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Abstract. The nonlinear stochastic programming problem involving CVaR in the objective and con-
straints is considered. Solving the latter problem in a framework of bi-level stochastic programming,
the extended Lagrangian is introduced and the related KKT conditions are derived. Next, the sequen-
tial simulation-based approach has been developed to solve stochastic problems with CVaR by finite
sequences of Monte Carlo samples. The approach considered is grounded by the rule for iterative
regulation of the Monte Carlo sample size and the stochastic termination procedure, taking into ac-
count the stochastic model risk. The rule is introduced to regulate the size of the Monte Carlo sample
inversely proportionally to the square of the stochastic gradient norm allows us to solve stochastic
nonlinear problems in a rational way and ensures the convergence. The proposed termination proce-
dure enables us to test the KKT conditions in a statistical way and to evaluate the confidence intervals
of the objective and constraint functions in a statistical way as well. The results of the Monte Carlo
simulation with test functions and solution of the practice sample of trade-offs of gas purchases,
storage and service reliability, illustrate the convergence of the approach considered as well as the
ability to solve in a rational way the nonlinear stochastic programming problems handling CVaR in
the objective and constraints, with an admissible accuracy, treated in a statistical manner.
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1. Introduction

Real life decisions under uncertainty and risk are often modeled by linear or nonlinear
stochastic programs. However, the optimization on average, usually realized in the frame-
work of stochastic programming, is limited because it does not take into account the in-
volved risk of possible deviations from the expected value. Indeed, in various practical
applications, the random scenarios occur, that are rather unlikely, but which, in the case
they do appear, have catastrophic consequences. Because of their low probability such
scenarios would not have a significant impact on the expectation value, and finally can
provide a decision, what doesn’t take into account undesirable scenarios. This motivates
the development of risk-averse optimization models involving coherent risk measures, be-
cause that can provide decisions more sensitive to harmful, but unlikely scenarios.
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Many measures are proposed for risk evaluation. Recently the Conditional Value-at-
Risk (CVaR), introduced by Rockafellar and Uryasev (2000), has found many applications
in the risk management as well as in the financial and engineering optimization. CVaR
approximately (or exactly, under certain conditions) equals to the average of some per-
centage of the worst-case loss scenarios. Namely, assume a confidence level α ∈ (0,1)

and a loss function f (x, y) : ℜn × � → ℜ, to be given, where x is a decision variable
and y represents uncertain factors defined on a probability space (�,F,P ). While CVaR
is conceptually defined as the expectation of the random variable f (x, y) in the condi-
tional distribution of its upper α-tail, an operationally convenient definition is given by
Rockafellar and Uryasev (2002):

CVaRα(x) = min
u

{

u + 1

1 − α
E
(

f (x, y) − u
)+∣
∣u ∈ ℜ

}

, (1)

where t+ = max{0, t} and E stands for the mathematical expectation.
Also, Rockafellar and Uryasev (2000, 2002) proposed an approach for optimizing

CVaR and showed that the linear programming techniques might be used for optimiza-
tion in some programs, involving CVaR. The paper of Krokhmal et al. (2002) was the first
one to deal with portfolio optimization involving CVaR in the objective and constraints,
and later on, Csaba (2008) considered the two-stage stochastic problems with CVaR in the
objective and constraints. The issues of CVaR application to portfolio planning have been
considered in Fortin and Hlouskova (2011), Lim et al. (2011), Grechuk and Zabarankin
(2014). Application of CVaR optimization in engineering and design are described by
Geihe et al. (2013), Legg et al. (2013), and others. It has been shown in Sakalauskas
(2004a), Mulvey and Erkan (2006), Sutiene et al. (2010), Guigues and Romisch (2012),
and Yao and Zhang (2012) that many problems of risk and profit management might be
efficiently solved, using the CVaR risk measure and the stochastic optimization.

Thus, recently the known methods enable us to treat optimization problems involving
CVaR as large linear counterparts, however, to solve them it may require huge computing
resources. Besides, it is not clear how to solve the optimization problems with nonlin-
ear random objective and/or constraint functions involving CVaR, when the distribution
of random scenarios is known and continuous. In such a case, the sequential stochastic
search by series of dynamically simulated samples looks as a way to develop the prac-
tical algorithms for nonlinear stochastic problems with CVaR, involved in the objective
and/or constraints. The goal here is to simulate the scenarios sample-by-sample, aimed
at improving the values of probabilistic objective functions under the given constraints
at each sample (see, Cairoli and Dalang, 1996; Shapiro and Homem-de-Mello, 1998;
Sakalauskas, 2002, 2004b; Bayraksan and Morton, 2011, etc.). The approach of sequen-
tial search by random samples has been developed for two-stage stochastic programming
in Shapiro and Homem-de-Mello (1998). Later on the method of stochastic nonlinear pro-
gramming by series of Monte Carlo samples in the framework of the stochastic gradient
descent has been developed in Sakalauskas (2002). Since the amount of simulated scenar-
ios in sampling-based algorithms can achieve a significant volume, the key feature is to
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estimate and decrease the number of scenarios needed to obtain a reliable statistical esti-
mate of the probabilistic functions to be optimized. The methods of sequential stochastic
search developed in the framework of stochastic gradient descent, converge slowly if the
Hessian of Lagrangian of the stochastic nonlinear problem is poorly defined. The idea be-
hind to reinforce the gradient descent is the stochastic variable metric (SVM) approach,
using the descent direction computed in the appropriately induced variable metric (see,
Uryasev, 1992). Thus, this paper focuses on the development of a method of sequential
stochastic search for nonlinear CVaR optimization, using the SVM method to improve the
convergence. The paper is organized as follows: statement of the risk-aversion optimiza-
tion problem involving CVaR and related Karush–Kuhn–Tucker (KKT) conditions are
discussed in the next section, random sampling by the Monte Carlo method is described
in Section 3, procedure of the sequential stochastic search itself is presented in Section 4,
the results of computer simulation are presented in Section 5, and, finally, the concluding
remarks are given in Section 6.

2. KKT Conditions in Stochastic Programming Involving CVaR

Risk management and investment optimization require the investor’s risk aversion to be
specified, because without efficient procedures for identifying the risk aversion, investors
can overexpose themselves tom risk and lose profits. Usually the perception of risk is the
amount of a security capital which would be set aside from the investments so that under
any change of the market, the investor feels himself safe in total of the capital obtained
from the market with his security capital. The risk aversion models are efficiently investi-
gated from the stochastic programming point of view. Thus, since any investor’s decision
is related with a certain value of the expected objective function and risk, the trade-off be-
tween objective and risk may be presented through the level of risk-aversion expressed as a
weighted sum with the weight θ on the function to be optimized, and with the weight (1 −
θ) on the risk measure, where 0 6 θ 6 1. Besides, in many decision-making problems un-
der uncertainty it is also crucial to specify the decision makers’ risk preferences, based on
multiple stochastic risk measures, which is efficiently performed by shaping the distribu-
tion of scenarios according to the multiple CVaR constraints (see, Krokhmal et al., 2002;
Noyan and Rudolf, 2013). Therefore the incorporationof multiple stochastic risk measures
into optimization models is a fairly recent research area (Guldman, 1983). The sketch of
this problem and relative KKT conditions have been also presented in Dumskis et al.
(2012).

Thus, assume the random functions Fi : ℜn ⊗� → ℜ, i = 0,1,2, . . . ,m, to be given,
which obey certain conditions on differentiability with respect to x ∈ ℜn and integrity
with respect to ζ ∈ �, here (�,6,P ) is the probability space. Now the risk-aversion
optimization problem with multiple CVaR constraints is stated for sake of simplicity in a
following way omitting the constraints without CVaR:

f0(x) = θE
[

F0(x, ζ )
]

+ (1 − θ)CVaRα0

[

F0(x, ζ )
]

→ min
x

,

fi(x) = CVaRα1

[

Fi(x, ζ )
]

6 ηi , i = 1,2, . . . ,m, (2)
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where CVaR follows definition (1), 0 < αi 6 1, i = 0,1,2, . . . ,m. Hereinafter, assume the
probabilistic measure to be absolutely continuous and defined by the probability density
p : � → ℜ+. Thus, rewrite problem (2) in the following equivalent manner, taking into
account definition (1):

f0(x) = θ

∫

Rl

F0(x, z)p(z) dz

+ (1 − θ)

(

u0 + 1

α0

∫

Rl

(

F0(x, z) − u0

)+
p(z) dz

)

→ min
x,u0

,

fi(x) = min
ui∈ℜ

(

ui + 1

αi

∫

Rl

(

Fi(x, z) − ui

)+
p(z) dz

)

6 ηi, i = 1,2, . . . ,m. (3)

Note, that the latter problem turns out to be a stochastic bi-level programming problem
or a stochastic Stackelberg game, equivalent to this problem, whereat the leader maxi-
mizes the risk-averse objective at the upper level choosing the control variables x as well
as his VaR u0, and, in turn, followers at a lower level optimize individually, under given x ,
their CVaR functions with respect to VaR’s ui , i = 1,2, . . . ,m.

Let us consider (2), (3) as a nonlinear programming problem. Note, that the objective
function in the leader problem as well as the functions in the followers problems do not
depend on VaR’s ui in an explicit manner. Hereinafter, define the following functions to
exploit the latter opportunity:

s0(x,u) = θEF0(x, ζ ) + (1 − θ)

(

u0 + E(F0(x, ζ ) − u0)
+

α0

)

,

si(x,u) = ui + E(Fi(x, ζ ) − ui)
+

αi

, (4)

which, as it is easy to see, are expectations of the random functions:

S0(x,u, ζ ) = θF0(x, ζ ) + (1 − θ)

(

u0 + (F0(x, ζ ) − u0)
+

α0

)

,

Si(x,ui, ζ ) = ui + (Fi(x, ζ ) − ui)
+

αi

, (5)

where i = 1,2, . . . ,m.
The concept of the stochastic gradient is a key to explore the differentiability of prob-

abilistic functions. Next propositions help us to study stochastic gradients of functions (4)
behind the known fact that locally Lipschitz functions have subgradients, that can be taken
as stochastic gradients (see, Clarke, 1983; Michalevitch et al., 1987, etc.).

Proposition 1. Assume that the objective and constraint functions Fi : ℜn ⊗ � → ℜ,
where (�,6,P ) is a probability space, are integrable with respect to ζ ∈ �, and obey
locally the Lipshitz property with respect to x ∈ ℜn, besides, the following expectations are
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locally bounded: |EFi(x, ζ )| < ∞, |EGi(x, ζ )| < ∞, where Gi(x, ζ ) = ∂xFi(x, ζ ) are,
respectively, subgradients of the considered random objective and constraint functions,
i = 0,1,2, . . . ,m. Then at any ζ ∈ �, ui ∈ ℜ, the random functions in (5) Si(x,u, ζ ),
x ∈ ℜn, u = (u0, u1, . . . , um), u ∈ ℜm+1, ζ ∈ �, obey the Lipshitz property with respect
to x , and their subgradients are expressed as follows:

∂xS0(x,u, ζ ) = θG0(x, ζ ) + (1 − θ)
G0(x, ζ )H(F0(x, ζ ) − u0)

α0

,

∂xSi(x,ui, ζ ) = Gi(x, ζ )H(Fi(x, ζ ) − ui)

αi

. (6)

The values of which can be taken as stochastic gradients of the probabilistic functions (4),
namely:

∂xsi(x,ui) = E∂xSi(x,ui, ζ ), i = 0,1,2, . . . ,m, (7)

where H : ℜ → {0,1} is the Heaviside step function H : ℜ → {0,1}, Kanwal (1998).

Proof. Note, that it is easy to see that

∣

∣

(

Fi(x, ζ ) − ui

)+ −
(

Fi(y, ζ ) − ui

)+∣
∣6

∣

∣Fi(x, ζ ) − Fi(y, ζ )
∣

∣.

Next, due to the latter inequality and the assumption on the Lipshitz property of random
objective and constraint functions, the random functions Si(x,ui, ζ ) in (5) at any ζ ∈
�, ui ∈ ℜ, are locally Lipshitzian with respect to variables x . Thus, the subgradients of
these random functions exist because of the Lipshitz property. Hereupon the property of
stochastic gradient (7) is true by virtue of Lebesgue Theorem (see, also, Ermoliev, 1983;
Michalevitch et al., 1987; Ermoliev and Wets, 2011, etc.). �

Corollary 1. If the random objective and constraint functions are given by smoothing:
Fi(x, ζ ) = Fi(x + ζ ), where the uncertainty is described by an absolutely continuous
measure, and functions Fi : ℜn → ℜ obey locally the Lipshitz property, then the functions
si(x,ui) are differentiable with respect to x ∈ ℜn, i = 0,1,2, . . . ,m.

Indeed, by virtue of Rademacher’s Theorem the Lebesgue measure is zero of the set
in �, where the subgradient (6) is set-valued. Thus, the expression (7) is defined a.s.
unambiguously as an point-valued expectation (see, also, Rockafellar and Wets, 1982;
Shapiro and Homem-de-Mello, 1998; Bartkute and Sakalauskas, 2007).

Proposition 2. Let the assumptions of Proposition 1 be satisfied, and, besides, the consid-
ered probabilistic measure to be absolutely continuous. Then, the subgradients of random
functions (5) with respect to VaR’s ui ∈ ℜ are as follows:

∂ui Si(x,ui, ζ ) = 1 −
H(Fi(x, ζ ) − ui)

αi

. (8)
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Besides, functions (4) si(x,ui) are smoothly differentiable with respect to VaR’s ui , and
their subgradients turn out almost everywhere to derivatives, expressed by the probabili-
ties of risk Pr(Fi(x, ζ )> ui):

dsi(x,ui)

dui

≡ E∂uiSi(x,ui, ζ ) = 1 − Pr(Fi(x, ζ )> ui)

αi

, i = 0,1,2, . . . ,m. (9)

Proof. Follows from the Lipschitz property with respect to VaR’s ui of random func-
tions (5), Rademacher’s and Lebesgue’s theorems, analogously to the proof of the previous
proposition. �

Thus, a smooth differentiability of probabilistic objective and constraint functions can
be established rather often in practical stochastic problems involvingCVaR, and the propo-
sitions above have presented cases of this kind.

Now let us derive the Karush–Kuhn–Tucker (KKT) conditions of the problem consid-
ered, taking into account the latter remark. The standard Lagrangian of this problem is
f0(x) +

∑m
i=1

λifi(x). However, let us introduce extended Lagrange function (LF):

l(x, u,λ) ≡ EL(x,u,λ, ζ ) = s0(x,u) +
m
∑

i=0

λisi(x,u)

≡ θ

∫

Rl

F0(x, z)p(z) dz

+
m
∑

i=0

λi

(

ui − ηi + 1

αi

∫

Rn

(

Fi(x, z) − ui

)+
p(z) dz

)

, (10)

which, in its turn, can be treated as an expectation of the random Lagrange function:

L(x,u,λ, ζ ) = θF0(x, ζ ) +
m
∑

i=0

λi

(

ui − ηi + (Fi(x, ζ ) − ui)
+

αi

)

, (11)

u = (u0, u1, . . . , um), λ = (λ0, λ1, . . . , λm), λ0 = 1 − θ , η0 = 0.
Indeed, under the Lipshitz property of the random objective and constraint functions

Fi(x, ζ ), the Lagrangian L(x ,u,λ, ζ ), x ∈ ℜn, λ ∈ ℜm+1, u ∈ ℜm+1, ζ ∈ �, obeys the
Lipshitz property with respect to x , and the values of its subgradients are as follows:

∂xL(x,u,λ, ζ ) ≡ Q(x,λ,u, ζ ) = θG0(x, ζ ) +
m
∑

i=0

λi

αi

Gi(x, ζ )H
(

Fi(x, ζ ) − ui

)

,

(12)

which can be taken as stochastic gradients of the extended Lagrangian (10):

∂x l(x, u,λ) ≡ q(x,u,λ) = EQ(x,u,λ, ζ ). (13)
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Differentiability of the extended Lagrangian with respect to VaR’s vector u ∈ ℜm+1 fol-
lows from Proposition 2.

Theorem 1. Assume that the functions si(x,ui), i = 0,1,2, . . . ,m, defined by (4), are
differentiable with respect to variables x ∈ ℜn at any ui ∈ ℜ, and the constants on the
right side of constraints in (2) are chosen so that

n
∏

i=1

{

(x,u) : si(x,u) < ηi

}

6= ∅. (14)

Now, let x∗ ∈ ℜn be the solution to problem (2), u∗
i be corresponding VaR’s in the opti-

mal problems of a leader and followers, and, let the gradients ∇xsi(x
∗, u∗

i ) be positively
linearly independent, i = 0,1,2, . . . ,m. Then there exist the values λ∗

i > 0, i = 1, . . . ,m,
such that

∇xs0

(

x∗, u∗)+
m
∑

i=1

λ∗
i ∇xsi

(

x∗, u∗
i

)

= 0,

λ∗
i si
(

x∗, u∗
i

)

= 0, i = 1,2, . . . ,m,

Pr
(

Fi

(

x∗, ζ
)

> u∗
i

)

= αi , i = 0,1, . . . ,m. (15)

Proof. Indeed, according to assumption (14), the solution point x ∈ ℜn can be chosen so
that si(x,u∗

i ) < ηi , i = 1, . . . ,m. Thus, the Slater condition of the problem (2) is satisfied,
because in such a case, fi(x) = minui∈ℜ si(x,ui) < ηi , i = 1, . . . ,m. Besides, the objec-
tive and constraint functions fi(x) are differentiable under the given assumptions and the
corresponding gradients are positively linearly independent. Then the KKT conditions
of problem (2) exist by virtue of the Karush-Kuhn-Tucker theorem (see, e.g., Bertsekas,
1982), which can be written in an equivalent manner as (15) �

3. Random Sampling

Since the expectations and their derivatives, defined by (11), (13), (15), etc., turn out to be
complicated multivariate integrals, a random sampling provides the universal technique
to solve problems of the considered kind. Now, assume that the Monte Carlo samples of
certain size N

Z =
(

z1, z2, . . . , zN
)

, (16)

where zi are independent random vectors, realizing random scenarios, identically dis-
tributed with the density p(·) : � → R+, are available at each point x ∈ ℜn. Now, let us
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define Monte Carlo estimators:

s̃0(x,u) = θ

N

N
∑

j=1

F0

(

x, zj
)

+ 1 − θ

N0

N
∑

j=1,

F0(x,zj )>u0

F0

(

x, zj
)

, (17)

s̃i(x,u) = 1

Ni

N
∑

j=1,

Fi (x,zj )>ui

Fi

(

x, zj
)

, (18)

Pri = Ni

N
, (19)

where Ni =
∑N

j=1
H(Fi(x, zj ) − ui) are the frequencies of events {ui : Fi(x, zj ) > ui},

that occur in the scenarios of sample (16), i = 1,2, . . . ,m. Assume Ni 6= 0, without loss
of generality, because, in the opposite case, one can always repeat the sampling. By the
Strong Law of Large Numbers estimators (17), (18) are consistent estimators of expected
values (4), and estimators (19) are, respectively, that of risk probabilities Pr(Fi(x, ζ ) >

ui), i = 0,1, . . . ,m (Shapiro, 2003). Let us also define the sampling variances:

D̃2

i (x,u) = 1

Ni

N
∑

j=1,

Fi
(

x,zj
)

>ui

(

Fi

(

x, zj
)

− s̃i(x)
)2

, i = 1,2, . . . ,m. (20)

Naturally, the Monte Carlo estimator of LF is as follows:

L̃(x,λ,u) = s̃0(x,u) +
m
∑

i=1

λi

(

s̃i(x,u) − ηi

)

. (21)

Let us apply the stochastic gradient technique to approximate the gradients of objective
and constraint functions by the Monte Carlo method. Let the subgradients

Gi(x, ζ ) = ∂Fi(x, ζ ), i = 0,1, . . . ,m.

be available at the scenarios in random sample (16), which can be taken as a stochastic
gradient of functions (4), assuming the latter ones to be differentiable. Thus, the sampling
estimates of these gradients are as follows:

g̃0(x,u) = 1

N

N
∑

j=1

(

θG0

(

x, zj
)

+ 1 − θ

Pr0

G0

(

x, zj
)

H
(

F0

(

x, zj
)

− u0

)

)

,

g̃i(x,u) = 1

Ni

N
∑

j=1

Gi

(

x, zj
)

H
(

Fi

(

x, zj
)

− ui

)

, (22)

where i = 1,2, . . . ,m.
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Let us write the corresponding sampling estimator of the Lagrangian gradient:

q(x,λ,u) = g̃0(x,u) +
m
∑

i=1

λi g̃i(x,u) ≡ 1

N

N
∑

j=1

Q
(

x,λ,u, zj
)

, (23)

which is the average of the corresponding stochastic Lagrangian gradient:

Q
(

x,λ,u, zj
)

= θG0

(

x, zj
)

+
m
∑

i=0

λi

Gi(x, zj )H(Fi(x, zj ) − ui)

Ni/N
,

where λ0 = 1 − θ .
The corresponding sampling covariance matrix is as follows:

A(x,λ,u) = 1

N

N
∑

j=1

(

Q
(

x,λ,u, zj
)

− q(x,λ,u)
)(

Q
(

x,λ,u, zj
)

− q(x,λ,u)
)T

,

(24)

that will be further applied for normalization of stochastic gradient (23).

4. Stochastic Optimization Algorithm

Estimators (17)–(24) might be perfectly applied in solving stochastic problems with CVaR
involved in the objective and constraints by means of gradient descent. The gradient de-
scent approach for stochastic nonlinear programming by a series of Monte Carlo estima-
tors has been developed in Sakalauskas (2002), however, it converges slowly if the Hessian
of the Lagrangian is poorly defined. Let us consider the ideas behind to reinforce the gra-
dient descent, based on the Natural Gradient Descent (Park et al., 2000), and the stochastic
variable metric (SVM), using the descent direction computed in the appropriately induced
variable metric (see, Uryasev, 1992).

Thus, assume the initial point x0 ∈ ℜn and vectors λ0, u0 ∈ ℜm
+ to be given as well

as the random sample (16) of a certain initial size N0 be simulated, and Monte Carlo
estimates (17)–(24) to be computed. Let us consider the following stochastic procedure:

x t+1 = x t − ρ
(

B t
)−1

q
(

x t , λt , ut
)

,

λt+1

i = max

[

0, λt
i + γi

(

s̃i(x
t , ut ) − ηi + µβ

D̃i(x
t , ut )

√
N t

)]

, i = 1,2, . . . ,m,

ut+1

i = ut
i − πi

(

1 − Pri

αi

)

, i = 0,1, . . . ,m (25)

where ρ > 0, γi > 0, πi > 0 are steplengths of descent, µβ is the β-quantile of the standard
normal distribution, and the matrix B t induces a variable metric. Two variable metrics



578 V. Dumskis, L. Sakalauskas

are examined, the first one in the original space, i.e., B t = I , which corresponds to the
gradient descent, and the second one is the metric induced using the sampling covariance
matrix (24):

B t =
(

A
(

x t , λt , ut
)

+
(

q
(

x t , λt , ut
))T

q
(

x t , λt , ut
))

. (26)

Monte Carlo estimates, applied in (25), are random, as usual, and their uncertainty
mainly depends on the sample size. However, there is no necessity to simulate large ran-
dom samples (16) at the beginning of search, because it is more important to have large
samples, when the optimum is approaching. According to this idea the sample size can be
adjusted by means of the rule:

N t+1 = χ2
n (ν)

(q t )T (At )−1q t
, (27)

where χ2
n (ν) is the ν-quantile of χ2 distribution with n degrees of freedom, q t = q(x t , λt )

is the estimate of the Lagrange function gradient (23), and At = A(x t , ut , λt ) is the co-
variance matrix matrix (24), estimated at the point (x t , ut , λt ), N t+1 is the sample size at
t + 1 iteration, t = 0,1,2, . . . . Hence, the sample size is taken inversely proportional to
the square norm of the Lagrangian stochastic gradient in the metric induced by the sam-
pling covariance matrix (24). Indeed, such a choice of sample size ensures small samples
at the beginning of the search, when the current point of solution is far from the optimum,
and, therefore the gradient is large, but these samples increase when approaching the op-
timum, because the gradient becomes small then. Using the stochastic Lyapunov function
technique, developed in Sakalauskas (2002), one can make sure that rule (27) under the
appropriate choice of algorithm parameters ensures a.s. the increase of sample size and
the convergence of the algorithm (25) to the solution of the optimization problem (2)–(3).

Now, let us more in detail consider the solution with an admissible accuracy of the
stochastic programming problem with CVaR involved in the objective and constraints, ap-
plying the sequence generated by (25), (27). Certainly, a decision on finding the optimum
should be made taking into account the sampling error of estimates (17)–(24). Thus, the
sequence generated by algorithm (25) might be terminated in a statistical way, testing the
statistical hypotheses on the validity of KKT conditions (15), whenever the confidence in-
tervals of objective and constraint functions as well as that of estimated risk probabilities
decreased up to an appropriate length.

Note that, since the sample size, chosen with respect to (27), is increasing, the dis-
tribution of the considered Monte Carlo estimators can be approximated by the Gaus-
sian law according to Central Limit Theorem (Shapiro, 2003). Such a property helps us
to construct statistical means for testing the optimality. For instance, one can apply the
well-known Hotelling criterion to verify the hypothesis on the equality to zero of the LF
gradient (see, Sakalauskas, 2002, 2004b). Hence, the hypothesis on the equality to zero
of the LF gradient is not rejected at some point x with the significance probability µ, if
the following condition vanishes:

(N − n)
(

q t
)T (

At
)−1

q t 6 χ2

n (ζ ), (28)
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where χ2
n (ζ ) is the ζ -quantile of χ2 distribution with n degrees of freedom. Similarly, the

statistical hypotheses on the validity of constraints with probability β are not rejected, if:

s̃i
(

x t , ut
)

− ηi + µβ

D̃i(x
t , ut )

√
N t

6 0. (29)

Next, the estimated lengths of the confidence interval of the objective function and con-
straints should not exceed the admissible accuracy εi with probabilities βi , if:

2µβi

D̃i(x
t , ut )

√
N t

6 εi, i = 0,1, . . . ,m, (30)

where µβ denote hereinafter denote the β-quantile of the standard normal distribution,
and, analogously,VaR’s ui should be properly chosen in the Monte Carlo CVaR estimators,
namely:

|Pri − αi |6 µσi

√

Pri(1 − Pri)

N
, i = 1,2, . . . ,m. (31)

The algorithm for optimization by handling CVaR in the objective and constraints is
described (Algorithm 1).

Thus, if all criteria (28)–(31) are satisfied, then there are no reasons to reject the opti-
mality hypothesis at the current point of the sequence generated according to (25), (27),
and, thereby there is a basis for the algorithm termination and decision making about
finding the optimum with an permissible accuracy. However, if at least one condition in
(28)–(31) is violated, then a new point should be computed according to (25) and next
sample (16) of the sample size, adjusted according to (27), should be generated and esti-
mators (17)–(24) should be computed, and so on. Indeed, the probabilities of errors of the
first and second kind, when testing the termination criteria (28)–(31), might be regulated
by choosing the proper probabilities of quantiles.

5. Counterexamples

Monte Carlo study by solving test problems many times is a widely used way to explore
the stochastic optimization algorithms. Let us consider the results of such computer study

Example 1. (Piecewise-linear test functions with CVaR in the objective and constraints.)
The developed approach has been tested by simulating piecewise-linear test functions:

Fi(x, ζ ) = max
16k6kn

(

a0,k +
n
∑

j=1

aj,k(xj + ζj )

)

, 0 6 i 6 m, (32)

hence, for each number of variables n = 2,5,10,20,50, a sample from M = 100 sets
of normally distributed coefficients aj,k has been simulated with the following values:
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Algorithm 1 The algorithm for nonlinear optimization with CVaR

Initial conditions: formal description of the objective function and constraints.
Final conditions: vectors of the solution x∗ = (x∗

1
, . . . , x∗

n), u∗ = (u∗
1
, . . . , u∗

m), the value
of the objective function f0(x

∗, u∗), estimated confidence intervals of the objective func-
tion and constraints.

1. Fixate parameters of the problem: n is the number of the variables, m is the number
of constraints, θ is a risk aversion coefficient, N0 is the size of the initial Monte
Carlo sample, εi , i = 0,1, . . . ,m, are the accuracies of evaluation of the objective
function and that of constraint functions, αi , i = 0,1, . . . ,m, are significance levels
of CVaR’s, β is the probability of the confidence interval, µ is the probability of
the optimality hypothesis, ρ, γi , πi are steplengths of descent, iter is the maximal
number of iterations, i = 0,1, . . . ,m.

2. Fixate that x0 = (x0

1
, . . . , x0

n), u0 = (u0

1
, . . . , u0

m) are the initial vectors for sequential
search, λ0 = (λ0

1
, . . . , λ0

m) – initial vector of parameters, set t = 0 as the number of
iterations.

3. While the number of iterations t doesn’t exceed iter Do

3.1 Simulate the Monte Carlo sample Z = (z1, z2, . . . , zN t
) (16).

3.2 Compute the frequencies Ni of the events {ut
i : Fi(x, zj ) > ut

i} and Pri =
Ni/N

t (19). If at least one Ni = 0 then go to 3.1.
3.3 Compute estimator s̃0(x

t , ut ) (17) of the objective function, estimators
s̃i(x

t , ut ) (18) of constraints functions, estimator (19) of CVaR probabilities, es-
timators (20) of the variances D̃2

i (x
t , ut ) and estimator (21) of LF L̃(x t , λt , ut ).

3.4 Compute the estimator of the stochastic gradient g̃0(x
t , ut ) of the objective

function, estimators of the gradients g̃i(x
t , ut ) of constraint functions (22), and

estimator (23) of the gradient of LF q(x t , λt , ut ).
3.5 Compute the sampling covariance matrix A(x t , λt , ut ) (24).
3.6 Test the termination conditions:

If (28) & (29) & (30) & (31), Then return the vectors x∗ = x t = (x t
1
, . . . , x t

n),
u∗ = ut = (ut

1
, . . . , ut

m) and the value of objective function f0(x
∗, u∗).

Else set t = t + 1 and find the next point x t+1, λt+1, ut+1 (25) and the size
N t+1 (27) of Monte Carlo sample.

4. Done.

a0,0 = ϑ , a1,0 = 1 + 3ϑ , ai,k = a′
i,k − 1

kn

∑kn

k1=1
a′
i,k1

, a′
0,k = 2ϑ , a′

1,k = ϑ , 1 6 k 6

kk , m = 0,1, where ϑ was the standard norm, variables ζk were distributed normally
N(0,0,5). When computing CVaR’s the risk probabilities were taken α0, α1 = 0.1, ini-
tial sample size was N0 = 500. Other details of the test problem as well as some computer
simulation results are given in Table 1.

The chosen class of test functions has been chosen due to its universality, because
any convex function can be approximated to a desired accuracy by the functions of
shape (32), taking rather a large number kn and choosing appropriate coefficients aj,k .
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Table 1
Data of the test problem and some results.

n u0 u1 η1 ε kn min, it max, it aver., it

2 3.34 3.46 4.5 0.015 5 8 16 9.4

5 4.93 6.82 7 0.1 11 8 22 12.5

10 8.33 8.63 9 0.1 21 6 14 7.7

20 12.42 9.59 11.5 0.075 31 14 53 26.6

50 20.84 14.01 15 0.1 76 44 88 59.9

The simulation results obtained in this way, enable us to draw conclusions that can be ap-
plied when solving similar practical problems. Initial approximations x0 = (x0

1
, . . . , x0

n),
u0 = (u0

1
, . . . , u0

m) were taken as the Expected Value solutions (EVS) (Birge and Lou-
veaux, 2011). EVS of CVaR threshold variables u0 and u1, taken as initial, are given
in Table 1. All the test problems have been solved by the approach considered in the
SVM framework, i.e., problems have been solved in the metric, induced by matrix (26),
with dimensionalities n = 2,5,10,20,50, i.e. 500 test problems were solved in total. The
termination conditions in (28)–(31) have been tested with probabilities of significance
β = βi = ζ = 0.05, the quantile in (27) was chosen with the probability ν = 0.99. In or-
der to avoid very large samples, simulated according to (27), the sample simulation was
interrupted, whenever the confidence intervals became smaller than the prescribed val-
ues ε (given in Table 1).

The averaged results of solving the test problems are presented in Fig. 1 and some
results are also given in Table 1. Figure 1 presents the averaged dependencies of charac-
teristics of the method, depending on the number of iterations t , that illustrate the con-
vergence of the approach developed. Namely, the averaged dependencies of the objective
function value as well as probabilities of CVaR, depending on the number of iterations are
presented in Fig. 1(a)–(c), illustrating the convergence of the approach developed. The
frequency of termination according to the number of iterations is presented in Fig. 1(d).
The ratio of criterion (28) with the respective quantile of χ2 distribution depending on
the number of iterations is shown in Fig. 1(e), which illustrates how this ratio tends to
critical termination value 1. The averaged number of the Monte Carlo sample size at each
iteration is presented in Fig. 1(f), which shows the adaptation of this sample during the
optimization process. Note, that all the test problems were terminated according to (28)–
(31) after some number of iterations. The maximal, minimal, and averaged number of
iterations, used to solve test problems with an admissible accuracy ε, is given in Table 1.
The averaged Monte Carlo sample size is presented in Fig. 1(f), which illustrates the adap-
tation of this sample during optimization as well. For instance, one can see from (30) and
(31) that the length of the confidence interval depends on the variance. However, since the
simulated objective and constrained functions occurred having small variances in cases
n = 5 and n = 50, the local increase of sample size is noticed on figures before achieving
the zone of convergence.

Actually, when solving the problem with a higher accuracy, the number of iterations
and the total amount of simulated scenarios are increased. Efficiency on the dimensionality
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Fig. 1. Averaged results of simulation: (a) objective function value; (b) frequency Pr0; (c) frequency Pr1; (d) fre-
quency of termination; (e) ratio of Hotelling criterion (28) with 0.95-quantile of χ2 distribution; (f) Monte Carlo
sample size at each iteration.

of the developed method was not explored, because it was not clear how the variance
of estimators depends on dimensionality, however one can see, that the computer time,
needed to solve the problem has increased, if the number of variables increased.

The simulation results allow us to conclude that the approach considered enables us
to solve with an admissible accuracy, the nonlinear stochastic problems handling CVaR
in the objective and constraints, using the rational amount of computer resources. Indeed,
the computer time mainly depends on the number of simulated random scenarios, where
the stochastic approach is applied. Thus, if the termination condition (28) is satisfied with
probability 0.95, the objective function is evaluated with accuracy, given in Table 1, and
the number of variables is varying as n = 2,5,10,20,50, the number of iterations, needed
to solve the problem, varies from ≈ 8 to ≈ 60, and the total amount of simulated scenarios
varies from ≈ 950 to ≈ 6000.



Nonlinear Stochastic Programming Involving CVaR in the Objective and Constraints 583

Number of variables n = 5

3,5

3,6

3,7

3,8

3,9

4

1 6 11 16 21 26 31 36 41 46 51

d) frequency of termination 

0

0,05

0,1

0,15

0,2

0,25

0,3

1 6 11 16 21 26 31 36 41 46 51

 

(a) (b)

0

0,05

0,1

0,15

0,2

0,25

1 6 11 16 21 26 31 36 41 46 51

Carlo sample size at each iteration

0

0,2

0,4

0,6

0,8

1

1,2

1 6 11 16 21 26 31 36 41 46 51

(c) (d)

0

1

2

3

4

5

1 6 11 16 21 26 31 36 41 46 51

450

550

650

750

850

950

1 6 11 16 21 26 31 36 41 46 51

(e) (f)

Fig. 1. (continued)

Example 2. (Trade-offs in gas purchase, storage and service reliability.) Let us consider
a practice example of the trade-offs problem on purchase, storage, and service reliability
decisions faced by distribution utilities of natural gas, when the short-term demand for gas
fluctuates randomly because of the weather (see for details and references in Ermoliev and
Wets, 2011; Sakalauskas, 2002). To encourage load leveling, the pipeline transmission
companies that supply utilities use a demand contract, which charges utilities based on
their peak day needs, and often charges for the minimum daily purchase requirement,
whether that the purchase is made or not. The policy variables, available to the utility,
include increase in its storage capacity, and provision of interruptible service to some
customers lowering thereby the reliability of service.

To explore trade-offs, the following cost minimization problem in the risk-averse
framework has been solved. Choose the annual plan of gas purchases x = (x1, . . . , x12),
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Fig. 1. (continued)

where xi is the amount of gas ordered from the pipeline per month t under the cost ct

in order to satisfy the actual gas consumption ωt , considered as independent and nor-
mal N(µt , σt ), aimed to minimize the expected cost of purchases and storage operations.
Note that the additional cost c3 of the maximal monthly gas order maxi{xi}, applied to
countervail the supply level, and the cost c0 of transportation to storage of monthly gas
surplus or shortage |xt − ωt |, where t = 1,2, . . . ,12, should be taken into account as
well.

In order to meet technical restrictions on the maximum storage gas flows, the increment
of the gas storage z, and the gas amount v supplied from an additional source in order to
provide the interruptible service, is planned under respective costs. Taking into account
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Fig. 1. (continued)

these assumptions, the latter technical restrictions are as follows:

(xt − ωt ) − a1

t−1
∑

s=1

(xs − ωs)6 b1 + a2z,

−(xt − ωt ) − a3

t−1
∑

s=1

(xs − ωs)6 b2 + a4z,

t
∑

s=1

(xs − ωs)6 b3 + a5z,

t
∑

s=1

(xs − ωs)> b4 − a6v, t = 1,2, . . . ,12. (33)
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Fig. 1. (continued)

Now the optimization problem, involving CVaR in the objective and constraints with
the confidence level α, is as follows:

F(x) =
12
∑

t=1

ctxt + c0 max
i

{xi} + c13E

12
∑

t=1

|xt − ωt |

+ c14CVaRα

(

12
∑

t=1

|xt − ωt |
)

→ min
x>0

s.t.: CVaRα

(

Z(x,ω)
)

6 η,

CVaRα(V (x,ω))6 γ, (34)

where:

Z(x,ω)

= max
16t612

[

(xt − ωt )(1 + a1) − a1

∑t
s=1

(xs − ωs) − b1

a2

,
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Table 2
Data of the gas trade-off problem.

T 1 2 3 4 5 6 7 8 9 10 11 12

ct 1.2024 1.2024 1.2024 1.2024 1.2024 1.2024 1.2024 1.2993 1.2993 1.2993 1.2993 1.2993
µt 33.433 23.980 16.747 15.302 15.591 19.308 28.494 40.969 54.102 59.081 53.177 47.550
σt 3.311 3.230 1.054 0.344 0.516 1.540 3.333 3.132 5.334 4.735 4.214 4.588
x50
t 35.451 25.692 17.210 15.432 15.782 19.863 29.754 41.755 57.758 60.887 54.017 48.716

−(xt − ωt )(1 − a3) − a3

∑t
s=1

(xs − ωs) − b2

a4

,

∑t
s=1

(xs − ωs) − b3

a5

]

,

V (x,ω) = max
16t612

b4 −
∑t

s=1
(xs − ωs)

a6

.

The data of the problem are as follows: a1 = 0.078, a2 = 0.8, a3 = 0.15, a4 = 0.049,
a5 = 0.41, a6 = 0.37, b1 = 118.0752, b2 = 7.2321, b3 = 30.5153, b4 = 8.34, c13 =
0.03323, c14 = 1.6782, c0 = 0.392, η = 35, γ = 50, α = 0.1, other data are given in
Table 2. The task considered has been solved using the developed approach with the fol-
lowing parameters: β = βi = ζ = 0.05, ν = 0.999, ρ = 0.05, γ1 = 2.5, γ2 = 1, γ3 = 2.5,
πi = 0.005, i = 0,1,2. The initial approximation of decision vector was x0 = µ, the inital
approximations of VaR’s were u0 = (42,10,40).

The results of solving the task are presented in Figs. 2(a)–(f). The objective func-
tion and its confidence interval change in Figs. 2(a), (b) illustrate the convergence of the
method. The change of the ratio of criterion (28) with the respective quantile of χ2 distri-
bution depending on the number of iterations presented in Fig. 2(c), shows, how this ratio
tends to the critical termination value 1. The Monte Carlo sample size at each iteration is
given in Fig. 2(d). Figures 2(e) and (f) show the change of CVaR’s and VaR’s according to
the constraints in problem (33). Only a few iterations were indispensable to establish the
optimal decision, i.e., to fulfill the termination conditions.

Thus, the results of the Monte Carlo study with test functions and solution of the prac-
tice example of trade-offs of gas purchases, storage, and service reliability, illustrate the
convergence of the approach considered as well as the ability to solve nonlinear stochastic
programming problems in a reasonable way, when handling CVaR in the objective and
constraints, with an admissible accuracy, treated in a statistical manner.

6. Discussion and Conclusions

Thus, the approach of sequential Monte Carlo search to nonlinear stochastic program-
ming involving CVaR in the objective and multiple constraints has been developed and
investigated in the paper. The theoretical background for the approach is created by intro-
ducing the extended Lagrangian and deriving the related KKT conditions. The approach
developed is grounded on a rule of the iterative regulation of Monte Carlo sample size
and termination of the optimization in a statistical manner, taking into account the statisti-
cal simulation risk. The proposed termination procedure allows us to verify the statistical
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Fig. 2. Results of optimization of trade-offs of gas purchases, storage and service reliability.

hypothesis on the validity of KKT conditions and to evaluate the confidence intervals of
the objective and constraint functions as well. Although in stochastic programming it is
common to use sampling approximations, the amount of simulated samples can achieve a
significant volume, and therefore the key feature is to estimate and decrease the number of
scenarios needed to obtain the reliable statistical estimate of probabilistic functions to be
optimized. The proposed regulation of sample size, when this size is taken inversely pro-
portional to the square of the norm of the gradient of the Monte Carlo estimate, enables us
to solve stochastic problems with CVaR rationally from the computational viewpoint and
ensures the convergence. In order to reinforce the gradient descent, the stochastic vari-
able metric approach is proposed, using the descent direction, computed in the metric,
induced by the sampling covariance matrix of stochastic gradient. The results of Monte
Carlo simulation and solution of a practice example of trade-offs in gas delivery plan-
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ning, have illustrated the convergence of the approach considered as well as the ability
to solve stochastic programming problems with an admissible accuracy, treated in a sta-
tistical manner, by using reasonable computer resources, when CVaR is involved in the
objective and constraints.
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Netiesinis stochastinis programavimas įterpiant sąlyginę riziką į tikslo
funkciją ir ribojimus

Valerijonas DUMSKIS, Leonidas SAKALAUSKAS

Nagrinėjama netiesinio stochastinio programavimo problema su sąlygine rizika, įterpta į tikslo funk-
ciją ir ribojimus. Įvestas išplėstinis Lagranžianas ir išvestos atitinkamos KKT sąlygos, sprendžiant
šią problemą, kaip dviejų lygių stochastinio programavimo uždavinį. Toliau plėtojamas būdas sto-
chastinėms problemoms su sąlygine rizika spręsti nuosekliai generuojant baigtines Monte-Carlo
sekas. Nagrinėjamas būdas remiasi Monte-Karlo imčių tūrio iteratyvinio reguliavimo taisykle ir
stochastine stabdymo taisykle, atsižvelgiant į modelio riziką. Monte-Karlo imčių tūris yra imamas
atvirkščiai proporcingu stochastinio gradiento normos kvadratui, nes šitoks reguliavimas užtikrina
konvergavimą ir leidžia spręsti uždavinį, racionaliai panaudojant kompiuterio išteklius. Pasiūlyta
stabdymo taisyklė leidžia tikrinti optimalumo sąlygas statistiniu būdu, kartu įvertinant tikslo funk-
cijos ir ribojimų tikėtinumo intervalus. Testinių funkcijų modeliavimas Monte-Karlo metodu ir dujų
tiekimo kompanijos investicijų planavimo praktinio uždavinio sprendimas parodė sukurto metodo
konvergavimą bei galimybę efektyviai spręsti stochastines problemas su sąlygine rizika, įterptą į
tikslo funkciją ir ribojimus.


