3, there exists an instance of (1), (2) such that for ZAl computed
by A1

f(ZA1)/F < t.

Proof. The same instance as in the proof of Proposition 1 works
well. Indeed, F = Fn and f(ZA1)/F = a/(1+a-p) = t/(3+t-3(3) < e
since (3 + e - 3(3) > 1 for n ~ 4.

In closing this section, we will note that the local improvement
algorithms, contrary to A1,A2, cannot guarantee (3) to be held
for any f. Denote by L(m) the local improvement algorithm that
changes in each step the values of at most m variables (if this ieads
to a better solution, of course). The above operation with exactly
I: (m variables wpl be called the k-change.

f
PROPOSITION! 5. For n > m and any fixed positive number t,

I . ,
, . 4 '

K~(L~m») > i(1- (m - 1)/(3n - 2m - 1) - t).
I
I

Proof. Define ~ = e/n and consider the problem (1), (2) with
c,=-(m-l)/2-a, i=1, ... ,n,Cij=1, i=1, ... ,n-1, j=i+l, ... ,n.
Suppose that L(m) starts at Z = o. Then k-changes, k ('m, cannot
improve this solution and therefore fez) = 0, f(zO) = n(n-m)/2-na.
Corisequently

K = 4(n-m-2a)!(3n-2m-1-4a) = i [1-(m-l+2a)/(3n-2m-1-4a)]

and the result followE

4. Computational results. The main purpose ,of the com­
putational experiments was to compare heuristics At, A2 described
in Section 3 against the local improvemE'nt algorithms L(l), L(2)

233

. perceived as ihe most natural and at the same time rather' good
heuristics for (1), (2). All the algorithms were coded in the C
language and tested on two sets of randomly generated problems,
using an IBM PC/AT. Initially, two versions of L(l) (and L(2) also)
differing in the· I-change (also.2-change for L(2» selection strategy
were com pared on 60 smaller 'size problems from those used in the
main experiments. The first of them seeks at each step for the
I-change that maximally increases the value of I, while the other
one selech the first I-change found that leads to an improvement.
In the case of L(2), both versions start at each step to examine 2-
changes only when alii-changes failed to improve a solution. When
applied to z = 0, the seconq version of L(l) was able to produce
superior solutions than the first for 35 problems and equally good
for .6. For L(2), the corresponding numbers were 28 and 13. So, the
second version was kept as a representative of L(i), i = 1,2.

The test problems forming the first set are constructed sim­
ilarly as in Carter (1984), Barahona, Junger and Reinelt (1989).
All the coefficients qij and Ci are integral and chosen uniformly dis­
tributed in the interval [-100,100]. Note that the problems with Q
having full density are most difficult for exact solution methods
(see Barahona, Junger and Reinelt, 1984). Tables 1 and 2 present
averaged results for this set of problems. In Table 1, for all the
algorithms except. L(l) the average difference between the function
value achieved by an algorithm and that for L(I) is given. In Ta­
ble 2, the same is done with respect to L(2). The couple Al + L(l),
for example, denotes that L(I) is applied to a solution delivered by
AI., Yet, either of the local improvement algorithms alone has z = 0
initially.

Table 1 shows that the heuristic Al is better than L(2) on both
counts - the quality of the solutions and the computing time. L(2)
following Al further improves a solution, and for larger n this couple
is less expensive than L(2) a.pplied to z= O. 'The heuristic A2 turns
out to be by far more computer-time consuming (what agrees with
the time bound given in Section 3). Nevertheless, for the first set
of problems the performance of A2 is inferior to that of AI.

w
Cot
~

Table 1. Performance and CPU time comparison a.mong L(l), L(2) and Al for the first set of
problems (Averages ~ver fOTest "pf'oblems for each n)

Heuristic . Dimension n
70 100 130 160 190 22.0 250. 300 ~

Function value
II:
i!.

L(l) 11271 18041 29028 36819 47604 61143 69578 '94188 if
. L(2) +43 +9 +41 +150 +82 +210 +168 +244

..
Al +226

.'

+36 +173 +361 +309 +444 +609 +356 l
Al +L(l) +255 +150 +228 +483 +564 +576 +930 +782 Q

Al + L(2) +270 +152 +257 +496 +606 +6,30 +985 +818 I
CPU ;time (sec.) under IBM PC/AT i L(l) , 2.6 5.9 '10.9 17.1 25.6 38.0 49.8 75.0 . ell

L(2) 7.9 16.2 29.1 48.0 69.7. 100.9 130.4 202.6 r
Al 4.8 9.8 . 16.5 24.9 35.1 47.0 60.5 86.8 l

~
Al +L(l) 6.0 12.0 20.2 30.2 42.8 56.9 73.5 105.9
.41 + L(2) 9.4 18.7 31.1 47.3 65.9 90.5 115.2 ·163.8

. Table 2. Performance and CPU time comparison among L(2), Al and A2 for smaller size problems
from the first set (Averages over 10 test problems for each n)

Heuristic Dimension n
50 60 70 80 90 100

Function value· !=l
L(2) 6276 8703 11314 12957 17032 18050 l Al +106 -4 +183 +169, +76 +27 II:

Al +L(2) +118 +33 +227 -h257 +109 +143
J. A2 +77 -6 +157 +213 -52 -32

A2 +L(2) +121 +38 +205 +259 +77 +130
CPU time (sec.) under IBMPG/AT

L(2) . 3.5 6.8 7.9 10.5 13.0 16.2
Al __ - 2.5 3.5 4.8 .6.3 8.0 9.8

. Al + L(2) 4.8 6.5 9.4 11.6 15.8 18.7
A2 75.8 130.9 207.7 310.2 441.5 -605.2

A2 +L(2) 78.0 ·134.0· 212.1 315.4 450.2 614.3

~

236 HeurUtic, with G ",or,t-eole bound

<, The algorithms were also tested on the special problems pro­
.duced by a generator described in Palubeckis (1990). Along with
Q and C defining an instance of (1), (2) it delivers also a. solution
which is known to be provably optimal for this instance. The el­
ements of randomness fitted in the generator allow to produce a
sequence of different problems for fixed n. The second set of test
problems is constructed using the generator with the following val­
ues of parameters (see Palubeckis, 1990): h::: 100, A = 101, 6 = 1,
to = 0.1, m~ = 5, if n:(100, m~ = 6, if n = 132, 156, ~ =7, if
n = 182, 210, ~ = 8, if n == 256, ~ = 9, if n = 306. Tables 3 and
4 summarize the computational results on these problems. In each
table, the row corresponding to /(1/2) makes it possible to calcu­
late the ,value of the performance criterion K. However, to avoid
doubling of information those values for different algorithms are
not shown. Clearly, in most cases K isv~ry close to O.

As can be seen from Table 3, the heuristic Al consistently
outperforms L(2) on the second set of problems and coupled with
L(2) produces the, solutions that are not far from the optimum.
For smaller n (anP we believe'for larger as well), the heuristic A2

beats Al in perf4rm~nce and when followed by L(2) in about 93%
of the cases l~ to an optimal solution. It seems that the main
reason of such an excellent behaviour of A2 lies in the nature of the
test problem ge~erator. The problems constructed by it have all
near optimal (and optimal, of course) solutions in the In/2J-th and

. neighbourirlg shells (despite of the fact that F = Fo = Fn = 0 for
chosen h, A) •

... S. ConClusions. We have presented and tested two heuristics
for solving the unconstrained quadratic 0-1 programming problem
(1), (2). Both of them for any instance of (1), (2) meet the per­
formance bound given by (3). An open problem is to devise an
efficient algorithm with a better worst-case bound~ say Kn < 0.5,
or to show tha.t no polynomial-time algorithm for (1), (2) can hav,.
unless P = N P, a performance ratio Kn < l";':'t for small positi,:,~ t.

We conclude from the results of experimentation thaI. the ste­
epest ascent heuristic shows robust behaviour &I1d juintly with the

Table 3. Performance and .CPU time comparison among L(l), L(2) and Al for the seco~d set of
problems (Averages over 10 test problems for each n)

Heuristic Dimension n
132 156 182 210 256 306

Function value
Optimal 4356 6084 8281 11025 ,15384 23409

L(l) 1954 1933 2245 2891' 6369 9014
L(2) 2634 2980 3357 6340 , 8316 11878
Al 3169 5319 6142 8695 13787 18606

Al + L(l) 3508 5784 7153 9441 15047 20551
At + L(2) 3838 6050 7662 10074 15887 22288

1(1/2) -38877 -54405 -74115 -98728 -146880 -209962
CPU time (sec.) under IBM PC/AT

L(l)- - t.o 1.0 - 1.1 1.7 4.1 5.8
L(2) 11.4 16.4 21.0 42.9 48.4 88.1
Al 16.3 - 22.7 30.8 41.2 61.1 87.3

Al + L(l) 18.2 26.0 34.7 46.0 69.1 97.6
At +L.(2) 30.5 46.2 60.0 82.9 124.7 196.1

~

~ c:
[
1:'

t.,)
w
~

~
00

Table 4. Performance and CPU time comparison among L(2). Al and A2 for smaller size problems
from the second set (Avera~~ 10 test problems for each n)

Heuristic Dimension n
50 60 70 80 90 100 ~

Function value c: a·
Optimal 625 900 . 1226 1'600 2025 2500 -~ .

L(2) 612 659 894 973 1032 1035 ..
Al 535 762 917 1376 1676 2198 l

Al + L(2) 605 876 1151 1514 1868 2475 Q

A2 616 857 1151 1692 1929' 2383 ~
A~+L(2) 626 883 1225 1600 2025 2480 ;:

~

/(1/2) -5487 -7965 -10842 -14220 -17998 -22275 a ..
CPU time (sec.) under IBM PC/AT

(\

go
L(2) 2.0 2.2 3.0 3.9 4.2 5.1 I:

;3
Q"

Al 2.4 3.4 4.6 6.1 7.6 9.4
Al + L(2) 4.2 5.9 8.5 11.1 13.9 18.0

A2 77.1 130.8 208.5 309.7 440.2 602.6
A2 + L(2) 78.9 133.4 212.0 313.8 446.0 '610.1

G. PalubecIcU 239

simple local improvement algorithm produces good solutions with
modest computational requirements. We note that the local im­
provement algorithms applied to a fairly good starting solution z
achieve· in most cases a better final one than that obtained when
al~orithms are applied to :e ::: q~

In futu!'e, the experiments may be continued in a way of test­
ing'some new, perhaps more sophisticated, heuristics and using
additional sets of instances of (1), (2), e.g., those constructed by
Pardalos (1991) ..

REFERENCES

Barahona, F., M.Jiinger and G.Reinelt (1989). Experiments in quadratic 0-1
programming. Mathematical Programming, 44(2), 127-137.

Carter, M.W. (1984). The indefinite zero-one quadu.tic problem. Discrete Ap­
plied Mathematics, 7(1), 23-44.

Gallo, G., P.L.Hammer and B.Simeone (1980). Quadratic knapsack problems.
Mathematical Programming Study, 12, 132-149.

Gulati, V.P., S.K.Gupte and A.K.Mittal (1984). Unconstra.ined quadratic bi­
valent programming problem. European J. of Operational Research, 15(1),
121-125.

Hansen, P. (1979). Methods of nonlinear 0-1 programming. Annals of Discrete
Mathematics, 5, 53-70.

Hennet, J.C. (1982). Resolution of a quadratic combinatorial problem by dy­
namic·programming. Lecture Notes in Control and Informati,on Sciences,
38, 455-464.

Korner, F., and C.Richter (1982). Zur ef£ektivenlOsung von booleschen, quadra­
tischen optimierungsproblemen. Numerische Mathematik, 40(1), 99-109.

McBride, R.D., and J.S.Yormark (1980). An implicit enumeration algorithm
for quadratic integt'r programming. Management Science, 26(3), 282-296.

Palubeckis, G. (1989). Analysis of algorithms in quadratic unconstra.ined
0-1 optimization. Litovskij Matematicheskij Sbornik, .29(2), 336-346. (in
Russian).

':uu~ckis, G. (1.990). Quadratic 0-1 optimization. Informatica, 1(1),89-106.

""4rdalos, P.M. (1991). Construction of test problems in quadratic bivalent
programming. ACMTransactions on Math. Software, 17(1), 74-87.

240 Heuridic, fIIith tJ fIIOr,t-ctUe bound

Pardalos, P,M., and S.lha (1992). Complexity of uniqueness and local search
in quadratic 0-1 programming. To. 'Ppear in Operatiofll Re,eorch Letter"
11(2).

Zemel, E. (1981). Measuring the quality of approximate solutions to zero-one
programming problems. Math. 0/ OperatiQJlI Research, 6(3), 319-332.

Recei ved March 1992

G. Palubeckis received the degree of Candidate of Tech­
nical Sciences from the Kaunas Polytechnic lhstitute, Kauna.<;, ~it­
huania, in 1987. His major research interests (>"re in graph theory,
combinatorial optimization and computer-aidE:,a design.

