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Abstract. Interval-valued intuitionistic fuzzy numbers (IVIFNs) characterized by a membership
function and a non-membership function with values that are intervals, have strong ability to handle
imprecise and ambiguous information in real-world applications. This paper proposes an integrated
maximizing consistency and multi-choice goal programming (MCGP) approach to handle hybrid
multi-criteria group decision making problems based on IVIFNs. Firstly, the hybrid decision infor-
mation (including crisp numbers, intervals, intuitionistic fuzzy numbers and linguistic variables)
are normalized into the IVIFNs. Then, an ordinal consistency index and a cardinal consistency in-
dex are proposed to measure the consistency between the individual opinion and the group opinion,
respectively. And an optimal model based on maximizing consistency is constructed to derive the
weights of experts. Afterwards, the comprehensive ratings and the ranking values of alternatives are
obtained by the hybrid weighted aggregation operator and the proposed ratio function of IVIFNs,
respectively. Furthermore, a MCGP model based on the ranking values is constructed to identify
the optimal alternatives and their optimum quantities. At length, an illustrative case is provided to
verify the proposed approach.

Key words: hybrid multiple criteria group decision making, interval-valued intuitionistic fuzzy
number, consistency, multi-choice goal programming.

1. Introduction

Multiple criteria group decision making (MCGDM) usually refers to the decision pro-
cess that several experts make evaluations with their respective knowledge, experience
and preference for a set of alternatives over multiple criteria to give the criteria values
of alternatives, and then the decision results from all experts are aggregated to form an
overall ranking order of alternatives, which is an important research topic in decision the-
ory (Zhang and Xu, 2014a). In classical MCGDM processes, all decision data are known
precisely or given as real numbers (Sadeghi et al., 2012; Stanujkic et al., 2013). However,
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due to the inherent vagueness of human preferences as well as the objects being fuzzy and
uncertain, the criteria values involved in MCGDM problems are not always expressed by
real numbers, but some are better suited to be denoted by fuzzy numbers, such as inter-
vals (Zadeh, 1965; Stanujkic et al., 2012), hesitant fuzzy elements (Xu and Zhang, 2009;
Zhang and Xu, 2015), intuitionistic fuzzy numbers (IFNs) (Zeng et al., 2013; Liu and Liu,
2014), intuitionistic linguistic numbers (Liu, 2013a, 2013b; Liu and Wang, 2014) and the
interval-valued IFNs (IVIFNs) (Xu and Yager, 2009; Park et al., 2011b; Li, 2011), etc.
IVIFNs with the membership and non-membership functions denoted by intervals have
received increasing attentions because of their ability to handle imprecise and ambiguous
information in real-world applications. Many scholars investigated the basic operators of
interval-valued intuitionistic fuzzy sets (IVIFSs) and their properties (Atanassov, 1994;
Lakshmana Gomathi Nayagam and Sivaraman, 2011), aggregating operators (Xu, 2007b;
Yu et al., 2012; Liu, 2014), correlation coefficient (Bustince and Burillo, 1995; Park
et al., 2009), topological properties (Kumar Mondal and Samanta, 2001) and their dis-
tance and similarity measures (Xu, 2010; Zhang et al., 2010; Wei et al., 2011). These
research works have made great contributions to enrich IVIFS theory. The IVIFNs
have also been used in a wide range of applications, such as game theory filed (Li,
2010) and decision making fields (Chen and Li, 2013; Tan, 2011; Park et al., 2011a;
Razavi Hajiagha et al., 2013).

In recent decades, a considerable number of studies have reported decision-making
models and methods within IVIFN environments. For instance, Tan (2011) presented a
multi-criteria interval-valued intuitionistic fuzzy group decision making method using
Choquet integral-based TOPSIS (Technique for Order Preference by Similarity to Ideal

Solution) approach. Park et al. (2011a) extended the TOPSIS method to solve MCGDM
problems with IVIFNs. Yue and Jia (2013) investigated the MCGDM problems with IV-
IFNs in which the weights of experts are unknown in advance and developed a method
based on the TOPSIS and the optimistic coefficient to obtain the weights of experts.
Yue (2011) also proposed a method based on distance measure for determining experts’
weights in MCGDM problems with IVIFNs. Wang and Li (2012), Chen (2013) respec-
tively developed the interval-valued intuitionistic fuzzy LINMAP (linear programming

technique for multidimensional analysis of preference) methods to handle MCGDM prob-
lems with IVIFNs. Depending on the likelihood of fuzzy preference relations between IV-
IFNs, Chen (2014) proposed an interval-valued intuitionistic fuzzy QUALIFLEX (quali-

tative flexible multiple criteria method) outranking method with a likelihood-based com-
parison approach for handling the decision problems within a decision environment of
IVIFNs.

However, due to the complex structures of IVIFNs, it may be difficult for the experts
to directly collect the IVIFN decision data. Yu et al. (2011) developed a method based
on preference degrees to transform the linguistic variables into IVIFNs. That is to say,
the linguistic variables can be used to collect the IVIFN decision data. Therefore, this
paper establishes a decision environment based on IVIFNs for the hybrid MCGDM prob-
lems in which the ratings of alternatives on the criteria take the forms of real numbers,
interval numbers, IFNs and linguistic variables. Furthermore, an integrated consistency
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maximization model and multi-choice goal programming (MCGP) approach is proposed
to solve the hybrid MCGDM problem based on IVIFNs. This approach first normalizes the
hybrid decision information into the IVIFNs, and then constructs a consistency maximiza-
tion model to calculate the weights of experts, and further calculates the comprehensive
ratings and the ranking values of alternatives, and finally a MCGP model on the basis of
the ranking values is constructed to determine the optimal order quantities from the best
alternatives being subjected to some resource constraints.

The remainder of this paper is organized as follows: in Section 2, some basic concepts
related to IVIFNs are briefly reviewed and a hybrid MCGDM problem based on IVIFNs
is described. In Section 3, a method based on maximizing consistency and MCGP is de-
veloped. In Section 4, an illustrative example is provided to demonstrate the applicability
and implementation process of the proposed method and the paper finishes with some
concluding remarks in Section 5.

2. Multiple Criteria Group Decision Environment with IVIFNs

2.1. Preliminaries on IVIFSs and IVIFNs

Definition 1. (See Atanassov and Gargov, 1989.) Let a set X be a universe of discourse.
An IVIFS is an object having the form:

Ã =
{

〈x,µÃ(x), νÃ(x)〉|x ∈ X
}

(2.1)

where µÃ(x) = [µL

Ã
(x),µR

Ã
(x)] ⊆ [0,1] and vÃ(x) = [vL

Ã
(x), vR

Ã
(x)] ⊆ [0,1] are inter-

vals, µL

Ã
(x) = infµÃ(x), µR

Ã
(x) = supµÃ(x), vL

Ã
(x) = infvÃ(x), vR

Ã
(x) = supvÃ(x) and

µR

Ã
(x) + vR

Ã
(x)6 1.

For each element x ∈ X, its uncertainty interval relative to Ã is given as:

πÃ(x) =
[

πL

Ã
(x),πR

Ã
(x)
]

=
[

1 − µR

Ã
(x) − vR

Ã
(x),1 − µL

Ã
(x) − vL

Ã
(x)
]

⊆ [0,1].

(2.2)

For convenience, Xu (2007a) called α̃ = (µα̃, να̃) an IVIFN and denoted it by α̃ =

([a, b], [c, d]), where [a, b] ⊆ [0,1], [c, d] ⊆ [0,1] and b + d 6 1.

Remark 1. It is noted that if a = b and c = d , then the IVIFN α̃ is reduced to an IFN
α̃ = (a, c). Furthermore, if a + c = 1, then the IFN α̃ is reduced to a real number α̃ = a.
On the other hand, the IFN α̃ is equivalent to the interval number α̃ = [a,1 − c]. That is
to say, all the real numbers, interval numbers and IFNs are the special cases of IVIFNs.

Definition 2. (See Xu, 2007a.) Let α̃ = ([a, b], [c, d]) be an IVIFN, then the score func-
tion of α̃ can be defined as:

s(α̃) =
1

2
(a − c + b − d) (2.3)
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and the accuracy function of α̃ as:

h(α̃) =
1

2
(a + b + c + d). (2.4)

Thus, for two IVIFNs α̃1 and α̃2, the ranking law of IVIFNs is introduced as follows
(Xu, 2007a):

(1) If s(α̃1) < s(α̃2), then α̃1 ≺s α̃2;

(2) If s(α̃1) = s(α̃2), then

{

h(α̃1) < h(α̃2) ⇒ α̃1 ≺sh α̃2,

h(α̃1) = h(α̃2) ⇒ α̃1 ∼sh α̃2.

Example 1. Let ã1 = ([0.3,0.4], [0.1,0.2]) and ã2 = ([0.1,0.6], [0.1,0.2]) be two
IVIFNs. According to the score and accuracy functions of IVIFNs developed by Xu
(2007a), it can be obtained: s(ã1) = 0.2, h(ã1) = 0.5, s(ã2) = 0.2, h(ã2) = 0.5. Using
the ranking law of IVIFNs developed by Xu (2007a), it is easy to know that ã1 ∼sh ã2.

It is observed from Example 1 that there may yield many indistinguishable pairs of
IVIFNs when using the score and accuracy functions based-ranking method developed by
Xu (2007a). In other words, this kind of the ranking method of IVIFNs is invalid in many
situations like Example 1 and therefore should be improved. Bearing this fact in mind, the
novel score function and the new accuracy function are developed for measuring IVIFNs.

Definition 3. Let α̃ = ([a, b], [c, d]) be an IVIFN, then the improved score function of
α̃ is defined as follows:

Sδ(α̃) =
1

2

(

aδ − cδ + bδ − dδ
)

(2.5)

and the improved accuracy function of the IVIFN α̃ as:

Fδ(α̃) =
1

4

(

aδ + bδ + cδ + dδ
)

(2.6)

where δ (0 < δ 6 1) is a parameter determined by the decision maker, which can be tuned
according to the decision making problem at hand.

Remark 2. It is worth pointing out that if δ = 1, the Sδ(α̃) is reduced to the score function
s(α̃) developed by Xu (2007a). In the practical application, the value of the parameter δ

usually equates 0.1.

Thus, for two IVIFNs α̃1 and α̃2, the novel ranking method for IVIFNs is presented as
follows:

(1) If Sδ(α̃1) < Sδ(α̃2), then α̃1 ≺S α̃2;

(2) If Sδ(α̃1) = Sδ(α̃2), then

{

Fδ(α̃1) < Fδ(α̃2) ⇒ α̃1 ≺SF α̃2,

Fδ(α̃1) = Fδ(α̃2) ⇒ α̃1 ∼SF α̃2.

Following Example 1, using Definition 3 the corresponding calculation results can be
obtained and showed in Table 1.
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Table 1
The results obtained by the novel ranking approach of IVIFNs.

Sδ(α̃1) Fδ(α̃1) Sδ(α̃2) Fδ(α̃2) Ranking orders

δ = 0.001 0.0009 0.9985 0.0005 0.9983 ã2 ≺SF ã1

δ = 0.01 0.0088 0.9851 0.0054 0.9832 ã2 ≺SF ã1

δ = 0.1 0.0767 0.8611 0.0494 0.8475 ã2 ≺SF ã1

Table 2
The results obtained by the ratio function-based ranking method.

Qδ(α̃1) Qδ(α̃2) Ranking orders

δ = 0.01 0.5022 0.5014 ã2 ≺Q ã1

δ = 0.1 0.5223 0.5146 ã2 ≺Q ã1

δ = 0.5 0.6072 0.5883 ã2 ≺Q ã1

With the help of Example 1, it is easy to see that the proposed ranking approach for
IVIFNs (Definition 3) is superior to Xu’s approach (Definition 2). Although the new rank-
ing approach (Definition 3) seems to be effective, using this approach makes the process
of decision making more time-consuming. Because the decision process is required to be
divided into several steps and it is necessary to add other rules for obtaining the best alter-
native when utilizing this approach to deal with the MCGDM problems (Zhang and Xu,
2014b). Therefore, we next develop a direct ranking method based on the ratio function
to compare the magnitude of IVIFNs. The concept of the ratio function is introduced as
follows:

Definition 4. Let α̃ = ([a, b], [c, d]) be an IVIFN, then a ratio function of α̃ is defined
as follows:

Qδ(α̃) =
aδ + bδ

aδ + bδ + cδ + dδ
(2.7)

where δ (0 < δ 6 1) is a parameter determined by the decision maker, which can be tuned
according to the decision making problem at hand.

Obviously, the ratio function Qδ(α̃) ∈ [0,1]. In the practical application, the value of
the parameter δ usually equates 0.5. Thus, for two IVIFNs α̃1 and α̃2, the ratio function-
based ranking method for IVIFNs is presented as follows:

(1) if Qδ(α̃1) <Qδ(α̃2), then α̃1 ≺Q α̃2;
(2) if Qδ(α̃1) =Qδ(α̃2), then α̃1 ∼Q α̃2;
(3) if Qδ(α̃1) >Qδ(α̃2), then α̃1 ≻Q α̃2.

Following the Example 1, according to the ratio function-based ranking method we
can calculate the corresponding ranking results which are showed in Table 2.

All ranking results obtained by these three methods in Example 1 are listed in Table 3.
It is observed from Table 3 that the ranking order of IVIFNs obtained by Definition 4

is the same as the result obtained by Definition 3, but is not consistent with the result
obtained by Definition 2. The main reason is that in Definition 2 (Xu, 2007a) both the
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Table 3
The comparison results of the ranking orders of IVIFNs.

The ranking approach Ranking orders

Definition 2 ã2 ∼sh ã1

Definition 3 ã2 ≺SF ã1

Definition 4 ã2 ≺Q ã1

score function and the accuracy function are the functions being linear in their arguments
and are just the special cases of the corresponding functions in Definition 3, which cannot
distinguish these two IVIFNs in Example 1. Although the proposed ranking method in
Definition 3 is consistent with the ratio function-based ranking method in Definition 4,
using this ranking method in Definition 3 makes the process of decision making more
time-consuming. Therefore, the ranking method in Definition 4 is much superior to the
ranking approach in Definition 2 and the proposed ranking method in Definition 3.

Definition 5. (See Xu and Chen, 2008.) Let α̃1 = ([a1, b1], [c1, d1]) and α̃2 =

([a2, b2], [c2, d2]) be two IVIFNs, then the interval-valued intuitionistic fuzzy Euclidean
distance is defined as follows:

d(α̃1, α̃2) =

√

1

4

(

(a1 − a2)
2 + (b1 − b2)

2 + (c1 − c2)
2 + (d1 − d2)

2
)

. (2.8)

2.2. Description of the Hybrid MCGDM Problem Based on IVIFNs

This section establishes a decision environment based on IVIFNs for the hybrid MCGDM
problems in which the criteria values take the forms of real numbers, intervals, IFNs and
linguistic variables.

Consider the following hybrid MCGDM problem: let A = {A1,A2, . . . ,Am} (m> 2)

be a discrete set of m feasible alternatives, C = {C1,C2, . . . ,Cn} be a finite set of cri-
teria, and E = {e1, e2, . . . , eg} be a group of experts. Let w = (w1,w2, . . . ,wn)

T be the
weight vector of criteria, which satisfies the condition that 0 6 wj 6 1 (j = 1,2, . . . , n),
∑n

j=1 wj = 1; and λ = {λ1, λ2, . . . , λg} be the weight vector of experts, where 0 6 λk 6 1

(k = 1,2, . . . , g) and
∑g

k=1 λk = 1. Without loss of generality, this study assumes that
the information about criteria weights is completely known in advance, while the in-
formation involving the experts’ weights is partially known. Owing to the fact that the
experts may provide different forms of the ratings of alternatives according to different
evaluation criteria, this paper considers four distinct forms of the evaluation informa-
tion, i.e., real numbers, interval numbers, IFNs and linguistic variables. The criterion
Cj in the criterion set C is evaluated using only one of the aforementioned four distinct
forms. Thus, the criterion set C is divided into four subsets Cl (l = 1,2,3,4) in which
the criteria values are expressed as real numbers, interval numbers, IFNs and linguis-
tic variables, respectively. Let C1 = {C1,C2, . . . ,Cj1

}, C2 = {Cj1+1,Cj1+2, . . . ,Cj2
},

C3 = {Cj2+1,Cj2+2, . . . ,Cj3
}, C4 = {Cj3+1,Cj3+2, . . . ,Cn} and 1 6 j1 6 j2 6 j3 6 n.

Thus, Cl

⋂

Cη = ∅ (l, η = 1,2,3,4; l 6= η) and
⋃4

l=1 Cl =C, where ∅ is an empty set.
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Let the ratings of the alternative Ai ∈ A on the criterion Cj ∈ C given by the expert
ek ∈ E be expressed by rk

ij , it is noted that:

(1) if j = 1,2, . . . , j1, then rk
ij = ak

ij is expressed as a real number;

(2) if j = j1 +1, j1+2, . . . , j2, then rk
ij = [ak

ij , b
k
ij ] is expressed as an interval number;

(3) if j = j2 + 1, j2 + 2, . . . , j3, then rk
ij = (ak

ij , c
k
ij ) is expressed as an IFN;

(4) if j = j3 + 1, j3 + 2, . . . , n, then rk
ij = sk

ij ∈ S is a linguistic variable which can be

captured by an IVIFN sk
ij = ([ak

ij , b
k
ij ], [c

k
ij , d

k
ij ]) (Yu et al., 2011).

For convenience of understanding, the four cases of rk
ij are rewritten as the form in

Eq. (2.9).

rk
ij =























ak
ij , if j = 1,2, . . . , j1,

[ak
ij , b

k
ij ], if j = j1 + 1, j1 + 2, . . . , j2,

(ak
ij , c

k
ij ), if j = j2 + 1, j2 + 2, . . . , j3,

([ak
ij , b

k
ij ], [c

k
ij , d

k
ij ]), if j = j3 + 1, j3 + 2, . . . , n.

(2.9)

Thus, this hybrid MCGDM problem is concisely expressed in the matrix format
ℜk = (rk

ij )m×n (k = 1,2, . . . , g). Meanwhile, the criterion subset Cl can be further di-

vided into two subsetsCb
l and Cc

l , whereCb
l andCc

l are respectively the sets of benefit (the
bigger the better) and cost (the smaller the better) criteria,Cl =Cb

l

⋃

Cc
l andCb

l

⋂

Cc
l = ∅

(l = 1,2,3,4). Moreover, the dimensions and measurements of criteria values are usually
different because the natures of these criteria are different. To this end, the criteria values
should be normalized to ensure their compatibility. According to the normalized method
introduced by Yu et al. (2011), the criterion value rk

ij is normalized to r̄k
ij as below:

r̄k
ij =



































































































































(ak
ij − mini(a

k
ij ))/U1, if j = 1,2, . . . , jb

1 ,

(maxi(a
k
ij ) − ak

ij )/U1, if j = jb
1 + 1, jb

1 + 2, . . . , j1,

((ak
ij − mini(a

k
ij ))/U2, (maxi(b

k
ij ) − bk

ij )/U2),

if j = j1 + 1, j1 + 2, . . . , jb
2 ,

((maxi(b
k
ij ) − bk

ij )/U2, (a
k
ij − mini(a

k
ij ))/U2),

if j = jb
2 + 1, jb

2 + 2, . . . , j2,

((ak
ij − mini(a

k
ij ))/U3, (c

k
ij − mini(c

k
ij ))/U3),

if j = j2 + 1, j2 + 2, . . . , jb
3 ,

((ck
ij − mini(c

k
ij ))/U3, (a

k
ij − mini(a

k
ij ))/U3),

if j = jb
3 + 1, jb

3 + 2, . . . , j3,
(

[(ak
ij − mini(a

k
ij ))/U4, (b

k
ij − mini(a

k
ij ))/U4],

[(ck
ij − mini(c

k
ij ))/U4, (d

k
ij − mini(c

k
ij ))/U4]

)

,

if j = j3 + 1, j3 + 2, . . . , jb
4 ,

(

[(ck
ij − mini(c

k
ij ))/U4, (d

k
ij − mini(c

k
ij ))/U4],

[(ak
ij − mini(a

k
ij ))/U4, (b

k
ij − mini(a

k
ij ))d/U4]

)

,

if j = jb
4 + 1, jb

4 + 2, . . . , n.

(2.10)
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where U1 = maxi(a
k
ij ) − mini(a

k
ij ) (j = 1,2, . . . , j1; k = 1,2, . . . , g), U2 = maxi(b

k
ij ) −

mini(a
k
ij ) (j = j1 + 1, j1 + 2, . . . , j2; k = 1,2, . . . , g), U3 = 1 − mini(a

k
ij ) − mini(c

k
ij )

(j = j2 + 1, j2 + 2, . . . , j3; k = 1,2, . . . , g), U4 = 1 − mini(a
k
ij )− mini(c

k
ij ) (j = j3 + 1,

j3 + 2, . . . , n; k = 1,2, . . . , g).
It is noted that real numbers, interval numbers and the IFNs are the special cases of

IVIFNs. In other words, these hybrid information can be unified into the expressing form
of IVIFNs.

Definition 6. (See Yu et al., 2011.) Given the real number α̃j = aj (j = 1,2, . . . , j1), the
IFNs α̃j = (aj , cj ) (j = j1 + 1, j1 + 2, . . . , j3) and the IVIFNs α̃j = ([aj , bj ], [cj , dj ])

(j = j3 + 1, j3 + 2, . . . , n), then the hybrid weighted averaging (HWA) operator can be
defined as follows:

HWAw(α̃1, α̃2, . . . , α̃n) =

n
∑

j=1

wj α̃j =

([

n
∑

j=1

wjaj ,

j3
∑

j=1

wjaj +

n
∑

j=j3+1

wjbj

]

,

[

j1
∑

j=1

wj (1 − aj ) +

n
∑

j=j1+1

wjcj ,

j1
∑

j=1

wj (1 − aj )

+

j3
∑

j=j1+1

wjcj +

n
∑

j=j3+1

wjdj

])

, (2.11)

where w = (w1,w2, . . . ,wn)
T be the weight vector of α̃j (j = 1,2, . . . , n).

3. The Proposed Approach

In the proposed method, a consistency maximization model is established to calculate the
weights of experts. Then, the comprehensive ratings of alternatives are obtained by the
HWA operator and the corresponding ratio function values are further calculated. Finally,
a MCGP model is constructed to determine the optimal order quantity from the optimal
alternatives being subjected to some resource constraints.

3.1. The Maximizing Consistency Model for Deriving the Experts’ Weights

The estimation of the experts’ weights plays an important role in MCGDM processes.
Owing to the fact that in practical decision process, the criteria values providedby different
experts for the same alternative under a criterion usually have various differences (i.e.,
exist the inconsistency), we next construct a maximizing consistency model to determine
the experts’ weights.

On the one hand, motivated by the idea from Pang and Liang (2012) the concept of
the ordinal consistency (abbreviated as OC) index is defined from the perspective of the
ranking of hybrid decision information to measure the consistency between the individual
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expert’s opinion and the common opinion of the group. For the hybrid MCGDM problem
described in Section 2.2, it can be said for the expert ek ∈ E that the alternative Aξ ∈ A

dominates Aζ ∈ A with respect to the criterion Cj ∈C if fj (r
k
ξj )> fj (r

k
ζj ) (1 6 ξ , ζ 6 m,

ξ 6= ζ ) where

fj

(

rk
ξj

)

=



























ak
ξj , if j = 1,2, . . . , j1,

1
2
(ak

ξj + bk
ξj ), if j = j1 + 1, j1 + 2, . . . , j2,

ak
ξj − ck

ξj , if j = j2 + 1, j2 + 2, . . . , j3,

(ak
ξj )

δ+(bk
ξj )δ

(ak
ξj )δ+(bk

ξj )δ+(ck
ξj )δ+(dk

ξj )δ
, if j = j3 + 1, j3 + 2, . . . , n.

(3.1)

Thus, for the expert ek ∈ E, the dominance class of the alternative Aξ ∈ A on the
criterion Cj ∈ C is defined as follows:

[Aξ ]
ek>

Cj
=
{

Aζ ∈ A
∣

∣fj

(

rk
ξj

)

> fj

(

rk
ζj

)}

. (3.2)

Clearly, the individual expert’s opinion should be consistent with the common opinion
of the group to the greatest extent. For convenience of description, the common opinion of
the group is assumed to be provided by the ideal expert e∗. Analogously, for the expert e∗,
the dominance class of the alternative Aξ ∈ A with respect to the criterion Cj ∈ C is
obtained as follows:

[Aξ ]
e∗>
Cj

=
{

Aζ ∈ A
∣

∣fj

(

r∗
ξj

)

> fj

(

r∗
ζj

)}

. (3.3)

Hence, the ordinal consistency with respect to the criterion Cj ∈ C between the ex-
pert ek and the ideal expert e∗ is defined as:

OC∗
k(Cj ) =

1

m

m
∑

ξ=1

(
∣

∣[Aξ ]
ek>

Cj

⋂

[Aξ ]
e∗>
Cj

∣

∣

/
∣

∣[Aξ ]
ek>

Cj

⋃

[Aξ ]
e∗>
Cj

∣

∣

)

. (3.4)

Furthermore, the weighted ordinal consistency index between the expert ek and the
ideal expert e∗ is calculated by the following equation:

OC∗
k =

1

m

n
∑

j=1

m
∑

ξ=1

wj

(∣

∣[Aξ ]
ek>

Cj

⋂

[Aξ ]
e∗>
Cj

∣

∣

/∣

∣[Aξ ]
ek>

Cj

⋃

[Aξ ]
e∗>
Cj

∣

∣

)

. (3.5)

The sum of OC∗
k is normalized into a unit as below:

OC̄∗
k =

∑n
j=1

∑m
ξ=1 wj (|[Aξ ]

ek>

Cj

⋂

[Aξ ]
e∗>
Cj

|/|[Aξ ]
ek>

Cj

⋃

[Aξ ]
e∗>
Cj

|)

∑g

k=1

∑n
j=1

∑m
ξ=1 wj (|[Aξ ]

ek>

Cj

⋂

[Aξ ]
e∗>
Cj

|/|[Aξ ]
ek>

Cj

⋃

[Aξ ]
e∗>
Cj

|)
. (3.6)
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Thus, the overall ordinal consistency is defined as:

OC =

∑g
k=1

∑n
j=1

∑m
ξ=1 λkwj (|[Aξ ]

ek>

Cj

⋂

[Aξ ]
e∗>
Cj

|/|[Aξ ]
ek>

Cj

⋃

[Aξ ]
e∗>
Cj

|)

∑g
k=1

∑n
j=1

∑m
ξ=1 wj (|[Aξ ]

ek>

Cj

⋂

[Aξ ]
e∗>
Cj

|/|[Aξ ]
ek>

Cj

⋃

[Aξ ]
e∗>
Cj

|)
. (3.7)

On the other hand, from the perspective of the magnitude of decision information the
cardinal consistency (abbreviated as CC) index is defined for measuring the consistency
between individual expert’s opinions and the common opinion of group. This study em-
ploys the similarity measure to calculate the cardinal consistency index.

Hence, for the alternative Aξ ∈ A, the cardinal consistency with respect to the criterion
Cj ∈ C between the expert ek and the ideal expert e∗ is defined as:

CC∗
k(Aξ ,Cj ) = 1 − dj

(

rk
ξj , r

∗
ξj

)

(3.8)

where

dj (r
k
ξj , r

∗
ξj ) =


















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
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






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|ak
ξj − a∗

ξj |, if j = 1,2, . . . , j1,
√

1
2
((ak

ξj − a∗
ξj )

2 + (bk
ξj − b∗

ξj )
2),

if j = j1 + 1, j1 + 2, . . . , j2,
√

√

√

√
1
2

(

(ak
ξj − a∗

ξj )
2 + (ck

ξj − c∗
ξj )

2
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ξj − ak
ξj − ck

ξj )
2

)

,

if j = j2 + 1, j2 + 2, . . . , j3,
√

√

√

√
1
4

(

(ak
ξj − a∗

ξj )
2 + (bk

ξj − b∗
ξj )

2

+ (ck
ξj − c∗

ξj )
2 + (dk

ξj − d∗
ξj )

2

)

,

if j = j3 + 1, j3 + 2, . . . , n.

(3.9)

Then, the weighted cardinal consistency between the expert ek and the ideal expert e∗

is defined as follows:

CC∗
k =

1

m

m
∑

ξ=1

n
∑

j=1

(

wj

(

1 − dj

(

rk
ξj , r

∗
ξj

)))

(3.10)

and the sum of CC∗
k is normalized into a unit as below:

CC̄∗
k =

1

m

m
∑

ξ=1

n
∑

j=1

(

wj

(

1 − dj

(
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ξj , r
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ξj
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/
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(

1

m

m
∑

ξ=1

n
∑

j=1

(

wj

(

1 − dj

(

rk
ξj , r

∗
ξj

)))

)

. (3.11)
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Thus, the overall cardinal consistency is obtained as:

CC =

g
∑

k=1

(

λk

(

1

m

m
∑

ξ=1

n
∑

j=1

(

wj

(

1 − dj

(
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ξj , r
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)))

)

/
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∑
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(

1

m

m
∑

ξ=1

n
∑

j=1

(

wj

(

1 − dj

(

rk
ξj , r

∗
ξj

)))

))

. (3.12)

According to the definitions of the ordinal consistency and the cardinal consistency, we
construct a maximizing consistency model to determine the optimal weights of experts.
Thus, a bi-objective programming model which maximizes simultaneously the ordinal
consistency and the cardinal consistency is established as follows:

(M-1)
max












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





















s.t. (λ1, λ2, · · · , λg)T ∈ 2

where 2 expresses the set of the known weighted information of experts. In general, the
2 consists of several sets of the following five basic sets or may contain all the five basic
sets, which depends on the characteristic and need of the real-world decision problems:
(1) A weak ranking 21 = {λi > λj }; (2) A strict ranking: 22 = {λi − λj > βi} (βi > 0);
(3) A ranking of differences: 23 = {λi −λj > λk −λl} (i 6= j 6= k 6= l); (4) A ranking with
multiples: 24 = {λi > βiλj } (0 6 βi 6 1); (5) An interval form: 25 = {βi 6 λi 6 γi}

(0 6 βi 6 γi 6 1).
Using the weighted average approach, the bi-objective mathematical programming

model (M-1) can be aggregated into the following linear programming model:
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s.t. (λ1, λ2, · · · , λg)T ∈ 2

where θ ∈ [0,1] is a parameter which can be tuned according to the practical decision
problem at hand.

Obviously, the model (M-2) can be easily solved by MATLAB or LINGO software
package and the weights of experts can be obtained. Afterwards, we can calculate the
overall weighted assessment value of each alternative by using the following expression:
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Z(Ai) =
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











. (3.13)

According to Definition 4, the ratio function values of alternatives can be obtained. By
comparing the magnitude of the ratio function values, the decision can be made.

In several real-world decision problems, the decision makers may not only need to
select the optimal alternatives but also need to determine the corresponding optimum
quantities for the optimal alternatives under some tangible constraints. To this end, we
next construct a MCGP model to identify the optimal alternatives and their optimum order
quantities.

3.2. Establish the MCGP Model for Determining the Order Quantities of Optimal

Suppliers

The MCGP originally introduced by Chang (2007) is mainly used to address the situation
in which decision makers set multi-choice aspiration levels for each goal to achieve. The
most characteristic of the MCGP model is that it can effectively avoid underestimation
or overestimation of the decision. Afterwards, Chang (2008) proposed a revised MCGP
method which does not involve multiplicative terms of binary variables to solve the MCGP
model. In this paper, we take the supplier selection problems for example, and borrowing
the idea of Liao and Kao (2011) we construct a MCGP model for deriving the optimum
order quantities from the optimal alternatives.

In order to formulate the MCGP model, the following notations are first defined:
Parameters:

m is the number of suppliers;
̟i is the ranking values (priority values) of the ith supplier Ai (obtained by the HWA

operator and the ratio function of IVIFNs);
pi is the sale price of the ith supplier Ai ;
g0 represents the total demand for the company;
gci is the capacity of the ith supplier Ai ;

Objective functions:
Total value of purchasing (TVP): the ranking values of the suppliers are used as co-

efficients of the total value of purchasing to allocate order quantities among the optimal
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suppliers. The TVP should be less than g1,max but more than g1,min, and the more the
better; this objective function is formed as follows:

m
∑

i=1

̟ixi 6 g1,max and
m
∑

i=1

̟ixi > g1,min. (3.14)

Total cost of purchasing: the total cost of purchasing should be less than g2,max but
more than g2,min, and the less the better; thus this objective function can be expressed as
below:

m
∑

i=1

pixi > g2,min and
m
∑

i=1

pixi 6 g2,max. (3.15)

Constraints:
Total order quantity: the total order quantity from all suppliers should be not more than

a constant g0, thus this constraint can be formed as below:

m
∑

i=1

xi 6 g0. (3.16)

Suppliers’ capacity: the order quantity from the ith supplier cannot exceed the corres-
ponding supplier’s capacity gci :

0 6 xi 6 gci . (3.17)

In terms of the revised MCGP model developed by Chang (2008), the above problem
can be formulated as follows:

(M-3)
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0 6 xi 6 gci , i = 1,2, . . . ,m
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where ε+
i (κ+

i ) and ε−
i (κ−

i ) are the positive and negative deviations, respectively, ϕi and
φi are the weights of deviations.
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The model (M-3) can be easily solved by MATLAB or LINGO software, and the op-
timal order quantities from the corresponding optimal suppliers can be obtained.

3.3. The Proposed Algorithm

On the basis of the above models and analysis, the algorithm of the proposed method for
solving the hybrid MCGDM problems based on IVIFNs is given as follows:

Step 1. For a hybrid MCGDM problem, the hybrid decision matrix is first identified, and
then the hybrid decision matrix is normalized by using Eq. (2.10).

Step 2. Use Eq. (3.7) and Eq. (3.12) to calculate the overall ordinal consistency index and
the overall cardinal consistency index, respectively.

Step 3. Determine the optimal weight vector λ
∗ = (λ∗

1, λ
∗
2, . . . , λ

∗
g)T of all experts by the

model (M-2).
Step 4. Utilize Eq. (3.13) to aggregate all elements in the hybrid decision matrix in order

to obtain the comprehensive values of alternatives.
Step 5. Calculate the ratio function values of alternatives using the Eq. (2.7).
Step 6. Employ the model (M-3) to establish the MCGP model in order to determine the

optimal order quantities.

4. An Illustrative Case Based on the Supplier Selection Problem

This section employs the supplier selection problem as an illustrative case to demonstrate
the applicability and the implementation process of the proposed method.

With the increase of public awareness of the need to protect the environment, it is
urgent for businesses to introduce and promote business practices that help ease the neg-
ative impacts of their actions on the environment (Wang and Chan, 2013). In the auto-
mobile manufacturing industries, the manufacturers want to improve their environmental
management practices, not only internally, but also with their suppliers. To this end, the
automobile manufacturing company plans to find the environmentally and economically
powerful suppliers as strategic partners, with whom the company intends to build long-
term collaborative relationships. There are four qualified suppliers which are named as
A1,A2,A3,A4. The decision organization including four experts (e1, e2, e3, e4) from the
purchasing department, the management department, the environmental department and
the production department, respectively, is invited to evaluate these four suppliers. The
weight vector of the experts is given as below:

2 =

{

λ2 − λ1 6 0.1, 0.1 6 λ3 6 0.3, λ4 − λ2 6 λ3 − λ1, λ4 > 1.5λ1

λ1 + λ2+λ3+λ4 = 1, λk > 0, k = 1,2,3,4

}

.

The supplier selection criteria are identified by the experts as follows: (1) C1 is the
quality of product; (2) C2 is the delivery time; (3) C3 is the score of credibility; (4) C4 is the
environmental performance.The weight vector of criteria is given as (w1,w2,w3,w4)

T =
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Table 4
The linguistic terms and their corresponding IVIFNs (Yu et al., 2011).

Linguistic variables Abbreviation IVIFNs

Definitely low DL ([0,0], [0.75,0.95])

Very low VL ([0,0.2], [0.5,0.7])

Low L ([0.25,0.45], [0.25,0.45])

Medium M ([0.5,0.7], [0.125,0.22])

High H ([0.75,0.85], [0.0625,0.11])

Very high VH ([0.875,0.92], [0,0.05])

Definitely high DH ([0.9375,0.98], [0,0])

Table 5
The criteria values of suppliers provided by experts under various criteria.

Experts Suppliers Criteria

C1 C2 C3 C4

e1 A1 (0.5,0.3) [15.5,16.8] 2.35 M
A2 (0.6,0.2) [16.6,18.35] 2.48 H
A3 (0.4,0.4) [14.34,16.42] 1.53 VH
A4 (0.3,0.6) [12.67,15.32] 4.50 DH

e2 A1 (0.4,0.5) [12.5,15.8] 4.35 H
A2 (0.7,0.2) [11.6,14.65] 2.28 L
A3 (0.6,0.4) [13.34,16.42] 1.53 VH
A4 (0.3,0.7) [14.67,15.32] 2.50 M

e3 A1 (0.4,0.3) [13.25,15.48] 1.55 H
A2 (0.6,0.2) [11.6,15.45] 4.48 H
A3 (0.8,0.1) [13.34,15.42] 1.53 VH
A4 (0.6,0.2) [16.67,18.32] 3.50 DH

e4 A1 (0.7,0.3) [12.5,14.85] 2.35 L
A2 (0.6,0.2) [16.6,18.62] 1.48 H
A3 (0.5,0.2) [14.34,16.42] 3.53 M
A4 (0.4,0.6) [12.67,15.32] 2.56 M

(0.2,0.3,0.35,0.15)T. The criteria values of suppliers for the quality of product (C1)

can be divided into two parts: satisfaction degree and dissatisfaction degree, which just
consist in the membership degree and non-membership degree of IFNs. Thus, IFNs are
used to express the criteria values of suppliers for the quality of product (C1). Due to the
uncertainty of the delivery time, it is better to use interval numbers to represent the criteria
values of suppliers for the delivery time (C2). The criteria values of suppliers for the score
of credibility (C3) are represented by real numbers. While the environmental performance
(C4) is a qualitative criterion, the criteria values of suppliers for the criterion C4 can be
represented by linguistic terms. It is noted that the criterion C2 is the cost criterion and
the others are the benefit criteria. The linguistic terms used here and their corresponding
IVIFNs are shown in Table 4. The decision data provided by experts is presented in
Table 5.
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Table 6
The normalized hybrid decision matrix.

Experts Suppliers Criteria

C1 C2 C3 C4

e1 A1 (0.4,0.2) (0.2729,0.4982) 0.2761 ([0.5,0.7], [0.125,0.22])

A2 (0.6,0.0) (0,0.6919) 0.3199 ([0.75,0.85], [0.0625,0.11])

A3 (0.2,0.4) (0.3398,0.294) 0.0 ([0.875,0.92], [0,0.05])

A4 (0.0,0.8) (0.5335,0.0) 1.0 ([0.9375,0.98], [0,0])

e2 A1 (0.2,0.6) (0.1286,0.1867) 1.0 ([0.75,0.85], [0.0625,0.11])

A2 (0.8,0.0) (0.3672,0.0) 0.266 ([0.25,0.45], [0.25,0.45])

A3 (0.6,0.4) (0.0,0.361) 0.0 ([0.875,0.92], [0,0.05])

A4 (0.0,1.0) (0.2282,0.6369) 0.344 ([0.5,0.7], [0.125,0.22])

e3 A1 (0.0,0.4) (0.4226,0.2455) 0.0068 ([0.75,0.85], [0.0625,0.11])

A2 (0.4,0.2) (0.4271,0.0) 1.0 ([0.75,0.85], [0.0625,0.11])

A3 (0.8,0.0) (0.4315,0.2589) 0.0 ([0.875,0.92], [0,0.05])

A4 (0.4,0.2) (0.0,0.7545) 0.6678 ([0.9375,0.98], [0,0])

e4 A1 (0.7,0.25) (0.616,0.0) 0.4244 ([0.25,0.45], [0.25,0.45])

A2 (0.5,0.0) (0,0.6699) 0.0 ([0.75,0.85], [0.0625,0.11])

A3 (0.25,0.25) (0.3595,0.3007) 1.0 ([0.5,0.7], [0.125,0.22])

A4 (0.0,1.0) (0.5392,0.0278) 0.5268 ([0.5,0.7], [0.125,0.22])

e∗ A1 (0.3375,0.3635) (0.36,0.2326) 0.4268 ([0.5625,0.7125], [0.125,0.2225])

A2 (0.575,0.05) (0.1986,0.3405) 0.3965 ([0.625,0.75], [0.1094,0.195])

A3 (0.4625,0.2625) (0.2827,0.3036) 0.25 ([0.7813,0.865], [0.0313,0.0925])

A4 (0.1,0.75) (0.3252,0.3548) 0.6346 ([0.7188,0.84], [0.0625,0.11])

4.1. Determine Weights of Experts by Constructing the Maximization Consistency

Model

Firstly, the proposed approach employs the Eq. (2.10) to normalize the hybrid decision
matrix, and the normalized results are showed in Table 6. The common opinion of the
group in this paper, in a reason, should be the mean of group decision, and the HWA

operator is used to obtain the common opinion of the group, listed in Table 6.
Using Eq. (3.1) and let δ = 0.5, the dominance classes of the alternatives Ai (i =

1,2,3,4) with respect to the criterion C1 under the expert e1 can be easily derived from
Table 6 as follows:

[A1]
e1>

C1
= {A1,A3,A4}, [A2]

e1>

C1
= {A1,A2,A3,A4},

[A3]
e1>

C1
= {A3,A4}, [A4]

e1>

C1
= {A4},

and the dominance classes under the expert e∗ for the alternative set A with respect to the
criterion C1 are obtained as follows:

[A1]
e∗>
C1

= {A1,A4}, [A2]
e∗>
C1

= {A1,A2,A3,A4},

[A3]
e∗>
C1

= {A1,A3,A4}, [A4]
e∗>
C1

= {A4}.
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Hence, according to Eq. (3.4), the ordinal consistency OC∗
1(C1) of alternatives with

respect to the criterion C1 between the expert e1 and the ideal expert e∗ can be calculated
as:

OC∗
1(C1) =

1

4

4
∑

i=1

|[Ai]
e1>

C1

⋂

[Ai]
e∗>
C1

|

|[Ai]
e1>

C1

⋃

[Ai]
e∗>
C1

|
=

1

4

(

2

3
+

4

4
+

2

3
+

1

1

)

= 0.8333.

Analogously, the following calculation results can be obtained:

OC∗
1(C2) = 0.6875, OC∗

1(C3) = 0.7083, OC∗
1(C4) = 0.875.

According to Eq. (3.5), the weighted ordinal consistency OC∗
1 between the expert e1

and the ideal expert e∗ can be calculated as:

OC∗
1 =

4
∑

j=1

wj OC∗
1(Cj ) = 0.7521.

Analogously, the other weighted ordinal consistency indices can be obtained:

OC∗
2 = 0.7, OC∗

3 = 0.6594, OC∗
4 = 0.7781.

Furthermore, using Eq. (3.6) the normalized ordinal consistency indices can be calcu-
lated:

OC̄∗
1 = 0.2603, OC̄∗

2 = 0.2422, OC̄∗
3 = 0.2282, OC̄∗

4 = 0.2693.

Afterwards, the proposed approach needs to calculate the cardinal consistency index
between the individual expert’s opinion and the common opinion of group from the per-
spective of the magnitude of decision data. Using Eq. (3.10) the weighted cardinal con-
sistency indices between the experts ek (k = 1,2,3,4) and the ideal expert e∗ can be
calculated, respectively:

CC∗
1 = 0.8089, CC∗

2 = 0.7219, CC∗
3 = 0.7246, CC∗

4 = 0.7275.

Using Eq. (3.11) the normalized cardinal consistency indices are obtained as follows:

CC̄∗
1 = 0.2712, CC̄∗

2 = 0.2420, CC̄∗
3 = 0.2429, CC̄∗

4 = 0.2439.

Then, according to the model (M-2), the following objective programming model is
established:

(M-4)

max

(

(1 − θ) (0.2603λ1 + 0.2422λ2 + 0.2282λ3 + 0.2693λ4)

+ θ (0.2712λ1 + 0.242λ2 + 0.2429λ3 + 0.2439λ4)

)

s.t.

{

λ2 − λ1 6 0.1, 0.1 6 λ3 6 0.3, λ4 − λ2 6 λ3 − λ1

λ4 > 1.5λ1, λ1 + λ2 + λ3+λ4 = 1, λk > 0, k = 1,2,3,4.
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Table 7
The coefficients of variables in model.

Suppliers Unit price Capacity Weights

A1 $10 700 0.5636
A2 $12 500 0.5213
A3 $16 800 0.4942
A3 $18 600 0.4825

Let θ = 0.5 and solve the model (M-4), the correspondingoptimal weight vector of experts
can be obtained as follows:

(

λ∗
1, λ

∗
2, λ

∗
3, λ

∗
4

)T
= (0.2,0.3,0.2,0.3)T .

Using the Eq. (3.13) to aggregate the elements of the normalized hybrid decision ma-
trix, and the comprehensive ratings values of alternatives are acquired as follows:

Z(A1) =
(

[0.4336,0.4561], [0.3368,0.3522]
)

,

Z(A2) =
(

[0.3870,0.4065], [0.3573,0.3713]
)

,

Z(A3) =
(

[0.4021,0.4158], [0.4138,0.4233]
)

,

Z(A4) =
(

[0.3244,0.3449], [0.3546,0.3632]
)

.

Furthermore, using the Eq. (2.7) the ranking values of alternatives are obtained as follows:

Qδ=1

(

Z(A1)
)

= 0.5636, Qδ=1

(

Z(A2)
)

= 0.5213,

Qδ=1

(

Z(A3)
)

= 0.4942, Qδ=1

(

Z(A4)
)

= 0.4825.

4.2. MCGP Model for the Order Quantities

As mentioned previously, the automobile manufacturing company may wish to identify
the quantities of the product buying from the optimal suppliers. The unit price of product
buying from the four suppliers and the capacities for these suppliers are given in Table 7.
Similar to Liao and Kao (2011), the ranking values of the optimal suppliers are regarded
as the weights of suppliers, which are also shown in Table 7.

The manager of the company sets the following three goals as below:

(1) The TVP should be less than 1000 and more than 600, and the more the better, i.e.

0.5636x1 + 0.5213x2 + 0.4942x3 + 0.4825x4 > 600 and 6 1000;

(2) The total cost of procurement should be less than 29,000 and more than 18,000,
and the less the better, i.e.

10x1 + 12x2 + 16x3 + 18x4 > 18000 and 6 29000;
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(3) The total order quantity from all suppliers should be not more than 1800 units, i.e.

x1 + x2 + x3 + x4 6 1800.

On the basis of the model (M-3), the above decision problem can be formulated as the
following MCGP model:

(M-5)

Min z = ε+
1 + ε−

1 + ε+
2 + ε−

2 + κ+
1 + κ−

1 + κ+
2 + κ−

2

s.t.



































































































0.5636x1 + 0.5213x2 + 0.4942x3 + 0.4825x4 − ε+
1 + ε−

1 = y1

y1 − κ+
1 + κ−

1 = 1000

600 6 y1 6 1000

10x1 + 12x2 + 16x3 + 18x4 − ε+
2 + ε−

2 = y2

y2 − κ+
2 + κ−

2 = 18000

180006 y2 6 29000

x1 + x2 + x3 + x4 6 1800

x1 6 700, x2 6 500, x3 6 800, x4 6 600

x1, x2, x3, x4 > 0

ε+
1 , ε−

1 , ε+
2 , ε−

2 , κ+
1 , κ−

1 , κ+
2 , κ−

2 > 0.

By solving the model (M-5), the optimal solutions, i.e., the optimal suppliers and their
optimum quantities are obtained as below:

A1(x1 = 700), A2(x2 = 500), A3(x3 = 313̄),

A4(x4 = 0) and TVP = 809.8546.

5. Conclusions

This paper has established a decision environment based on IVIFNs for the hybrid
MCGDM problems in which the ratings of alternatives on the criteria take the forms of
real numbers, interval numbers, IFNs and linguistic variables. An integrated consistency
maximization model and MCGP approach has been proposed to solve the hybrid MCGDM
problem based on IVIFNs. The main contribution of his paper is fivefold: (1) new score
function, new accuracy function and a ratio function for IVIFNs have been developed,
and two new kinds of ranking methods for IVIFNs have also been proposed; (2) from the
perspectives of the ranking and the magnitude of hybrid decision information, an ordinal
consistency index and a cardinal consistency index have been defined to measure the con-
sistency between the individual opinion and the common opinion of group, respectively;
(3) a consistency maximization model has been established to objectively determine the
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weights of experts; (4) the comprehensive ratings of alternatives have been determined
by aggregating the hybrid decision information and the ranking of alternatives have been
obtained by the proposed ratio function; (5) a MCGP model on the basis of the ranking
values has been constructed to determine the optimal order quantities from the best alter-
natives being subjected to some resource constraints.
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Integruotas suderintumą maksimizuojantis ir daugelio pasirinkimų
tikslinio programavimo požiūris hibridiniam daugiakriteriniam
grupiniam sprendimų priėmimui taikant intervalinius intuityviuosius
neraiškiuosius skaičius

Xiaolu ZHANG

Intervaliniai intuityvieji neraiškieji skaičiai (IINS), aprašomi priklausomumo ir nepriklausomumo
funkcijomis su intervalinėmis reikšmėmis, gali būti taikomi sprendžiant problemas, susijusias su
netikslia ir abejotina informacija. Šiame straipsnyje siūlomas integruotas suderintumą maksimizuo-
jantis ir daugelio pasirinkimų tikslinio programavimo (DPTP) požiūris hibridiniam daugiakriteri-
niam grupiniam sprendimų priėmimui taikant IINS. Pirmajame etape hibridinė informacija (realieji
skaičiai, intervaliniai skaičiai, intuityvieji skaičiai ir lingvistiniai kintamieji) yra normalizuojami ir
konvertuojami į IINS. Tuomet ordinalusis suderintumo indeksas ir kardinalusis suderintumo indek-
sas yra pasiūlomi matuoti individualių ir grupės vertinimų suderintumą. Pasiūlytas optimizavimo
modelis, maksimizuojantis suderintumą, ekspertų reikšmingumo nustatymui. Apibendrinti įverti-
nimai ir rangavimo reikšmės apskaičiuojamos, atitinkamai, taikant hibridinį svertinį operatorių ir
santykių funkciją, skirtą IINS. Be to, DPTP modelis pritaikytas nustatant optimalųjį sprendinį (kie-
kius). Pateikiamas pasiūlyto metodo taikymo pavyzdys.


