
INFORMATICA, 2015, Vol. 26, No. 4, 649–662 649
 2015 Vilnius University

DOI: http://dx.doi.org/10.15388/Informatica.2015.69

On Benchmarking Stochastic Global Optimization
Algorithms

Eligius M.T. HENDRIX1, Algirdas LANČINSKAS2∗

1Computer Architecture, Universidad de Málaga, Spain
2Institute of Mathematics and Informatics, Vilnius University, Lithuania

e-mail: eligius@uma.es, algirdas.lancinskas@mii.vu.lt

Received: March 2015; accepted: June 2015

Abstract. A multitude of heuristic stochastic optimization algorithms have been described in litera-
ture to obtain good solutions of the box-constrained global optimization problem often with a limit
on the number of used function evaluations. In the larger question of which algorithms behave well
on which type of instances, our focus is here on the benchmarking of the behavior of algorithms by
applying experiments on test instances. We argue that a good minimum performance benchmark is
due to pure random search; i.e. algorithms should do better. We introduce the concept of the cu-
mulative distribution function of the record value as a measure with the benchmark of pure random
search and the idea of algorithms being dominated by others. The concepts are illustrated using
frequently used algorithms.

Key words: stochastic global optimization, benchmark, black-box, meta-heuristic.

1. Problem Description

We consider the box-constrained global optimization problem

f ∗ =min
x∈X

f (x), (1)

where f (x) is a continuous function and X ⊂ R
n is a box constrained feasible region.

The idea of black-box optimization is that function evaluations imply running an exter-
nal (black-box) routine that may take minutes or hours to provide the evaluated objective
function value. In engineering applications, often the question is how to a good, but not
necessarily optimal solution within a day, several days, or a week. In terms of global op-
timization the question is formulated as how to obtain a good solution within a limited
number (a budget) of function evaluations. We focus on the case, where a stochastic al-
gorithm is run on an instance of (1) up to a budget N of function evaluations has been
used.

Many stochastic heuristic algorithms for generating good solutions for such a problem
have been described in literature; see e.g. Hendrix and Tóth (2010) for the overview of that

*Corresponding author.

650 E.M.T. Hendrix, A. Lančinskas

algorithms. Although concepts of simulated annealing and population algorithms already
existed for a long time, many algorithms have been developed under the terminology of
evolutionary algorithms or meta-heuristics after the appearance of the work of Holland
(1975) on genetic algorithms. Mathematical statistical analysis of the speed of conver-
gence is difficult for complicated algorithm descriptions. Therefore, researchers rely on
numerical tests with a set of test problems that have been evolved in books and on the
Internet after the first set described by Dixon and Szegö (1975).

The ultimate question is which types of algorithms perform well on which type of in-
stances; what defines the characteristics of the case to be solved such that one algorithm is
more successful than the other? This question requires to investigate for which instances
a specific algorithm does not perform well compared to simple benchmarks. In most pub-
lished numerical results of algorithms, systematic investigation of worst case behavior is
lacking. Insight is necessary for in the end advising for a given problem (and its charac-
teristics), which algorithm is most appropriate to solve it.

We argue that there is a tendency in literature to focus on the average behavior of
algorithms rather than to investigate in a systematic way the variation in their behavior
or worst case performance. We provide some papers that introduced new algorithms and
that are cited in literature, where the report on the performance focuses on average be-
havior. Chelouah and Siarry (2000) discuss a Genetic Algorithm and do numerical tests
measuring only average number of function evaluations. Jelasity et al. (2001) illustrate
performance with average record values for a budget N . Recchioni and Scoccia (2000)
introduce a heuristic for constrained optimization and measure an average number of gra-
dient evaluations and an average number of iterations. İlker Birbil and Fang (2003) discuss
average number of function evaluations against the average reached function values for a
new electromagnetism-like mechanism. Redondo et al. (2012) introduced an evolution-
ary algorithm for multidimensional scaling and illustrate its performance with average
computing time.

The so-called performance profiles introduced by Dolan and Moré (2002) for deter-
ministic methods make sense when comparing deterministic global optimization algo-
rithms, like in the recent study of Misener and Floudas (2014) on MINLP software. The
concept was propagated for analyzing stochastic methods by Ali et al. (2005), which lead
to more focus on average values, although that paper as such also discussed more sophis-
ticated measures. An example of (average based) performance profiles is due to the paper
on particle swarm (Vaz and Vicente, 2007). The concept becomes even more compli-
cated when mixing concepts of stochastic based algorithms with deterministic heuristics.
An example is the paper of Müller and Schoemaker (2014) where random sampling is
combined with radial basis function heuristic. For a large comparison of deterministic
heuristics versus stochastic ones see the work of Rios and Sahinidis (2013) combining
many performance measures. Our argument is that stochastic methods exhibit variation,
which should be taken into account in benchmarking.

The research question of this paper is how to evaluate the quality of an algorithm for
an individual test case. We argue that the performance of Pure Random Search (PRS) can
be taken as benchmark to measure how much better (or worse) an algorithm performs.

On Benchmarking Stochastic Global Optimization Algorithms 651

This paper is organized as follows. Section 2 describes the concept of the cumulative
density function for the best point found and the concept of domination of one algorithm
by another. Section 3 illustrates the new concept on well-known test cases and several
frequently used algorithms. Section 4 summarizes our findings.

2. Cumulative Density of the Best Point Found

In general, a stochastic optimization algorithm generates a series of points xk that approx-
imate an (or the, or all) minimum point(s). According to the generic description of Törn
and Žilinskas (1989):

xk+1 =Alg(xk,xk−1, . . . ,x1, ξ), (2)

where ξ is a random variable and index k is the iteration counter. In this paper, random
variables are denoted by boldface symbols whereas non-bold symbols stand for regular
variables. Description (2) represents the idea that a next point xk+1 is generated based
on the information in all former points xk,xk−1, . . . ,x1 (x1 usually being the starting
point) and a random effect ξ based on generated pseudo-random numbers. The final re-
sult of running an algorithm with N function evaluations on a test function is the ran-
dom record function value YN =mink=1,...,N f (xk). The quality of an algorithm A with
N trials is defined by the cumulative distribution function of the record Y N denoted by
CDFR

[A]
N (y) = P {Y N 6 y}. This measure is three dimensional when we consider the

probability, the level y and the budget on function evaluations N and therefore hard to
capture in an analysis. If one only focuses on the expected value E(Y N) as function of
the budget N estimated by a numerical average, the variation in the result is ignored; for
some run (repetition), an algorithm may fail and for another not.

In order to understand the concept, let us first consider the starting point of stochastic
global optimization algorithms of sampling one trial point x uniformly drawn over the fea-
sible region. Consider µ(y)= P {f (x)6 y} being the cumulative distribution function of
random variable y = f (x), where x is uniform over X. So, basically CDFR

[PRS]
1

(y) is the

function µ(y) with domain [f ∗,maxX f (x)] and characterizes completely CDFR
[PRS]
N (y)

on a test instance; the probability that a level y is reached after generating N trial points
is given by PN (y)= 1− (1−µ(y))N .

PN (y) provides a benchmark for all stochastic algorithms. For an algorithm A, the
CDFR

[A]
N (y) for function value y should at least reach the probability PN (y), i.e. what is

the difference between CDFR
[A]
N (y) and PN (y)= 1− (1−µ(y))N after having generated

N points?
For example, the distribution function P1(y)= µ(y) can be approximatednumerically.

We illustrate this for the Six-hump camel-back function

f (x)= 4x2
1 − 2.1x4

1 +
1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2 (3)

652 E.M.T. Hendrix, A. Lančinskas

 0

 1

 0 100 200 300 400

µ(y)

y

Six-hump camel-back

 0 1 2 3 4 5

y

Bi-spherical

Fig. 1. Approximation of cumulative distribution function P1(y)= µ(y) via 10 000 samples.

over X = [−3,3]2 and the bi-spherical functions (Hendrix and Tóth, 2010)

f (x)=min
{

(x1 − 1)2, (x1 + 1)2 + 0.01
}

+

n
∑

2

x2
i (4)

over [−2,2]2 based on 10 000 samples. In Fig. 1 one can observe that it is relatively easy
to obtain points below the level y = 50, corresponding to 12.5% of the value range, for
the Six-hump camel-back test problem. A similar µ(y) probability for the Bi-spherical
problem reaches only 40% of the value range.

Figure 1 also shows that the values of y could be scaled towards [0,1] if we would
like to compare the characteristic function PN (y) over different test cases. Theoretically
the value range is [minX f (x),maxX f (x)]. For experiments on a given test instance the
minimum value is known, but the maximum value is less relevant. One can base the right
end on the reached values, or alternatively on extreme order statistics considerations as
discussed in Zhigljavsky and Žilinskas (2008).

Another important algorithm in stochastic optimization is Multistart (MS) (Baritompa
and Hendrix, 2005); see also Algorithm 2. It requires a local (nonlinear) optimization
routine LS(s,N) as a procedure which given a starting point s and limit N on the number
of function evaluations returns a point in the domain that approximates a local minimum
point. In contrast to PRS, numerical results therefore depend on the LS routine applied
using NLS evaluations for a local search. If the budget N is relatively low compared to the
full local search cost NLS , spending function evaluations on the final steps of local search
makes less sense and one better adapts Algorithm 2. Let us consider what exactly happens
when running the algorithm on an instance.

The function CDFR
[MS]
N can theoretically be generated by studying the characteristics

of the test case in conjunction with the local routine. It consists of a set of (local) mini-
mum values and their relative volume of the region of attraction. If NLS is independent
of the starting point and N is a multiple of NLS, CDFR

[MS]
N follows from a multinomial

distribution. An early study in literature on these characteristics is due to Zielinski (1981)
focusing on estimating the volumes and values of the local minima. The consequence is
that CDFR

[MS]
N has a typical step shape of the discrete distribution where the objective val-

ues of the local minima have a certain probability mass. Notice that in the practice these
assumptions may not apply, i.e. N

NLS
may be low given the budget N . In that case, the

last local search may reach the budget N of function evaluations before convergence, so

On Benchmarking Stochastic Global Optimization Algorithms 653

Algorithm 1 PRS
1: procedure PRS(X,f,N)
2: F ←∞;
3: for k = 1 to N do

4: Generate uniform xk over X;
5: if f (xk) < F then F ← f (xk)

6: end for

7: return F and argmink f (xk);
8: end procedure

Algorithm 2 MS
1: procedure MS(X,f,N , LS)
2: F ←∞; k← 1;
3: while N > 0 do

4: Generate s uniformly over X;
5: [x,NLS]← LS(s,N);
6: if f (x) < F then F ← xk ;
7: N←N −NLS; k← k + 1;
8: end while;
9: return F and argmink f (xk);

10: end procedure

CDFR
[MS]
N may also reveal a probability on values other than the local minima. One could

argue beforehand, that for small budgets compared to the number of optima, one should
adapt the search and perform less local searches, as discussed in Hendrix and Roosma
(1996). However, it is not our objective to come to new schemes here, but to observe its
exact behavior on test cases.

Our idea is to have a measure for comparison of two algorithms A and B, to see
whether one of them is performing better on a certain problem instance. It may be clear
that algorithm A is doing better than algorithm B on an instance for effort N if ∀y ,
CDFR

[A]
N (y) > CDFR

[B]
N (y).

Using concepts like the Performance profile, designed to compare deterministic algo-
rithms and promoted by Ali et al. (2005) for stochastic algorithms, stimulates a focus on
the average behavior to determine whether E(Y

[A]
N) > E(Y

[B]
N). This is typical a necessary

but not sufficient condition to determine the better performance. If test cases (instances)
can be classified into problem classes, the most interesting question is whether the behav-
ior of a particular algorithm B is dominated by that of another algorithm A. It means one
can take B out of consideration to solve problems from this class. In order to investigate
this, one should strictly define the concept of domination.

Definition 1. Let A and B be two stochastic algorithms run on an instance F of prob-
lem (1). Then A is said to dominate B on F if ∀y,N , CDFR

[A]
N (y) > CDFR

[B]
N (y) and

∃y,N such that CDFR
[A]
N (y) > CDFR

[B]
N (y).

654 E.M.T. Hendrix, A. Lančinskas

Notice that for population-based algorithms that initially start with a randomly gener-
ated and evaluated population, the behavior of the record value is exactly the same as that
of PRS till the population is generated and the mechanism of “reproduction” (i.e. gener-
ating new trial points on the base of the current population) is started. Very low budgets
N of function evaluations are therefore less interesting. On the other hand, for a high bud-
get N in the lower dimensional cases typically used in literature, the difference between
the methods diminishes. We stress this, because we observed tables in literature where
two-dimensional instances were hit with tens of thousands of trial points. Ali et al. (2005)
suggested to compare algorithms for N ∈ {10n,10n2,100n2} evaluations. That does not
necessarily reflect a budget for practical black box design problems. In the sequel, we
will attempt to find an interesting region of budget N and test cases where well known
algorithms can be distinguished.

3. Numerical Illustration of the New Concepts

3.1. Description of Algorithms

We generated the CDRF curves for many test cases that are widely available in literature
and on the web. For the illustration we selected several popular instances that show an
interesting difference for several frequently used population algorithms. For the choice of
the maximum effort N , we take the idea that a function evaluation takes 5 minutes and
one would like to have an answer in one or several days. For the illustration we consider
N = 200,500,1000.Due to the popularity of evolutionary algorithms, we will use several
easily accessible codes of population based algorithms as well as the basic Multistart of
Algorithm 2 with the local search fmincon of matlab and confront their performance
with the benchmark of PRS.

Price (1979) introduced a population-based algorithm called Controlled Random
Search (CRS) that has been widely used and modified into many variants by himself and
other researchers. Algorithm 3 describes the initial scheme modified for a budget N . No-

Algorithm 3 CRS
1: procedure CRS(X,f,N,M)
2: Generate and evaluate a set P of M random points uniformly over X;
3: k←M;
4: while k < N do

5: Select at random a subset {p1,p2, . . . ,pn+1} ⊂ P ;
6: xk←

2
n

∑n
i=1 pi − pn+1;

7: if xk ∈X and f (xk) < maxp∈P f (p) then replace argmaxp∈P f (p) by xk ;
8: k← k + 1;
9: end while

10: return argminp∈P f (p) and minp∈P f (p);
11: end procedure

On Benchmarking Stochastic Global Optimization Algorithms 655

Algorithm 4 GA
1: procedure GA(X,f,N,M)
2: Generate and evaluate a set P of M random points uniformly over X;
3: k←M;
4: while k < N do

5: Q= ∅;
6: for i = 1 to M do

7: Select at random {p1,p2} ⊂ P ;
8: Generate q by crossing p1 and p2.
9: Mutate q by changing some of its coordinates;

10: Q←Q∪ {q};
11: end for

12: Evaluate fitness of the generated points q ∈Q;
13: k← k +M;
14: P ←M best points from P ∪Q;
15: end while

16: return argminp∈P f (p);
17: end procedure

tice that apart from the population size M , no additional parameter is required in this basic
description.

Although the concept of evolutionary algorithms already existed before, they became
extremely popular after the appearance of the works of Holland (1975) and Davis (1991).
Evolutionary terminology such as individuals, offspring, alleles, genome, crossover, sur-
vival of the fittest, etc., is usually mixed with the pure algorithm description. The al-
gorithms usually suffer from an overshot of parameters to steer the search process; for
instance the GA function in matlab has 26 parameters of which about 17 influence the
performance of the algorithm, the others refer to output. For the illustration we use the
matlab implementation with its default values for the parameters.

Kennedy and Eberhart (1995) came up with an algorithm where evolutionary terminol-
ogy was replaced by “swarm intelligence” and “cognitive consistency”. In each iteration
of the algorithm, each member (particle) of the population, called swarm, is modified and
evaluated. Classical nonlinear programmingmodification by direction and step size is now
termed “velocity”. Instead of considering P as a set, one better thinks of an ordered list
of elements, pi , i = 1, . . . ,M . Besides its current position pi , also the best position bi

found by particle i is stored. Each particle i has a velocity vi that is updated at each iter-
ation containing random effects. The velocity vi is based on the current position pi , best
found position bi , and the global best point x =mini bi , found so far by the whole swarm.
The position pi is updated by adding the velocity: pi← pi + vi . For the description it is
useful to use the element index j besides the particle index i and iteration index k. See
Algorithm 5 for the pseudo-code of PSO.

656 E.M.T. Hendrix, A. Lančinskas

Algorithm 5 PSO
1: procedure PSO(X,f,N,M,ω, c1, c2)
2: Generate and evaluate a set P , of M random points uniformly over X;
3: x← argminp∈P f (p); bi← pi and vi← 0, i = 1,2, . . . ,M;
4: k←M;
5: while k < N do

6: for i = 1 to M do

7: for j = 1 to n do

8: Generate r uniformly over [0,1]2;
9: vij ← ωvij + 2c1r1(bij − pij)+ 2c2r2(xbj − pij);

10: end for

11: pi← pi + vi ;
12: if f (pi) < f (bi) then bi← pi ;
13: if f (pi) < f (x) then x← pi ;
14: end for

15: k← k +M;
16: end while

17: return f (x) and x;
18: end procedure

3.2. Results and Discussion

In order to illustrate the concepts of the cumulative distribution CDFRN (y) of the record,
we elaborate numerical results for N = 200,500,1000 over several test instances for the
three population algorithms described in Section 3.1 with a population size of M = 50

and the basic Multistart and confront them with the benchmark of PRS. The curves were
generated by repeating each algorithm 1000 times. The x-axis of the graphs is scaled
by the maximum objective function value of PRS over 1000 repetitions for N function
evaluations.

The Six-hump camel-back test problem is a popular test case in 2 dimensions. There
are 6 local minima points in the feasible region, of which two are global minimum
points. Figure 2 shows the CDFR

[A]
N (y) curves for each algorithm A and each budget

N = 200,500,1000. It is interesting to see that visually for N = 1000 the scale is such
that the quality of the population algorithms cannot be distinguished. Results can be better
distinguished for the small budget N = 200. For this budget, Multistart can perform only
5 local searches with the matlab local search solver, but this provides still more than 99%
chance to reach a global minimum point. Thinking in terms of “generations”, PSO and GA
only refresh their population (swarm) four times. Nevertheless, the GA algorithm domi-
nates the other population algorithms, i.e. its curves are higher for all tested budgets N .
None of the population algorithms is worse than PRS.

The Bi-spherical test problem has 2 local minimum points one of which is the global
one. Independent of the dimension n, the two regions of attraction are about 50% of the
total volume facilitating analysis. For the numerical generation we used the feasible area

On Benchmarking Stochastic Global Optimization Algorithms 657

 0

 1

 0 1

N=200

PRS MS PSO GA CRS

 0 1

N=500

PRS MS PSO GA CRS

 0 1

N=1000

PRS MS PSO GA CRS

Fig. 2. Plots of CDFR
[A]
N

(y) by running algorithms A= PRS, MS, PSO, GA, CRS on the Six-hump camel-back
test problem, N = 200 (left); N = 500 (middle); N = 1000 (right).

 0

 1

 0 1

N=200

PRS MS PSO GA CRS

 0 1

N=500

PRS MS PSO GA CRS

 0 1

N=1000

PRS MS PSO GA CRS

Fig. 3. Plots of CDFR
[A]
N

(y) running algorithms A = PRS, MS, PSO, GA, CRS on the Bi-spherical test case,
dimension n= 2, N = 200 (left); N = 500 (middle); N = 1000 (right).

[−2,2]2 and the higher dimensional [−2,2]10. Figure 3 shows the curves derived for n= 2

and Fig. 4 – for n= 10, which is considered much more difficult due to the dimensionality.
As the region of attraction of the global minimum consists of practically 50% of the search
space, the curve of MS coincides with the vertical axis independent on the number of
function evaluations. For n= 2, the refractive point of the PSO curve with N = 500,1000

function evaluations indicates that the algorithm is sensitive to the attraction of the local
(non-global) minimum point.

For higher dimensions, like n = 10, usage of budgets as N = 200,500,1000 is per-
ceived as hopeless. Notice that for this specific instance, Multistart is doing still excellent
and dominates all population algorithms. It practically always reaches the global minimum
point.

The Ackley test problem (Ackley, 1987) is another interesting instance that facilitates
observation of results in several dimensions having practically the same landscape. Be-
sides the unique global minimum point, the instance has a large number of local minima.
Therefore, it is often used to test the behavior of algorithms on the existence of many
optima. Figure 5 shows the derived curves of CDFR

[A]
N (y) for the algorithms for n = 2

and Fig. 6 for the high dimensional case n= 10. An interesting characteristic of this in-

658 E.M.T. Hendrix, A. Lančinskas

 0

 1

 0 1

N=200

PRS MS PSO GA CRS

 0 1

N=500

PRS MS PSO GA CRS

 0 1

N=1000

PRS MS PSO GA CRS

Fig. 4. Plots of CDFR
[A]
N

(y) running algorithms A = PRS, MS, PSO, GA, CRS on the Bi-spherical test case,
dimension n= 10, N = 200 (left); N = 500 (middle); N = 1000 (right).

 0

 1

 0 1

N=200

PRS MS PSO GA CRS

 0 1

N=500

PRS MS PSO GA CRS

 0 1

N=1000

PRS MS PSO GA CRS

Fig. 5. Plots of CDFR
[A]
N

(y) obtained by running algorithms A = PRS, MS, PSO, GA, CRS on the Ackley test
problem, n= 2, N = 200 (left); N = 500 (middle); N = 1000 (right).

stance is that MS is not more effective than PRS due to the large number of local minima.
For n= 2, it still has a positive probability of reaching the global optimum, but in higher
dimension the use of local minimization on this budget looks hopeless. The population
algorithms here are also doing better than PRS and again GA seems to dominate the other
two population algorithms: CRS and PSO.

Another extreme (difficult) case is the Easom test problem (Easom, 1990) in
2-dimensional space. There is one global minimum point characterized by a narrow and
deep indentation in a nearly horizontal plane. This means that any local search gets stuck
on the plane, but population-based algorithms are able to start moving after one of its
members found the hole. Figure 7 shows the derived curves of CDFR

[A]
N (y) for each al-

gorithm A. One can see in the figure that the algorithms behave equally poor on this
instance when using N = 200 function evaluations. The GA algorithm at least reaches
some probability to come close to the lower valley. When the budget of function evalu-
ations is N = 500, the performance of PSO can be distinguished as well, though PSO is
much less effective than GA. Finally, when the effort really increases towards N = 1000,
all population algorithms seem to do better than PRS and MS. For this characteristic, local
searches appear very bad.

On Benchmarking Stochastic Global Optimization Algorithms 659

 0

 1

 0 1

N=200

PRS MS PSO GA CRS

 0 1

N=500

PRS MS PSO GA CRS

 0 1

N=1000

PRS MS PSO GA CRS

Fig. 6. Plots of CDFR
[A]
N (y) obtained by running algorithms A = PRS, MS, PSO, GA, CRS on the Ackley test

problem, n= 10, N = 200 (left); N = 500 (middle); N = 1000 (right).

 0

 1

 0 1

N=200

PRS MS PSO GA CRS

 0 1

N=500

PRS MS PSO GA CRS

 0 1

N=1000

PRS MS PSO GA CRS

Fig. 7. Plots of CDFR
[A]
N

(y) obtained by running algorithms A = PRS, MS, PSO, GA, CRS on the Easom test
problem, N = 200 (left); N = 500 (middle); N = 1000 (right).

 0

 1

 0 1

N=200

PRS MS PSO GA CRS

 0 1

N=500

PRS MS PSO GA CRS

 0 1

N=1000

PRS MS PSO GA CRS

Fig. 8. Plots of CDFR
[A]
N

(y) obtained by running algorithms A = PRS, MS, PSO, GA, CRS on the Branin test
problem, N = 200 (left); N = 500 (middle); N = 1000 (right).

The Branin (Dixon and Szegö, 1978) test problem in 2-dimensional space has 3
global minimum points which are located in a shallow flat valley. The derived curves
of CDFR

[A]
N (y) are presented in Fig. 8. Since the function has no local non-global min-

660 E.M.T. Hendrix, A. Lančinskas

ima, MS always descends to the global minimum independently of the starting point and
the budget of function evaluations N = 200,500, or 1000. Therefore, the probability to
find the global minimum using MS is one, and the curve of CDFR

[MS]
N (y) coincides with

the vertical axis. One can say that for such instances, the benchmark of MS dominates the
population algorithms from at least the budget NLS of performing one local search. An-
other interesting property of the problem instance is that the least effective algorithm when
using N = 200 appears to be GA, whereas CRS is the most effective of all population-
based algorithms. The performanceof GA is very similar to the performanceof PSO when
N = 500 is used. However, both of them are worse than CRS and MS. It should be noted
that if the aim was to find all global minimum points another criterion should be used.

4. Conclusions

Heuristics for the box-constrained global optimization problem are often tested on a set
of test instances. We showed that the Cumulative Distribution Function of the obtained
function value provides the answer (in terms of domination) to the question of which
algorithms behave well on which type of instances. We argue that a good minimum per-
formance benchmark is due to pure random search; i.e. algorithms should do better. The
concepts have been illustrated for several well-known population algorithms. It shows how
domination is determined by the characteristics of an individual test problem. In the selec-
tion of an algorithm, one better first studies the underlying characteristics of the black-box
problem to be solved.

Acknowledgements. This research was funded by a grant (No. MIP-51/2014) from the
Research Council of Lithuania. This research is supported by grants from the Spanish
Ministry (TIN2012-37483-C03-01) and Junta de Andalucía (P11-TIC-7176), in part fi-
nanced by the European Regional Development Fund (ERDF).

References

Ackley, D.H. (1987). A Connectionist Machine for Genetic Hillclimbing. Kluwer, Boston.
Ali, M.M., Khompatraporn, C., Zabinsky, Z.B. (2005). A numerical evaluation of several stochastic algorithms

on selected continuous global optimization test problems. Journal of Global Optimization, 31, 635–672.
Baritompa, W.P., Hendrix, E.M.T. (2005). On the investigation of stochastic global optimization algorithms.

Journal of Global Optimization, 31, 567–578 .
İlker Birbil, Ş., Fang, S.C. (2003). An electromagnetism-like mechanism for global optimization. Journal of

global optimization, 25(3), 263–282.
Chelouah, R., Siarry, P. (2000). A continuous genetic algorithm designed for the global optimization of multi-

modal functions. Journal of Heuristics, 6(2), 191–213.
Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand–Reinhold, New York.
Dixon, L.C.W., Szegö, (1975). Towards Global Optimization. North-Holland, Amsterdam.
Dixon, L.C.W., Szegö, G.P. (1978). Towards Global Optimization 2. North-Holland, Amsterdam.
Dolan, E.D., Moré, J.J. (2002). Benchmarking optimization software with performance profiles. Mathematical

Programming, 91, 201–2013.
Easom, E.E. (1990). A survey of global optimization techniques. University of Louisville, Louisville.

On Benchmarking Stochastic Global Optimization Algorithms 661

Hendrix, E.M.T., Roosma, J. (1996). Global optimization with a limited solution time. Journal of Global Opti-

mization, 8, 413–427.
Hendrix, E.M.T., Tóth, B.G. (2010). Introduction to Nonlinear and Global Optimization. Springer, New York.
Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.
Jelasity, M., Ortigosa, P.M., García, I. (2001). UEGO, an abstract clustering technique for multimodal global

optimization. Journal of Heuristics, 7(3), 215–233.
Kennedy, J., Eberhart, R.C. (1995). Particle swarm optimization. In: Proceedings of IEEE International Con-

ference on Neural Networks, Piscataway, NJ, pp. 1942–1948.
Misener, R., Floudas, C.A. (2014). ANTIGONE: algorithms for continuous/integer global optimization of non-

linear equations. Journal of Global Optimization, 60, 123–144.
Müller, J., Schoemaker, C.A. (2014). Influence of ensemble surrogate models and sampling strategy on the so-

lution quality of algorithms for computationally expensive black-box global optimization problems. Journal

of Global Optimization, 59, 503–526.
Price, W.L. (1979). A controlled random search procedure for global optimization. The Computer Journal, 20,

367–370.
Recchioni, M.C., Scoccia, A. (2000). A stochastic algorithm for constrained global optimization. Journal of

Global Optimization, 16(3), 257–270.
Redondo, J.R., Ortigosa, P.M., Žilinskas, J. (2012). Multimodal evolutionary algorithm for multidimensional

scaling with city-block distances. Informatica, 23(4), 601–620.
Rios, L.M., Sahinidis, N.V. (2013). Derivative-free optimization: a review of algorithms and comparison of

software implementations. Journal of Global Optimization, 56, 1247–1293.
Törn, A., Žilinskas, A. (1989). Global Optimization. Lecture Notes in Computer Science, Vol. 350. Springer,

Berlin.
Vaz, A.I.F., Vicente, L.N. (2007). A particle swarm pattern search method for bound constrained global opti-

mization. Journal of Global Optimization, 39(2), 197–219.
Zhigljavsky, A., Žilinskas, A. (2008). Stochastic Global Optimization. Springer, New York.
Zielinski, R. (1981). A statistical estimate of the structure of multi-extremal problems. Mathematical Program-

ming, 21, 348–356.

E.M.T. Hendrix is a European researcher in the field of optimization algorithms. He
is affiliated to the universities of Wageningen and Málaga, but also teaches at other uni-
versities. His research interests are Global and Dynamic optimization and computational
impacts.

A. Lančinskas received the doctoral degree in informatics from Institute of Mathematics
and Informatics of Vilnius University in 2013. Currently he is a researcher at the same
institute and lecturer at the department of Informatics of the Lithuanian University of
Educational Sciences. His research interest is focused on development and investigation
of global and multi-objective optimization algorithms and their parallelization.

662 E.M.T. Hendrix, A. Lančinskas

Apie stochastinių globaliojo optimizavimo algoritmų
lyginamąją analizę

Eligius M.T. HENDRIX, Algirdas LANČINSKAS

Literatūroje sutinkama daugybė įvairių euristinių optimizavimo algoritmų, kurių sustojimo kriteri-
jus yra paremtas tikslo funkcijų perskaičiavimų skaičiumi, o jų našumas vertinamas remiantis viduti-
ne tikslo funkcijos reikšme. Šiame straipsnyje nagrinėjamas bendresnis euristinių algoritmų našumo
eksperimentinio vertinimo metodas, skirtas įvertinti, kurie algoritmai yra labiau tinkami konkrečios
klasės optimizavimo uždaviniams spręsti. Straipsnyje siūlomas metodas yra grįstas tikslo funkcijos
reikšmių pasiskirstymo funkcijos vertinimu, atsižvelgiant į paprastosios atsitiktinės paieškos (pras-
čiausio atvejo) našumą sprendžiant konkretų uždavinį. Siūlomo metodo efektyvumas iliustruojamas

vertinant gerai žinomų euristinių algoritmų našumą įvairiems testo uždaviniams spręsti.

