
INFORMATICA, 2015, Vol. 26, No. 4, 685–704 685
 2015 Vilnius University

DOI: http://dx.doi.org/10.15388/Informatica.2015.71

Specifying and Verifying External Behaviour

of Fair Input/Output Automata

by Using the Temporal Logic of Actions

Tatjana KAPUS
University of Maribor, Faculty of Electrical Engineering and Computer Science

Smetanova ul. 17, SI-2000 Maribor, Slovenia

e-mail: tatjana.kapus@um.si

Received: August 2013; accepted: March 2015

Abstract. Fair input/output (or I/O) automata are a state-machine model for specifying and verifying

reactive and concurrent systems. For the verification purposes, one is usually interested only in the

sequences of interactions fair I/O automata offer to their environment. These sequences are called

fair traces. The usual approach to the verification consists in proving fair trace inclusion between

fair I/O automata. This paper presents a simple approach to the specification of fair traces and shows

how to establish a fair trace inclusion relation for a pair of fair I/O automata by using the temporal

logic of actions.

Key words: formal specification, fair input/output automaton, temporal logic of actions, fair trace,

fair trace inclusion.

1. Introduction

Input/output automata (or I/O automata) are a popular set-theoretic model for the spec-

ification and analysis of reactive and concurrent systems (Tuttle, 1987; Lynch and Tut-

tle, 1989). They have, for example, been applied for reasoning about data communica-

tions protocols (Søgaard-Andersen et al., 1993), trust management systems (Krukow and

Nielsen, 2007; Trček, 2014), Web services (Mitra et al., 2007), and database replication

protocols (Armendáriz-Iñigo et al., 2009). An I/O automaton is a state machine in which

each state transition is labelled by an action. Originally, no formal language for precise

description of I/O automata system models and their correctness properties has been pro-

posed. I/O automata have usually been described by using text and pseudocode. Precon-

ditions and effects on variables introduced to represent automata states were specified for

every possible action. The IOA programming language (Garland and Lynch, 2000) for-

malizes this semi-formal precondition/effect style. It is similar to the usual programming

languages in that it has a reach formally defined syntax for the description of systems but

cannot directly be used for reasoning about them. The reasoning has to be carried out by

using its semantics written in a lower-level language of a theorem prover and in a specific

first-order logical language developed by its authors (Garland et al., 2003).

686 T. Kapus

In contrast to IOA and the mentioned lower-level languages, the temporal logic of

actions (TLA) (Lamport, 1994) is a logical language which can be used for writing a

system specification by directly describing the system’s execution semantics in a simple

way similar to the precondition/effect style. The formal specification as well as reasoning

about systems can be carried out in TLA. In Kapus (2002, 2005), we show how TLA

can be used for the formal specification of systems based on a model similar to the I/O

automaton one, but containing mobility and dynamic creation of components. TLA can

be used in a similar way for the ordinary I/O automaton model because the latter can be

treated as a special case of the former.

In this paper, we further investigate TLA as a formal language for I/O automata. De-

spite the term ‘actions’ in its name, the implicit underlying model of TLA is a simple

state machine with no action labels. In Kapus (2002, 2005), we use a special variable for

recording the actions in such a way that the TLA specification of a finite-state I/O automa-

ton may give infinitely many reachable states (here, in contrast to the formal definition for

TLA, by a ‘state’ we mean an assignment to a limited number of variables). The aim of

this paper are finite-state TLA specifications for finite-state I/O automata, so as to be able

to verify them automatically by using TLC, the model checker for specifications based on

TLA (TLA Toolbox, 2014).

Usually, only the external behaviour, i.e. the sequences of actions visible to the envi-

ronment, is of concern in the verification of I/O automata. In the mentioned papers, we do

not deal with the problem of how to specify only the external behaviour, and we consider

only the specification of safety properties (i.e. ‘what may happen’), but not the specifi-

cation of liveness properties (i.e. ‘what must happen’). Besides, we do not consider the

verification.

In this paper, we consider so-called fair I/O automata (Müller, 1998), which allow the

specification of liveness, and propose a simple way to specify the external behaviour of

fair I/O automata, i.e. so-called traces and fair traces, by using TLA. The usual approach

to the verification of fair I/O automata consists in proving (fair) trace inclusion. We show

how a (fair) trace inclusion relation can be established for a pair of fair I/O automata by

using TLA.

The paper proceeds as follows. Section 2 briefly presents TLA. Section 3 contains the

necessary preliminaries about fair I/O automata. In Section 4, we present our approach to

the specification of fair traces by using TLA. In Section 5, we show how to verify (fair)

trace inclusion between fair I/O automata with TLA and give an example of using the TLC

model checker for this purpose. Section 6 contains a discussion and concludes this paper.

2. An Introduction to TLA

TLA is a simple linear-time temporal logic for specifying and reasoning about safety and

liveness of concurrent systems (Lamport, 1994). Besides other symbols, the language of

TLA contains a countably infinite set V of variables, partitioned into disjoint countably

infinite sets VF and VR of flexible and rigid variables (Merz, 2003). In the sequel, the

Specifying and Verifying External Behaviour of Fair Input/Output Automata 687

flexible variables will be called variables and the rigid ones constants, as in Lamport

(1994, 2002). The language also contains a set Val of values, which is supposed to include

different kinds of numbers, sets, strings, such as “csz”, and similar. The semantics of

TLA is defined in terms of behaviours, which are infinite sequences of states. A state is an

assignment of values from Val to all the variables from VF . The latter represent values that

may change from state to state, whereas constants do not change their value. In the sequel,

we will use St to denote the set of all possible states and s|V to denote the restriction of a

state s to a set of variables V ⊂ VF .

Temporal formulas of TLA, also called TLA formulas, are built from actions, Boolean

operators, and temporal operators � and ∃. No variable v ∈ VF should be of the form v′

because ′ (‘prime’) is a special symbol of TLA, which can be applied to variables. Ac-

tions are first-order Boolean expressions which can contain values, constants, (unprimed)

variables and primed variables. They are evaluated over pairs of states, called steps.

Informally, the unprimed variables denote their value in the ‘current’ state s and the

primed ones in the ‘next’ one, t , of a state pair 〈s, t〉. If A is true in a state pair, the latter

is called an A step. For example, action y < 0 ∧ y ′ = y + 1 informally says that y < 0

in the current state and that it is incremented by 1 in the next one. For v a variable or a

tuple of variables, [A]v is short for A ∨ unchanged v, and unchanged v means v′ = v

(′ applied to a tuple of variables is the same as applying it to each of them). 〈A〉v is short for

A ∧ (v′ 6= v). A predicate P is an action with no primed variables, with the consequence

that it is true in a state pair 〈s, t〉 iff it is true in s. The predicate Enabled A (read as

action A is enabled) is defined to be true in a state s iff there exists such a state t that 〈s, t〉

is an A step. For example, action y < 0 ∧ y ′ = y + 1 is enabled in every state in which

y < 0.

The temporal formula �F (read always F) is true of a behaviour iff F is true of all its

suffixes. ♦F (read eventually F) is defined as ¬�¬F . For x a variable, ∃x : F essentially

means that there is some way of choosing a sequence of values for x such that the temporal

formula F holds, but we do not care what these values are. It is said that x is hidden in F .

If x is a tuple of variables x1, . . . , xn, ∃x : F is short for ∃x1 : . . .∃xn : F .

For an action A, WFvars(A)
△
= �♦〈A〉vars ∨�♦(¬Enabled〈A〉vars) (

△
= means ‘by def-

inition’) specifies a weak fairness condition. It asserts that either action 〈A〉vars occurs

infinitely often during a behaviour or it is infinitely often disabled, or equivalently, that

always, if action 〈A〉vars is always enabled, it eventually occurs. SFvars(A)
△
= �♦〈A〉vars ∨

♦�(¬Enabled〈A〉vars) specifies a strong fairness condition. It asserts that either action

〈A〉vars occurs infinitely often during a behaviour or it is disabled from some state on.

A temporal formula (or an action or a predicate) is said to be valid iff it is true of all

possible behaviours (in all possible pairs of states or, respectively, in all states).

Most system specifications can be written as a ‘canonical-form’ TLA formula ∃x :

Init ∧ �[Next]vars ∧ Liveness (Lamport, 2002), where Init is a predicate, Next an action

(usually a disjunction of actions), vars a tuple of variables the system may change, x a tuple

consisting of some of the variables from vars (e.g. ‘internal’ variables of the system), and

Liveness a conjunction of fairness conditions on (some disjuncts of) Next. Informally, a

behaviour satisfies this formula iff it is possible to choose the values for x such that Init

688 T. Kapus

is true for the initial state, every pair of consecutive states is a [Next]vars step and the

behaviour satisfies Liveness.

Suppose that we would like to specify a program (i.e. its runs) which operates on vari-

ables x and y. Suppose that they have already been initialised to 0 during their definition

in the program and that the rest of the code consists of the following sequence of state-

ments: x = x + 1; y = y + 1;. Therefore, it is expected to have a single program run—the

following sequence of states: 〈〈x = 0, y = 0〉, 〈x = 1, y = 0〉, 〈x = 1, y = 1〉〉. As TLA

is defined to specify infinite sequences of states, it can actually be used for the specifi-

cation of this run with infinitely many states 〈x = 1, y = 1〉 added at the end. The TLA

specification could be as follows (cf. Lamport, 1994): ∃pc : (pc = 0) ∧ (x = 0) ∧ (y =

0) ∧ �[Next]vars ∧ WFvars(Next), where vars
△
= 〈pc, x, y〉 and Next

△
= ((pc = 0) ∧ (pc′ =

1)∧(x ′ = x+1)∧unchangedy)∨((pc = 1)∧(pc′ = 2)∧(y ′ = y+1)∧unchangedx).

A ‘programcounter’ variable is introduced and hidden because it serves as an auxiliary

variable in order to be able to properly specify the changes of x and y . The specification

allows behaviours which exactly agree with the program run in variables x and y: in the

initial state x and y are equal to 0, in the next state x becomes equal to 1, in the state

following this one y becomes equal to 1, and in all the subsequent states they remain equal

to 1. The weak fairness condition assures that behaviours in which both x and y always

remain equal to 0 or y does are not allowed. However, notice that the specification allows

behaviours in which x is not incremented immediately after the initial state and behaviours

in which y is not incremented immediately after the change of x . This is because TLA

is unable to specify the exact state at which an enabled action (i.e. a state change) must

occur. It can only specify that it eventually occurs. By definition, every TLA formula

allows stuttering steps.

Formally, a step 〈s, t〉 is called a V -stuttering (or stuttering if V is evident from the

context) step iff s|V = t|V , i.e. iff s and t are V -equivalent (meaning that they assign

the same values to the variables in V). A behaviour is called V -stuttering free iff it does

not contain V -stuttering steps except possibly at the end. Two behaviours are said to be

V -stuttering equivalent iff they differ only in the number of consecutive V -equivalent

states. TLA formulas are stuttering-invariant, which means the following. Suppose that

F is a TLA formula and V the set of its free variables, such as, for instance, the set {x, y}

in the program specification given in the above example. F cannot distinguish between

V -stuttering equivalent behaviours.

Notice that formulas of the form�[Next]vars are stuttering-invariantbecause they allow

vars-stuttering steps. Let us stress that formulas of the form ∃x : F are also stuttering-

invariant (Lamport, 1994). For example, the program specification given above does not

distinguish between behaviours which differ only in the number of consecutive states in

which x and y do not change. It follows that it does not specify only the behaviours that

directly correspond to the program run in x and y , but also the behaviours that are {x, y}-

stuttering equivalent to them, i.e. it specifies an equivalence class.

If F is a TLA formula specifying a system and G one specifying a property, the system

has that property iff the implication F ⇒ G is valid. For any TLA formulas F and G, if x ,

y are tuples of variables, the implication (∃x : F) ⇒ (∃y : G) can be proved by exhibiting

Specifying and Verifying External Behaviour of Fair Input/Output Automata 689

the validity of F ⇒ G, where G is obtained by substituting yi for the free occurrences

of yi in G for all i . Each yi is a function of variables that occur in F . The functions are

collectively called a refinement mapping.

3. Fair I/O Automata

We consider the kind of I/O automaton model called fair I/O automaton (Müller, 1998)

in order to be able to specify systems with the help of fairness conditions as with many

specification formalisms (Romijn and Vaandrager, 1996), including TLA. In this section,

let us temporarily forget about TLA and look at the I/O automata terminology (cf. Müller,

1998; Søgaard-Andersen et al., 1993; Tuttle, 1987).

Definition 1. A fair I/O automaton A consists of the following components:

• An action signature sig(A) = (in(A),out(A), int(A)) consisting of disjoint sets of

input, output, and internal actions, respectively. ext(A) denotes the set in(A) ∪

out(A) of external actions, local(A) the set out(A) ∪ int(A) of locally controlled

actions, and acts(A) the set ext(A) ∪ int(A) of all actions.

• A set states(A) of states.

• A nonempty set start(A) of start states (start(A) ⊆ states(A)).

• A transition relation steps(A) ⊆ states(A)×acts(A)×states(A). The transition rela-

tion steps(A) must have the property that for each state s ∈ states(A) and each input

action a ∈ in(A) there exists a state s′ ∈ states(A) such that (s, a, s′) ∈ steps(A).

• Sets wfair(A) and sfair(A) of weak fairness sets and strong fairness sets, respec-

tively, which are subsets of local(A).

In the sequel, by I/O automata we will mean fair I/O automata unless being evident

from the context that we mean otherwise. A (fair) I/O automaton with empty sets wfair(A)

and sfair(A) is called safe I/O automaton. For A a fair I/O automaton, let safe(A) denote

the safe I/O automaton obtained from A by setting wfair(A) and sfair(A) to empty sets.

An action a is enabled in a state s if there exists a state s′ such that (s, a, s′) ∈ steps(A).

A set A of actions is said to be enabled in state s if there exists an action a ∈ A such that

a is enabled in s. An action or set of actions which is not enabled in a state s is said to be

disabled in s.

An execution α of an I/O automaton A is a finite or infinite sequence α =

〈s0, a1, s1, . . .〉 of alternating states and actions of A beginning with a state, and if it

is finite, also ending with a state, such that s0 ∈ start(A) and for all i , (si , ai+1, si+1) ∈

steps(A). The set of all executions of A is denoted by execs(A). A state s of A is reachable

if there exists a finite execution of A that ends in s.

The trace of an execution α is the subsequence of α consisting of all the external

actions of A, i.e. the restriction of sequence α to the elements of ext(A). For example, if

α = 〈s0, a1, s1, a2, s2, a3, s3〉 and only a1 and a3 are external actions, then its trace is the

sequence 〈a1, a3〉. We say that γ is a trace of A if there exists an execution α of A such

that γ is the trace of α. The set of all traces of A is denoted by traces(A).

690 T. Kapus

An execution α of a fair I/O automaton A is weakly fair if the following conditions

hold for each W ∈ wfair(A):

1. If α is finite, then W is not enabled in the last state of α.

2. If α is infinite, then either α contains infinitely many occurrences of actions from W ,

or α contains infinitely many occurrences of states in which W is disabled.

An execution α of A is strongly fair if the following conditions hold for each

S ∈ sfair(A):

1. If α is finite, then S is not enabled in the last state of α.

2. If α is infinite, then either α contains infinitely many occurrences of actions from S,

or α contains only finitely many occurrences of states in which S is enabled.

An execution α is fair if it is both weakly and strongly fair. The set of all fair executions

of A is denoted by fairexecs(A). The set of all traces originating from the fair executions

of A is denoted by fairtraces(A). For safe I/O automata, the notions of executions (re-

spectively traces) and fair executions (respectively fair traces) coincide.

For A a fair I/O automaton, it is desirable that safe(A) alone specify the safety prop-

erties of A, i.e. that these are completely determined by execs(A). Sets wfair(A) and

sfair(A) should only specify the liveness properties of A, i.e. it should be possible to

extend every finite execution of A to a fair execution of A. Additionally, it should be pos-

sible to do that independently of the inputs provided by the environment of A (Romijn

and Vaandrager, 1996). In the literature (e.g. Segala et al., 1998), a pair (B,L) consisting

of a safe I/O automaton B and a set L ⊆ execs(B) such that B can always generate an

execution in L independently of the environment is called a live I/O automaton.

Definition 2. (Cf. Müller, 1998.) Let A be a fair I/O automaton and 3 a subset of its

locally controlled actions. 3 is input-resistant iff for each pair of reachable states s, t and

each input action a, if 3 is enabled at s and (s, a, t) ∈ steps(A), then 3 is enabled at t .

A fair I/O automaton is said to be input-resistant if every set in sfair(A) is input-resistant.

Romijn and Vaandrager (1996) prove that if a fair I/O automaton A is (i) input-resistant

and (ii) at most countably many sets in wfair(A) ∪ sfair(A) are enabled in each reachable

state of A, then A induces live automaton live(A) = (safe(A), fairexecs(A)).

We are interested in the verification of I/O automata by using implementation relations.

Fair I/O automata which induce live I/O automata can be verified by using the following

ones.

Definition 3. (Cf. Søgaard-Andersen et al., 1993; Müller, 1998.) Let A and B be fair I/O

automata with in(A) = in(B) and out(A) = out(B), such that they induce live automata

live(A) = (safe(A), fairexecs(A)) and, respectively, live(B) = (safe(B), fairexecs(B)).

There is a safe trace inclusion, written as A�SB , iff traces(A) ⊆ traces(B). There is

a fair trace inclusion, written as A�F B , iff fairtraces(A) ⊆ fairtraces(B).

Clearly, for safe I/O automata, the safe and fair trace inclusion relations coincide.

Specifying and Verifying External Behaviour of Fair Input/Output Automata 691

4. Specification of Fair Traces with TLA

As the meaning of TLA is only defined for infinite (state) sequences, let us make all the

finite executions of an I/O automaton A infinite as in Søgaard-Andersen et al. (1993). Let

ζ denote a special stuttering action and suppose that it cannot be in the action signature

of any automaton. A stuttering step is any triple of the form (s, ζ, s), where s is a state.

For any execution α = 〈s0, a1, s1, . . .〉, let the extended execution α̂
△
= α if α is infinite,

and α̂
△
= 〈s0, a1, s1, . . . , an, sn, ζ, sn, ζ, sn, . . .〉 if α is finite and ends in sn. Analogously,

for any trace, we define the extended trace to be the same if it is infinite, and obtained by

adding infinitely many stuttering actions at the end of it if finite.

There is obviously a one-to-one correspondence between the set execs(A) and the set

of extended executions obtained from the executions in execs(A). This is because all the

infinite executions remain intact and, by definition, do not contain stuttering steps, whereas

every finite execution only gets the stuttering steps at the end. It can also be proved (cf.

Søgaard-Andersen et al., 1993) that for all finite executions α, α satisfies the weak (re-

spectively strong) fairness conditions as defined for finite executions exactly if α̂ satisfies

the weak (respectively strong) fairness conditions as defined for infinite executions. There-

fore, there is also a one-to-one correspondence between the set fairexecs(A) and the set

of fair executions in the set of extended executions of A.

Let the definitions of traces of the extended executions of A remain the same as for the

original executions, by ζ treated as an external action, except for the extended executions

which contain only steps with internal actions at the end. Since for such an execution, the

original definition of traces gives a finite action sequence, the infinite number of stuttering

actions ζ must be added at its end. Obviously, the traces of previously finite executions

contain the infinite number of actions ζ at the end. There is, evidently, a one-to-one corre-

spondence between the original set of (fair) traces, the set of (fair) extended traces and the

set of (fair) traces obtained from the set of extended (fair) executions of A. In the sequel,

we will, therefore, identify (the notations for) (fair) executions and, respectively, traces

with (the notations for) their extended versions. Clearly, the definitions of both implemen-

tation relations remain valid.

From this point on, we can proceed with the preparation of TLA specifications of I/O

automata in a similar way to how TLA is used for specifying program runs (e.g. Lamport,

1994; Reynolds, 1998). It means that the TLA specifications will not specify exactly the

(extended) executions or traces of I/O automata, but the union of their equivalence classes,

where for every execution (and consequently every trace), its equivalence class will con-

tain, besides it, all the executions (respectively traces) which can be obtained from it by

adding finitely many stuttering steps at some states (respectively stuttering actions after

some actions). And, most importantly, all the results of reasoning about such TLA speci-

fications will be valid for the original executions or traces.

4.1. Specification of Executions

We will first explain the specification of executions of an I/O automaton with help of an

example. Let us write the TLA specification of execs(A1) for I/O automaton A1 with

692 T. Kapus

b

s0 s1 s2

a a

ca

❆

❊✈

❆❝$■♥✐$ ❊✈ ❊✈ ❆❝$ ❊✈ ✈ ❊✈

❊✈ ✈

❡①❡❝* ❆

❙♣❡❝❊ *$ ❊✈ ■♥✐$ *$ ❊✈ ◆❡①$ *$ ❊✈

✈❛"#

✈❛/* *$ ❊✈

❙$■♥✐$ *$ *$

■♥✐$ *$ ❊✈ ❙$■♥✐$ *$ ❆❝$■♥✐$ ❊✈

■♥❆❝$✐♦♥❆ *$ ❊✈ ❆❝$ ❊✈ *$ *$ *$

❖✉$❆❝$✐♦♥❈ *$ ❊✈ ❆❝$ ❊✈ *$ *$

■♥$❆❝$✐♦♥❇ *$ ❊✈ ❆❝$ ❊✈ *$ *$

◆❡①$ *$ ❊✈ ■♥❆❝$✐♦♥❆ *$ ❊✈ ❖✉$❆❝$✐♦♥❈ *$ ❊✈ ■♥$❆❝$✐♦♥❇ *$ ❊✈

■♥❆❝$✐♦♥❆ *$ ❊✈

❛ ❖✉$❆❝$✐♦♥❈ *$ ❊✈ ❝

■♥$❆❝$✐♦♥❇ *$ ❊✈ ❜

❙♣❡❝❊ *$ ❊✈ *$ ❊✈

*$ ❊✈

❊✈ ❊✈

❊✈ ❊✈

■♥❆❝$✐♦♥❆ *$ ❊✈

❊✈ *$

* *

❊✈

❆❝$ ❊✈ ✈ ❊✈

Fig. 1. State-transition graph of I/O-automaton A.

in(A1) = {a}, out(A1) = {c}, int(A1) = {b}, states(A1) = {s0, s1, s2}, start(A1) = {s0},

steps(A1) = {(s0, a, s1), (s1, a, s1), (s2, a, s2), (s1, b, s1), (s1, c, s2)}, wfair(A1) =

{{b, c}}, sfair(A1) = {}. Figure 1 contains a graphical representation of steps(A1). Ex-

amples of executions of A1 are 〈s0〉, 〈s0, a, s1〉, 〈s0, a, s1, a, s1〉, 〈s0, a, s1, b, s1〉,

〈s0, a, s1, a, s1, . . .〉.

We need to represent the states with a TLA variable. Let it be st, its value “s0”, “s1”, or

“s2” representing states s0, s1, and s2 respectively. We can specify the transitions between

states in a similar way to the program statements in the example in Section 2. However, the

specification also has to represent the action labels of the transitions. Let the action labels

be denoted by TLA values “a”, “b”, and “c”. We introduce a special variable Ev in which

we record the action label of the transition being specified. In the sequel, let ActInit(Ev)
△
=

Ev = 〈“0”, 〈〉〉 and Act(Ev, v)
△
= Ev′ = 〈if Ev[1] = “0” then “1” else “0”, v〉.

The TLA specification of execs(A1) can then be written as follows:

SpecE(st,Ev)
△
= Init(st,Ev) ∧ �[Next(st,Ev)]vars

where

vars
△
= 〈st,Ev〉

StInit(st)
△
= st = “s0”

Init(st,Ev)
△
= StInit(st) ∧ ActInit(Ev)

InActionA(st,Ev)
△
= Act(Ev, 〈“a”〉) ∧ (st′ = if st = “s0” then “s1” else st)

OutActionC(st,Ev)
△
= Act(Ev, 〈“c”〉) ∧ (st = “s1”) ∧ (st′ = “s2”)

IntActionB(st,Ev)
△
= Act(Ev, 〈“b”〉) ∧ (st = “s1”) ∧ unchanged st

Next(st,Ev)
△
= InActionA(st,Ev) ∨ OutActionC(st,Ev) ∨ IntActionB(st,Ev)

The TLA action InActionA(st,Ev) represents the transitions from Fig. 1 labelled with

action a, action OutActionC(st,Ev) represents the transition labelled with c, and action

IntActionB(st,Ev) the transition labelled with b.

SpecE(st,Ev) says that initially, st is set to “s0” and Ev is equal to the pair of values

〈“0”, 〈〉〉, and that subsequently, at every step, either both st and Ev remain unchanged or

a currently enabled transition of the automaton occurs. If the latter is the case, the first

Specifying and Verifying External Behaviour of Fair Input/Output Automata 693

component of Ev, denoted Ev[1], changes to “1” if previously “0”, and vice versa, and in

the second component of Ev, denoted Ev[2], the label of the transition is recorded. For

example, in the initial state, only the TLA action InActionA(st,Ev) is enabled. If it occurs,

Ev becomes equal to 〈“1”, 〈“a”〉〉 and st to “s1”, which represents the execution of the

transition from s0 to s1.

We want to recognise from the Ev variable alone whether an I/O automaton ac-

tion occurred. That is why we defined Act(Ev, v) to unconditionally change Ev. If only

the action were recorded in Ev, i.e. if Act(Ev, v) were defined as Ev′ = v, the repe-

tition of an action could not be distinguished from stuttering in Ev. For example, the

sequence of values of Ev in the behaviour representing execution 〈s0, a, s1〉 and re-

spectively 〈s0, a, s1, a, s1〉 would be the same: 〈〈〉, 〈“a”〉, 〈“a”〉, . . .〉. For our definition

of Act(Ev, v), it is 〈〈“0”, 〈〉〉, 〈“1”, 〈“a”〉〉, 〈“1”, 〈“a”〉〉, . . .〉 for the first execution and

〈〈“0”, 〈〉〉, 〈“1”, 〈“a”〉〉, 〈“0”, 〈“a”〉〉, 〈“0”, 〈“a”〉〉, . . .〉 for the second one.

Let A denote a fair I/O automaton (Definition 1), V the set of TLA variables encoding

the automaton states, and Ev a TLA variable different from those from V . From the above

example, it can easily be seen that generally, a TLA specification of execs(A) can be

written as follows:

Init(V ,Ev) ∧ �[Next(V ,Ev)]〈V,Ev〉 (1)

where

• Init(V ,Ev)
△
= StInit(V) ∧ ActInit(Ev) with StInit(V) a TLA predicate such that for

all s ∈ St, it is true in s iff s|V ∈ start(A), and

• Next(V ,Ev)
△
=

∨
a∈acts(A) Nexta(V ,Ev) with Nexta(V ,Ev)

△
= NStatea(V)∧Act(Ev,

a), where NStatea(V) is a TLA action such that for all s, t ∈ St, NStatea(V) ∧

Act(Ev, a) is true in 〈s, t〉 iff (s|V , a, t|V) ∈ steps(A).

StInit(V) specifies the initial states of A, and Nexta(V ,Ev) describes all the possible

transitions labelled by a. The {V,Ev}-stuttering steps represent the stuttering steps as

defined for I/O automata. Please, note that the restriction to V has to be applied to the

states of TLA behaviours in order to obtain the corresponding states of A because the

states in TLA assign values to all the variables of TLA. It follows that one execution of A

is in fact represented by the set of all the TLA behaviours which agree with the execution

in the values of V and in the actions recorded in Ev, but assign arbitrary values to all the

other variables. For the simplicity of writing, we sometimes ignore this fact as usual in

papers on TLA.

4.2. Specification of Fair Executions

In TLA, an occurrence of action a of a fair I/O automaton A can be expressed by

〈Nexta(V ,Ev)〉〈V,Ev〉 (which happens to be equivalent to Nexta(V ,Ev)). It can easily be

seen that the enabledness of action a in a state of A can be expressed with the Enabled

predicate. Formally, for all s ∈ St, if s|V ∈ states(A), then Enabled〈Nexta(V ,Ev)〉〈V,Ev〉

694 T. Kapus

is true in s iff action a is enabled in state s|V . The conjunct Act(Ev, a) in Nexta(V ,Ev)

ensures that this is the case even if the transition relation of A contains steps (s|V , a, s|V)

for some a and s.

Consequently, the TLA specification of fairexecs(A) can be obtained by adding weak

and strong fairness conditions to (1):

Init(V ,Ev) ∧ �[Next(V ,Ev)]〈V,Ev〉 ∧ Liveness(V ,Ev) (2)

where Liveness(V ,Ev)
△
= ∧

∧
W∈wfair(A) WF〈V,Ev〉(

∨
a∈W Nexta(V ,Ev))

∧
∧

S∈sfair(A) SF〈V,Ev〉(
∨

a∈S Nexta(V ,Ev)).

V and Ev in the parentheses in the above introduced symbols (and similar in the rest

of the paper) denote the free variables of the formulas they represent. Please, observe that

instead of writing V in the parentheses and in the subscripts such as 〈V,Ev〉, we should

list the variables of V . We write V for convenience.

Notice that the set wfair(A1) of our example automaton A1 is nonempty. The TLA

specification of fairexecs(A1) can be written by adding the fairness condition to the spec-

ification of execs(A1):

SpecFE(st,Ev)
△
= SpecE(st,Ev) ∧ Liveness(st,Ev)

where

Liveness(st,Ev)
△
= WFvars(OutActionC(st,Ev) ∨ IntActionB(st,Ev)).

Examples of fair executions of A1 are 〈s0〉, 〈s0, a, s1, c, s2〉, 〈s0, a, s1, a, s1, c, s2〉,

〈s0, a, s1, b, s1, c, s2〉, 〈s0, a, s1, b, s1, b, s1, . . .〉 (i.e. an infinite execution in which ac-

tion b is repeated indefinitely in state s1), but not for instance 〈s0, a, s1〉, because b and c,

which are together in a set of wfair(A1), are enabled in the last state.

4.3. Specification of Traces

Now, we are interested in writing the TLA specification of traces of a fair I/O automaton

A. The only free variable of the specification should be one in which only the occurrences

of the external actions of A would be recorded (we shall call it Ev as before), thus rep-

resenting traces, and the specification should be stuttering-invariant. If A has no internal

actions, the specification can be obtained by hiding the variables representing its states in

the TLA specification of its executions (1) by using ∃. If not, the specification of traces(A)

can be written in the same way as (1), except that in the definition of Nexta(V ,Ev) for ev-

ery internal action a, Ev should remain unchanged, i.e. the occurrence of a should not be

recorded in Ev, and V should finally be hidden:

∃V : Init(V ,Ev) ∧ [NextH(V ,Ev)]〈V,Ev〉 (3)

Specifying and Verifying External Behaviour of Fair Input/Output Automata 695

where NextH(V ,Ev)
△
=

∨
a∈ext(A) Nexta(V ,Ev) ∨

∨
a∈int(A) Nexta(V ,Ev) with Nexta(V ,

Ev)
△
= NStatea(V)∧Act(Ev, a) for all a ∈ ext(A) and Nexta(V ,Ev)

△
= NStatea(V)∧Ev′ =

Ev for all a ∈ int(A).

For our example automaton A1, the specification of traces is as follows:

SpecT(Ev)
△
= ∃st : Init(st,Ev) ∧ �[NextH(st,Ev)]vars

where

vars
△
= 〈st,Ev〉

StInit(st)
△
= st = “s0”

Init(st,Ev)
△
= StInit(st) ∧ ActInit(Ev)

InActionA(st,Ev)
△
= Act(Ev, 〈“a”〉) ∧ (st′ = if st = “s0” then “s1” else st)

OutActionC(st,Ev)
△
= Act(Ev, 〈“c”〉) ∧ (st = “s1”) ∧ (st′ = “s2”)

IntActionBH(st,Ev)
△
= (st = “s1”) ∧ unchanged 〈st,Ev〉

NextH(st,Ev)
△
= InActionA(st,Ev) ∨ OutActionC(st,Ev) ∨ IntActionBH(st,Ev)

Notice that instead of the TLA action IntActionB(st,Ev), the specification contains the

TLA action IntActionBH(st,Ev), which does not record the occurrence of action b in Ev.

Examples of traces of A1 are 〈〉, 〈a〉, 〈a, a〉, 〈a, a, . . .〉, 〈a, c〉.

4.4. Specification of Fair Traces

Clearly, if a fair I/O automaton A does not contain internal actions, the specification of its

fair traces can be obtained by hiding V in the specification of its fair executions.

Otherwise, following the way the specification of fairexecs(A) (2) was obtained from

the specification of execs(A) (1), one is tempted to write the specification of fairtraces(A)

by adding the fairness conditions for the TLA actions that represent fairness sets from

wfair(A) and sfair(A) to (3):

∃V : Init(V ,Ev) ∧ [NextH(V ,Ev)]〈V,Ev〉 ∧ LivenessH(V ,Ev) (4)

where LivenessH(V ,Ev)
△
= ∧

∧
W∈wfair(A) WF〈V,Ev〉(

∨
a∈W Nexta(V ,Ev))

∧
∧

S∈sfair(A) SF〈V,Ev〉(
∨

a∈S Nexta(V ,Ev)).

It should, however, be noticed that the transition relation of an I/O automaton A may

contain steps (s, a, s) for some a ∈ acts(A) and s ∈ states(A). It follows that NStatea(V)

does not necessarily change V . In (1) and (2), the I/O automaton transitions are repre-

sented by Nexta(V ,Ev) in which the conjunct Act(Ev, a) guarantees that the state in TLA

changes for every I/O automaton step. In (3) and consequently in (4), this is not the case

anymore, as we leave Ev unchanged in Nexta(V ,Ev) for all a ∈ int(A).

Reynolds (1998) shows that if some TLA actions do not always change the state, it can

happen that the canonical-form TLA specification including weak and/or strong fairness

696 T. Kapus

conditions on such actions does not specify all the behaviours of the system being speci-

fied. Some legal behaviours of the system might not be allowed by the specification as not

being weakly or strongly fair.

This would, for instance, be the case for our example automaton A1. Following (4),

the liveness specification LivenessH(V ,Ev) for A1 would be:

WF〈st,Ev〉(OutActionC(st,Ev) ∨ IntActionBH(st,Ev)) (5)

which is defined as

∨�♦〈OutActionC(st,Ev) ∨ IntActionBH(st,Ev)〉〈st,Ev〉

∨�♦(¬Enabled 〈OutActionC(st,Ev) ∨ IntActionBH(st,Ev)〉〈st,Ev〉).

As IntActionBH(st,Ev) does change neither st nor Ev, 〈OutActionC(st,Ev) ∨

IntActionBH(st,Ev)〉〈st,Ev〉 is equivalent to 〈OutActionC(st,Ev)〉〈st,Ev〉, giving that (5)

is equivalent to WF〈st,Ev〉(OutActionC(st,Ev)), which expresses a stronger weak fair-

ness condition than defined by wfair(A). So, for instance, from the fair execution

〈s0, a, s1, b, s1, b, s1, . . .〉 of A1, we obtain fair trace 〈a〉, but it is not allowed by the

specification of the form (4) for this automaton because it does not satisfy the weak fair-

ness condition (5). The latter namely requires that if c is always enabled from some state

on (note that this is the case if only b is executed all the time after reaching s1 from s0),

it must eventually occur.

Therefore, the specification of fair traces in the form (4) is generally possible only

under the condition that for all W ∈ wfair(A) and S ∈ sfair(A), for all a ∈ W ∩ int(A) and,

respectively, for all a ∈ S ∩ int(A), NStatea(V) (or more precisely, NStatea(V)∧T where

T is the type invariant for V) implies V ′ 6= V , i.e. that all the TLA actions representing

the internal actions of A for which fairness conditions are imposed, change some variable

of the specification other than Ev.

Nevertheless, we would like to have a generally valid pattern for the specification of fair

traces. We have found that it is possible to apply a solution similar to the one proposed by

Reynolds (1998) for the specification of concurrent programs based on multiset rewriting.

Instead of the TLA formulae of the form WFvars(A) and SFvars(A), the TLA formulae of

the form VWFvars(A) and ASFvars(A) introduced by Reynolds (1998) should be used for

the specification of fairness sets.

VWFvars(A) expresses very weak fairness:

VWFvars(A)
△
= WFvars(A) ∨ �♦Enabled (A∧ vars′ = vars).

ASFvars(A) expresses almost strong fairness:

ASFvars(A)
△
= SFvars(A) ∨ �♦Enabled (A∧ vars′ = vars).

The specification of fair traces of any fair I/O automaton A can be obtained from the

specification of traces (3) in a uniform way. It can be written in the same form as (4), but

LivenessH(V ,Ev) has to be as follows:

LivenessH(V ,Ev)
△
= ∧

∧
W∈wfair(A) VWF〈V,Ev〉(

∨
a∈W Nexta(V ,Ev))

∧
∧

S∈sfair(A) ASF〈V,Ev〉(
∨

a∈S Nexta(V ,Ev)).

Specifying and Verifying External Behaviour of Fair Input/Output Automata 697

Let us remark that it is not necessary to apply the new version of fairness conditions

for fairness sets W and S which do not contain internal actions a labelling steps (s, a, s)

for some states s. However, instead of checking as to whether such actions exist, it is gen-

erally easier to use the new versions for all the fairness sets. The new fairness conditions

for fairness sets W and S which do not contain the critical internal actions are, anyway,

equivalent to the old ones.

We will demonstrate in Section 5 that by using the new form of fairness conditions

we obtain a proper TLA specification of the fair traces of our example automaton A1. Its

fairness part should be:

LivenessH(st,Ev)
△
= ∨WF〈st,Ev〉(OutActionC(st,Ev) ∨ IntActionB(st,Ev))

∨�♦Enabled (∧OutActionC(st,Ev) ∨ IntActionBH(st,Ev)

∧〈st,Ev〉′ = 〈st,Ev〉)

which is equivalent to

WF〈st,Ev〉(OutActionC(st,Ev)) ∨ �♦Enabled (IntActionBH(st,Ev)).

5. Fair I/O Automata Implementation Relations in TLA

Suppose that TrA(Ev) and FTrA(Ev) denote TLA specifications of traces and, respec-

tively, fair traces of an I/O automaton A. Analogous to the (fair) executions of an I/O

automaton A, since the states in TLA are assignments to all the variables in VF , not only

to Ev, one (fair) trace of an I/O automaton has a set of representative behaviours that sat-

isfy the TLA specification of the (fair) traces of A. This set contains all the Ev-stuttering

free behaviours with the values of Ev corresponding to the actions in the (fair) trace and

all the behaviours which are Ev-stuttering equivalent to them. For a trace α, let this set

(the ‘equivalence class’ for α) be denoted by equEv(α). For a behaviour σ and a TLA

formula F , let σ |H F denote that F is true of σ .

Proposition 1. For fair I/O automata A and B with in(A) = in(B) and out(A) = out(B)

which induce the corresponding live automata, A�F B iff FTrA(Ev) ⇒ FTrB(Ev) is

valid.

Proof.
⇒:
Assume that A�F B . Hence, by Definition 3, fairtraces(A) ⊆ fairtraces(B), and so

for every α ∈ fairtraces(A), α ∈ fairtraces(B). For a behaviour σ , assume that σ |H

FTrA(Ev). We must prove that σ |H FTrB(Ev). We know that σ ∈ equEv(α) for some

α ∈ fairtraces(A). We know that α ∈ fairtraces(B) and that all the behaviours in equEv(α)

satisfy FTrB(Ev). Henceforth, σ |H FTrB(Ev).

⇐:
Assume the validity of FTrA(Ev) ⇒ FTrB(Ev). Hence, for every σ such that σ |H

FTrA(Ev), σ |H FTrB(Ev). Assume that α ∈ fairtraces(A). We must prove that α ∈

698 T. Kapus

fairtraces(B). We know that for all σ ∈ equEv(α), σ |H FTrA(Ev) and thus σ |H

FTrB(Ev). It follows that σ ∈ equEv(β) for some β ∈ fairtraces(B). From the fact that

σ cannot be in the equivalence classes for two different fair traces, it follows that α = β

and hence, α ∈ fairtraces(B). �

Proposition 2. For fair I/O automata A and B with in(A) = in(B) and out(A) = out(B)

which induce the corresponding live automata, A�SB iff TrA(Ev) ⇒ TrB(Ev) is valid.

Proof. Analogous to the proof of Proposition 1, or by the latter by taking into account

that traces(A) = fairtraces(safe(A)) and the same for B . �

We would also like to be able to check whether a fair I/O automaton A induces a live

automaton by using TLA. Suppose that a TLA specification of fairexecs(A) in the form (2)

is given. We are only interested in automata with countable (i.e. finite or countably infinite)

sets sfair(A) and wfair(A) as is regularly the case in the literature (e.g. Müller, 1998;

Søgaard-Andersen et al., 1993). For such automata, the liveness part Liveness(V ,Ev) is

a conjunction of countably many fairness conditions. As the countable sets of fairness

sets of A imply condition (ii) of Romijn and Vaandrager (1996) mentioned in Section 3, it

follows that in order to assure that A induces a live automaton, it is only necessary to check

whether it is input-resistant. Let SA denote the TLA specification of execs(A) (1). Based

on Definition 2 and the semantics of TLA we claim that A is input-resistant iff formula

SA(V ,Ev) ⇒ �[((
∨

a∈in(A) Act(Ev, a)) ∧ Enabled 〈A〉〈V,Ev〉)

⇒ (Enabled 〈A〉〈V,Ev〉)
′]Enabled 〈A〉〈V,Ev〉

is valid for every action A
△
=

∨
a∈S Nexta(V ,Ev) appearing in a formula SF〈V,Ev〉(A) of

the Liveness(V ,Ev) part of the TLA specification of fairexecs(A), and analogously if the

specification of fairtraces(A) is given. (Please, notice that for a predicate P , P ′ denotes

its truth value in the ‘next’ state and [N]P is short for N ∨ (P ′ ≡ P).) The formula is

similar to the one for checking the so-called µ-invariance of a predicate Enabled 〈A〉w
for a TLA specification of an open system (Abadi and Lamport, 1994).

We have verified the externally visible behaviour of our automaton A1 by checking

trace inclusion in the way suggested by Propositions 1 and 2 with the TLC model checker.

The latter is a part of the integrated development environment for TLA specifications,

called the TLA Toolbox (2014). The specifications are actually written by using TLA+

(Lamport, 2002), which is a complete formal specification language based on TLA. It

complements the latter with a notation for the specification of data structures and modular

specification, as well as a notation for writing hierarchically structured proofs (Lamport,

2014).

Roughly speaking, a TLA+ module may contain a list of ‘imported’ modules, a dec-

laration of module parameters, i.e. externally visible TLA constants and variables used in

formulas inside the module, assumptions about the constants, definitions of symbols used

in the TLA+ specification, theorems expected to hold in the module under the specified

Specifying and Verifying External Behaviour of Fair Input/Output Automata 699

 ❢❛✐$ ❆ ✇❢❛✐$ ❆

▲✐✈❡♥❡ ❱ ❊✈

❆

❆

❙

❆

❡①❡❝ ❆ ❆

❙

❆

❱ ❊✈

❛ ✐♥ ❆

❆❝0 ❊✈ ❛

❱ ❊✈

❱ ❊✈

❱ ❊✈

❛ ❙

◆❡①0

❛

❱ ❊✈ ❙❋

❱ ❊✈

▲✐✈❡♥❡ ❱ ❊✈ ❢❛✐$❡①❡❝ ❆

❢❛✐0❛❝❡ ❆ 3 3

◆

(

◆ 3 3

✇

MODULE ActOps

❆❝"■♥✐"(❊✈)
∆

= ❊✈ = 〈“0”, 〈 〉〉

❚♦❣❣❧❡(✈)
∆

= IF ✈ = “0” THEN “1” ELSE “0”

❆❝"(❊✈ , ❛)
∆

= ❊✈

′ = 〈❚♦❣❣❧❡(❊✈ [1]), ❛ 〉

❆

Fig. 2. Module ActOps.

assumptions, and proofs of these theorems. Line comments in TLA+ modules are denoted

with \∗.

We prepared module ActOps (Fig. 2), in which Act(Ev, a) and ActInit(Ev) are defined

as described in Section 4. This module can be imported by using keyword extends in the

automata specification modules which need these definitions.

Formula SpecT in module A1 in Fig. 3 is the specification of traces(A1) (cf. Subsec-

tion 4.3) and SpecFT the specification of fairtraces(A1) (cf. Subsection 4.4). According

to Section 4, variable st should be hidden in them, but it is not because TLC cannot handle

formulas containing existential quantifier ∃. It suffices just to remember which variables

are in fact internal.

It should be noticed that although A1 has a weak fairness condition on actions b and c,

the latter does not guarantee action c eventually to occur because whenever c is enabled,

internal action b is also enabled, and the weak fairness condition is fulfilled even if the

latter always occurs. Therefore, it does not guarantee any externally visible progress of the

automaton behaviour. It follows that it should be possible to prove that fairtraces(A1) =

traces(A1). It should also be possible to prove that A1 externally behaves in the same way

as the safe automaton, let us name it A1Req, which has the same start state and the same

set of states as A1, the same input action a and output action c, but no internal actions,

and the steps of which are the same as those of A1 shown in Fig. 1, except that there is no

transition labelled with b. Formula Spec in module A1Req in Fig. 4 is the specification of

(fair)traces(A1Req). Clearly, both A1 and A1Req induce live automata, so that we can

verify them by establishing trace inclusion relations between them.

The presented modules do not only give (fair) trace specifications, but also define the

sets of input (in) and output (out) actions of the automata, as well as the set of possible

states (States). We followed the rule that it is useful first to specify and check the type

invariant for the system being specified. An instance of module A1Req is included in

module A1 and named ReqModule in order to be able to use the symbols defined in A1Req

in A1. In TLA+, for an instance M , M!S refers to symbol S defined in the module of which

M is an instance.

We wrote some theorems at the end of the modules, but note that for the verification

with the TLC model checker, theorems need not be written because the system speci-

fication (or, generally, the antecedent of the implication stated in the theorem) and the

property (the consequent of the implication) to be checked are stated in a special menu

of the TLA Toolbox. We verified all the theorems with TLC. In all the theorems except

those expressing the type correctness, the consequent is in fact meant to be the original

formula (Spec, SpecT , or respectively SpecFT) with free variable st replaced with a re-

finement mapping st , which should, according to Section 2, be a function of the variables

700 T. Kapus

❆❝" ❊✈ ❛ ❆❝"■♥✐" ❊✈

MODULE A1

EXTENDS ❆❝"❖♣%

VARIABLES ❊✈ , %"

❘❡*▼♦❞✉❧❡

∆

= INSTANCE ❆1❘❡*

✈❛1%

∆

= 〈❊✈ , %" 〉

✐♥

∆

= {〈“a”〉}

♦✉"

∆

= {〈“c”〉}

❡①"

∆

= ✐♥ ∪ ♦✉"

ASSUME ✐♥ = ❘❡*▼♦❞✉❧❡ !✐♥ ∧ ♦✉" = ❘❡*▼♦❞✉❧❡ !♦✉"

❙"❛"❡%

∆

= {“s0”, “s1”, “s2”}

❙"■♥✐"

∆

= %" = “s0”

■♥✐"

∆

= ❆❝"■♥✐"(❊✈) ∧ ❙"■♥✐"

❚②♣❡■♥✈❛1✐❛♥"

∆

= ∧ ❊✈ ∈ {“0”, “1”} × (❡①" ∪ {〈 〉})

∧ %" ∈ ❙"❛"❡%

■♥❆❝"✐♦♥❆

∆

= ∧ ❆❝"(❊✈ , 〈“a”〉)

∧ %" ′ = IF %" = “s0” THEN “s1”

ELSE %"

❖✉"❆❝"✐♦♥❈

∆

= ∧ ❆❝"(❊✈ , 〈“c”〉)

∧ (%" = “s1”) ∧ (%" ′ = “s2”)

■♥"❆❝"✐♦♥❇❍

∆

= ∧ ❊✈ ′ = ❊✈

∧ (%" = “s1”) ∧ (%" ′ = %")

◆❡①"❍

∆

= ■♥❆❝"✐♦♥❆ ∨❖✉"❆❝"✐♦♥❈ ∨ ■♥"❆❝"✐♦♥❇❍
\∗ ▲✐✈❡♥❡%%❍

∆

= ❲❋

✈❛"#

(❖✉"❆❝"✐♦♥❈ ∨ ■♥"❆❝"✐♦♥❇❍)

▲✐✈❡♥❡%%❍

∆

= ❲❋

✈❛"#

(❖✉"❆❝"✐♦♥❈) ∨ ✷✸ENABLED (■♥"❆❝"✐♦♥❇❍)

❙♣❡❝❚

∆

= ■♥✐" ∧ ✷[◆❡①"❍]
✈❛"#

❙♣❡❝❋❚

∆

= ❙♣❡❝"❚ ∧ ▲✐✈❡♥❡%%❍

❘❡*❙♣❡❝

∆

= ❘❡*▼♦❞✉❧❡ !❙♣❡❝

\∗ ❈❙♣❡❝
∆

= (✐♥ = ❘❡*▼♦❞✉❧❡ !✐♥) ∧ (♦✉" = ❘❡*▼♦❞✉❧❡ !♦✉") ∧ ❘❡*❙♣❡❝

THEOREM ❙♣❡❝❋❚ ⇒ ✷❚②♣❡■♥✈❛1✐❛♥"

THEOREM ❙♣❡❝❋❚ ⇒ ❙♣❡❝❚ \∗ ❢❛✐1"1❛❝❡%(❆1) ⊆ "1❛❝❡%(❆1)

THEOREM ❙♣❡❝❚ ⇒ ❙♣❡❝❋❚ \∗ "1❛❝❡%(❆1) ⊆ ❢❛✐1"1❛❝❡%(❆1)
THEOREM ❙♣❡❝❋❚ ⇒ ❘❡*❙♣❡❝ \∗ ❢❛✐1"1❛❝❡%(❆1) ⊆ (❢❛✐1)"1❛❝❡%(❆1❘❡*)

\∗ THEOREM ❙♣❡❝❋❚ ⇒ ❈❙♣❡❝

THEOREM ❘❡*❙♣❡❝ ⇒ ❙♣❡❝❋❚ \∗ (❢❛✐1)"1❛❝❡%(❆1❘❡*) ⊆ ❢❛✐1"1❛❝❡%(❆1)

❙♣❡❝❚ ❆ "-❛❝❡. ❆

❙♣❡❝❋❚ ❢❛✐-"-❛❝❡. ❆

."

Fig. 3. Module A1.

of the antecedent. As the refinement mapping is simply the identity function st = st, the

consequent is the same as the original formula. According to Section 2, if the implications

of such formulas are valid, then also the implications of such formulas with st hidden are

valid, thereby proving the trace inclusion for A1 and A1Req as stated in the comments

beside the theorems in module A1 in Fig. 3, and consequently the equality of the external

behaviour of automata A1 and A1Req, as well as of fairtraces(A1) and traces(A1).

We first deliberately used the wrong LivenessH formula (formula (5) from Subsec-

tion 4.4) in module A1 (the formula is shown as a line comment in Fig. 3) to check the im-

plementation relations between automata A1 and A1Req. TLC reported an error when ver-

ifying the implication ReqSpec ⇒ SpecFT , i.e. whether traces(A1Req) ⊆ fairtraces(A1).

Specifying and Verifying External Behaviour of Fair Input/Output Automata 701

MODULE A1Req

EXTENDS ❆❝"❖♣%

VARIABLES ❊✈ , %"

✈❛)%

∆

= 〈❊✈ , %" 〉

✐♥

∆

= {〈“a”〉}

♦✉"

∆

= {〈“c”〉}

❡①"

∆

= ✐♥ ∪ ♦✉"
❙"❛"❡%

∆

= {“s0”, “s1”, “s2”}

❙"■♥✐"

∆

= %" = “s0”

■♥✐"

∆

= ❆❝"■♥✐"(❊✈) ∧ ❙"■♥✐"

❚②♣❡■♥✈❛)✐❛♥"

∆

= ∧ ❊✈ ∈ {“0”, “1”} × (❡①" ∪ {〈 〉})
∧ %" ∈ ❙"❛"❡%

■♥❆❝"✐♦♥❆

∆

= ∧ ❆❝"(❊✈ , 〈“a”〉)

∧ %" ′ = IF %" = “s0” THEN “s1”

ELSE %"

❖✉"❆❝"✐♦♥❈

∆

= ∧ ❆❝"(❊✈ , 〈“c”〉)
∧ (%" = “s1”) ∧ (%" ′ = “s2”)

◆❡①"

∆

= ■♥❆❝"✐♦♥❆ ∨❖✉"❆❝"✐♦♥❈

❙♣❡❝

∆

= ■♥✐" ∧ ✷[◆❡①"]
✈❛"#

THEOREM ❙♣❡❝ ⇒ ✷❚②♣❡■♥✈❛)✐❛♥"

❆

❆ ❜

❝ ❝ ❝

❜

❢❛✐&'&❛❝❡) ❆ '&❛❝❡) ❆ ❆

❆ ❘❡+

❆ ❛

❝ ❆

❜ ❙♣❡❝ ❆ ❘❡+

❢❛✐& '&❛❝❡) ❆ ❘❡+ ❆ ❆ ❘❡+

Fig. 4. Module A1Req.

❆❝"❖♣%

❊✈ %"

✈❛)% ❊✈ %"

✐♥

♦✉"

❡①" ✐♥ ♦✉"

❙"❛"❡%

❙"■♥✐" %"

■♥✐" ❆❝"■♥✐" ❊✈ ❙"■♥✐"

❚②♣❡■♥✈❛)✐❛♥" ❊✈ ❡①"

%" ❙"❛"❡%

■♥❆❝"✐♦♥❆ ❆❝" ❊✈

%" %"

%"

❖✉"❆❝"✐♦♥❈ ❆❝" ❊✈

%" %"

◆❡①" ■♥❆❝"✐♦♥❆ ❖✉"❆❝"✐♦♥❈

❙♣❡❝ ■♥✐" ◆❡①"

✈❛"#

❙♣❡❝ ❚②♣❡■♥✈❛)✐❛♥"

❆

❆ ❜

❝ ❝ ❝

❜

❢❛✐&'&❛❝❡) ❆ '&❛❝❡) ❆ ❆

❆ ❘❡+

❆ ❛

❝ ❆

❜ ❙♣❡❝ ❆ ❘❡+

❢❛✐& '&❛❝❡) ❆ ❘❡+ ❆ ❆ ❘❡+

Fig. 5. An error trace in case of wrong fair trace specification of A1.

TLC printed the error trace shown in Fig. 5. It represents exactly the trace 〈a〉 of A1 we

claim not to be allowed by the wrong specification of fairtraces(A1) in Subsection 4.4.

Indeed, in this way TLC reported that the implication is not valid because trace 〈a〉 is

in the set of traces of A1Req, but not in the specified set of fair traces of A1, mean-

ing ¬(traces(A1Req) ⊆ fairtraces(A1)). When we applied the right LivenessH formula

(the uncommented one in Fig. 3), TLC reported that the implication was valid. As ex-

pected, TLC answered that implication SpecFT ⇒ ReqSpec was valid for SpecFT with

both versions of LivenessH. Clearly, if using the wrong formula LivenessH, theorem

SpecT ⇒ SpecFT , which asserts that traces(A1) ⊆ fairtraces(A1), is also not valid. TLC

generates the same error trace as above.

According to Definition 3, the matching of input and output actions of the automata

should be checked before establishing an implementation relation between them. It is easy

702 T. Kapus

to see that A1 and A1Req have the same sets of input and output actions. Nevertheless,

module A1 in Fig. 3 illustrates how it is possible to check this with TLC. This could be

useful for automata with large action sets. The TLA+ assume statement expresses the

matching of the input and output action sets. Normally, an assume statement is used for

stating assumptions about the constant parameters of a module, but it is only important that

it does not contain any variables. A verification in TLC is always carried out for a particular

module. When TLC is called for a verification, it first checks all the assumptions of this

module. It continues only if all of them are valid, i.e. if the action sets match in our case.

Another possibility to check the matching of the action sets would be to specify it as

a part of the property to be proved in the theorems expressing the trace inclusion. For

example, instead of the assumption and the fourth theorem listed in A1, the currently

commented CSpec formula and the theorem including it could be used in module A1.

6. Discussion and Conclusions

The main contribution of this paper is the proposal of how to specify fair traces of fair I/O

automata and how to verify the implementation relations, which is the ‘standard’ approach

to the I/O automata verification, by using TLA. In this way, the specification and verifi-

cation of the external behaviour of fair I/O automata can be carried out strictly formally

in a single language—TLA or more precisely, TLA+—and by using its tool support. In

contrast to Kapus (2002, 2005), in this paper we specified the recording of action labels

of I/O automata in such a way that TLA specifications of the behaviour of finite-state I/O

automata cannot give infinitely many reachable states and can, therefore, be automatically

verified with the TLC model checker. We defined action Act in a similar way to action

ChanOp which is used by Ladkin et al. (1999) for the representation of message passing

over channels represented by variables.

Funiak (2001) tried to apply TLA+ for ordinary (i.e. not fair) I/O automata. However,

he did not use TLA+ directly for that model. He translated I/O automata into a state-based

model by ignoring the I/O automata action labels. Müller (1998) and Søgaard-Andersen et

al. (1993) considered the specification of fair I/O automata and used some kind of linear-

time temporal logic. They, however, applied the temporal logic only for the specification

of fairness conditions and required temporal properties of executions. The safety part of

automata was specified in a semi-formal precondition/effect style. The IOA language (Gar-

land and Lynch, 2000; Garland et al., 2003) enables formal description of ordinary I/O

automata, as well as the specification of required implementation relations and state in-

variants. For finite-state IOA programs, a model checker exists. However, as mentioned in

the introduction, verification by theorem proving cannot be carried out directly in IOA.

Systems are often developed by using stepwise refinement. First, a top-level specifi-

cation is written as a composition of I/O automata (see, e.g., Müller, 1998), and a more

detailed system specification is then developed by a refinement of every component of

the composition. The refinement step has to be verified by checking whether the detailed

system specification implements the top-level one. Generally, compositional verification

is possible by establishing an implementation relation between every component in the re-

fined specification and its counterpart in the top-level one separately. Our approach can be

Specifying and Verifying External Behaviour of Fair Input/Output Automata 703

used for the specification of the external behaviour of the components and the verification

of trace inclusion for each one.

Sometimes, however, a system is given as a composition of I/O automata, but its re-

quirement specification as a single one. To be able to verify trace inclusion by using our

approach in such a case, a single I/O automaton should first be obtained from the com-

ponents of the composition and then its traces specified by using our approach by not

recording internal actions of the system. The composition of I/O automata in TLA is out

of the scope of this paper, but a TLA specification of its executions could be obtained

from the TLA specifications of the executions of its components in a similar way to Ka-

pus (2009). We shall deal with the TLA specification and verification of the composition

of fair I/O automata in a forthcoming paper.

TLAPS, the TLA+ Proof System (2014), is being developed for writing and me-

chanically checking TLA+ proofs entirely on the level of TLA+, without the need for

the user to know the mechanisms of the general-purpose theorem provers which are

used behind and have also been employed for I/O automata (e.g. Garland et al., 2003;

Müller, 1998). We will try to apply TLAPS for the verification of I/O automata in order

to test its capabilities.

Acknowledgments. The author acknowledges the support of the Slovenian Research

Agency (ARRS) through program P2-0069.

References

Abadi, M., Lamport, L. (1994). An old-fashioned recipe for real time. ACM Transactions on Programming

Languages and Systems, 16(5), 1543–1571.

Armendáriz-Iñigo, J.E., González de Mendívil, J.R., Garitagoitia, J.R., Muñoz-Escoí, F.D. (2009). Correctness

proof of a database replication protocol under the perspective of the I/O automaton model. Acta Informatica,

46(4), 297–330.

Funiak, S. (2001). Model checking IOA programs with TLC. Summer 2001 report.

http://theory.lcs.mit.edu/tds/papers/Funiak/report.ps.

Garland, S.J., Lynch, N. (2000). Using I/O automata for developing distributed systems. In: Leavens, G.T., Sitara-

man, M. (Eds.), Foundations of Component-Based Systems. Cambridge University Press, Cambridge, pp.

285–311.

Garland, S.J., Lynch, N.A., Tauber, J.A., Vaziri, M. (2003). IOA User Guide and Reference Manual. Computer

Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA.

Kapus, T. (2002). Modelling of agent computations using the temporal logic of actions. In: Rožić, N., Begušić, D.

(Eds.), Proceedings of the 10th International Conference on Software, Telecommunications and Computer

Networks (SoftCOM 2002). Faculty of Electrical Engineering, Mechanical Engineering and Naval Architec-

ture, Split, pp. 345–349.

Kapus, T. (2005). Mobile agent system specification using the temporal logic of actions. In: Kokol, P. (Ed.),

Proceedings of the IASTED International Conference on Software Engineering (SE 2005). ACTA Press,

Zurich, pp. 319–324.

Kapus, T. (2009). Using mobile TLA as a logic for dynamic I/O automata. IEICE Transactions on Information

and Systems, E92-D, 1515–1522.

Krukow, K., Nielsen, M. (2007). Trust structures: Denotational and operational semantics. International Journal

of Information Security, 6(2–3) 153–181.

Ladkin, P., Lamport, L., Olivier, B., Roegel, D. (1999). Lazy caching in TLA. Distributed Computing, 12(2–3)

151–174.

704 T. Kapus

Lamport, L. (1994). The temporal logic of actions. ACM Transactions on Programming Languages and Systems,

16(3), 872–943.

Lamport, L. (2002). Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers.

Addison–Wesley Professional. http://research.microsoft.com/en-us/um/people/lamport/tla/book.html.

Lamport, L. (2014). TLA+2: a preliminary guide.

http://research.microsoft.com/en-us/um/people/lamport/tla/tla2-guide.pdf.

Lynch, N.A., Tuttle, M.R. (1989). An introduction to input/output automata. CWI Quarterly, 2(3), 219–246.

Merz, S. (2003). On the logic of TLA+. Computing and Informatics, 22(3–4), 351–379.

Mitra, S., Kumar, R., Basu, S. (2007). Automated choreographer synthesis for Web services composition using

I/O automata. In: Proceedings of the IEEE International Conference on Web Services (ICWS 2007). IEEE

Computer Society Press, Los Alamitos, CA, pp. 364–371.

Müller, O. (1998). A verification environment for I/O automata based on formalized meta-theory. Technical

report, TUM-I9822, Technische Universität München.

Reynolds, M. (1998). Changing nothing is sometimes doing something: fairness in extensional semantics. Tech-

nical report tr-98-02, King’s College, London.

Romijn, J.M.T., Vaandrager, F.W. (1996). A note on fairness in I/O automata. Information Processing Letters,

59(5), 245–250.

Segala, R., Gawlick, R., Søgaard-Andersen, J., Lynch, N. (1998). Liveness in timed and untimed systems. Infor-

mation and Computation, 141(2), 119–171.

Søgaard-Andersen, J.F., Lynch, N.A., Lampson, B.W. (1993). Correctness of communication protocols—a case

study. Technical report MIT/LCS/TR-589, Laboratory for Computer Science, MIT, Cambridge, MA, and

Technical report ID-TR: 1993-129, Department of Computer Science, Technical University of Denmark,

Lingby.

TLA+ proof system. http://tla.msr-inria.inria.fr/tlaps/content/Home.html.

The TLA Toolbox. http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html.

Trček, D. (2014). Computational trust management, QAD, and its applications. Informatica, 25(1), 139–154.

Tuttle, M.R. (1987). Hierarchical correctness proofs for distributed algorithms. Master’s thesis, Technical report

MIT/LCS/TR-387, Massachusetts Institute of Technology, Cambridge, MA.

T. Kapus is a professor at the Faculty of Electrical Engineering and Computer Science,

University of Maribor, Slovenia. She teaches courses on communications networks, for-

mal methods, and programming. Her primary research interest lies in formal methods for

the specification and verification of reactive systems.

Temporalinės veiksmų logikos naudojimas teisingos įvesties/išvesties
automato išorinei elgsenai specifikuoti ir tikrinti

Tatjana KAPUS

Teisingos įvesties/išvesties automatas – tai būsenų mašina grindžiamas modelis, skirtas specifikuo-

ti ir tikrinti reaktyviasias ir besivaržančiasias sistemas. Tikrinant, paprastai domimasi tik sąveikų

sekomis, pateikiamomis teisingos įvesties/išvesties automato savo aplinkai. Tos trasos vadinamos

teisingomis trasomis. Tipinė tikrinimo procedūra – tai įrodymas, kad tikrinamos sistemos vykdymo

trasos gali būti įterptos į teisingos įvesties/išvesties automato generuojamas teisingas sekas. Straips-

nyje pateiktas paprastas teisingų trasų specifikavimo būdas ir parodyta kaip, panaudojant tempora-

linę veiksmų logiką, porai teisingos įvesties/išvesties automatų sukurti įterpties į teisingas trasas

ryšį.

