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Abstract. The choice of natural image prior decides the quality of restored image. Recently success-
ful algorithms exploit heavy-tailed gradient distribution as image prior to restore latent image with
piecewise smooth regions. However, these prior assumed also remove the mid-frequency compo-
nent such as textural details regions while they preserve sharp edges. That because gradient profile
in fractal-like texture do not have sparse characteristic.

To restore textural features of expected latent image, in this paper, we introduce fractional-order
gradient as image prior which is more appropriate to describe characteristic of image textures. From
details comparison of our experiments, the textual details are more clear and visual quality is im-
proved.

Key words: image motion restoration, fractional order, total variation, textural detail.

1. Introduction

Image motion blur resulting from camera shake is spatial uniform, which can be mod-
eled as the convolution of the latent image and point-spread-function (a.k.a blur kernel)
representing the track of camera moving:

Y = X ⊗ h + n (1)

where Y is observed blurred image, X is the latent image, h is the motion blur kernel,and
n is the Gaussian noise with σ 2 variation, ⊗ denotes the convolution operator. When blur
kernel is unknown, the restoration of latent image from single observed image is called
the image blind deconvolution (Haykin, 1994) (a.k.a image blind motion deblurring).

Usually,image blind deconvolution has two steps: (1) blur kernel estimation and
(2) given estimated blur kernel and observed image, to restore latent image. For the im-
portance of first step, many researchers believe the more accurately blur kernel is esti-
mated, the more clearly image is restored. However, in fact, even with exact blur ker-
nel, the restoration of latent image is still challenging problem,because blur attenuates
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information such as high-frequency and mid-frequency components about image. So tra-
ditional methods such as inverse filtering and wiener filtering (Sekko et al., 1999) al-
ways enlarge noise in order to restore high-frequency component. To suppress noise, Bar
et al. (2005) used l1 norm with a Mumford–Shah regularizer to reject salt-and-pepper
noise. Joshi et al. (2009) introduced a local two-color prior to suppress noise. However,
these methods proposed in Bar et al. (2005), Joshi et al. (2009) increase the computation
cost to solve the nonlinear optimization problem using iterative re-weighted least square.
Numerous regularization approaches have been proposed, too (Rudin and Osher, 1994;
Chan and Wong, 1998; Wang et al., 2008; Xu and Jia, 2010). Rudin and Osher (1994)
proposed a time marching scheme to solve the TV model. Chan and Wong (1998) in-
troduced total variational blind deconvolution method for motion blur kernel and out-of-
focus kernel. Wang et al. (2008) presented a fast total variation deconvolution algorithm
to compute TV image deconvolution. Xu and Jia (2010) developed a fast TV − l1 de-
convolution method based on half-quadratic splitting. Fergus et al. (2006) estimate blur
kernel by introducing heavy-tailed gradient prior of natural image based on variational
Bayesian, and restore latent image using Richardson–Lucy (RL) approach with serious
ring artifact. Rao and Chen (2012) discussed that some researchers used the global mo-
tion compensation from coarsely sampled motion vector fields to camera shift problem in
video enhancement.

Algorithms above reconstruct the latent images with piecewise smooth characteristic
and preserve the image edges, but meanwhile the mid-frequency components such as tex-
tures are removed too. Recently, online learning algorithms for neural networks will be
considered to apply in image motion restoration (Calvo-Rolle et al., 2014).

In digital images, the gray values between neighboring pixels have high correla-
tion. These highly self-similar fractal information of image fractal information is usu-
ally represented by complex textural features, and the works in Pu et al. (2008), Yi-Fei
et al. (2007), Jun and Zhihui (2011), Bai and Feng (2007), Zhang et al. (2011, 2012),
Chan et al. (2013) showed that fractional-order gradient is more suitable to deal with
fractal-like textures. It has been proved in Pu et al. (2008) that the fractional-order
derivative satisfies the lateral inhibition principle of biologic visual system better than
the integer-order derivative. The fractional-order derivative operators have been used
in texture enhancement (Yi-Fei et al., 2007), image denoising (Jun and Zhihui, 2011;
Bai and Feng, 2007) and image inpainting (Zhang et al., 2011, 2012). Jun and Zhihui
(2011) replaced the first-order derivative in the regularized term of ROF model with the
fractional-order derivative. Bai and Feng (2007) designed fractional-order anisotropic dif-
fusion equation to remove noise. Zhang et al. (2011) exploited fractional-order TV sino-
gram inpainting model to reduce metal artifacts for X-ray computed tomography. In Chan
et al. (2013) fractional total variation method was introduced to restore textured image,
but fractional-order gradient prior is not always fit for Laplacian distribution. These works
showed that the fractional-order derivative not only nonlinearly preserve the textural de-
tails in smooth area, but eliminate the staircase effect caused by low integral-order deriva-
tive in image processing.

In this paper, we use the blur kernel estimated by algorithm in Krishnan et al. (2011),
and then propose a non-blind motion deblurring algorithm to reconstruct textural details
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in latent image by exploiting the fractional-order gradient distribution of natural image as
an image prior. The outline of this paper is as follows. In Section 2, analyze the reason
why natural image gradient priors fails to restore image texture. In Section 3, our image
deconvolution model is proposed and fractional-order gradient operator is constructed ac-
cording to the Grnüwald–Letnikov definition of fractional-order derivative. In Section 4,
based on half-quadratic splitting, we develop Bayesian MAP estimation image deconvo-
lution method to compute variables iteratively. In Section 5, the restored results are shown
and discussed. Finally, the conclusion of our work is in Section 6.

2. Motivation

Even with known kernel, recent approaches exploiting the sparse gradient prior or Gaus-
sian gradient prior fails to reconstruct image with full textural details. The prior p(X)

favors natural image, usually based on the observation that their heavy-tailed gradient
distribution is sparse. A common measure is

logp(X) = −
∑

i

∣

∣∇x(xi)
∣

∣

β
+

∣

∣∇y(xi)
∣

∣

β
+ const, (2)

where ∇x(xi) and ∇y(xi) denote the horizontal and vertical integral-order derivatives at
pixel i . Exponent value β < 1 leads to sparse prior and natural images usually correspond
to α in the range of [0.5,0.8] (Levin et al., 2009). β = 1 and β = 2 are Laplacian prior
and Gaussian prior, respectively.

During restoration process, unappropriate priors favor no-blurry explanation on image
regions such as edge and textures. To understand the failure of restoring textural details
with natural image gradient prior, consider the 1D signal s in Fig. 1.Sharp edge in Fig. 1(a)
can be restored by gradient prior. Although Gaussian prior favors the blurry explanation,
the sparse prior (α < 1) favor the correct sharp explanation in Fig. 1(b). The signal consid-
ered in Fig. 1(c) is illustrating that natural image contain a lot of medium contrast textures,
which dominates the statistics more than step edges. As a result, blurring natural image
reduces the overall contrast which cannot be restored by Gaussian prior or even sparse
priors can not restore as in Fig. 1(d)

The reason is that the gradient profile in fractal-like textures is close to Gaussian dis-
tribution and these small values are severely penalized by the sparse gradient prior.

A fractional-order gradient log distribution can be expressed as follows

logp(X) = −
∑

i

∣

∣∇v
x xi

∣

∣

β
+

∣

∣∇v
y xi

∣

∣

β
+ const, (3)

where ∇v
x xi and ∇v

y xi denote the horizontal and vertical fractional-order derivatives at
pixel i and v is the fractional order. The exponent value is the same as β value in Eq. (2).

In our analysis, v = 0.3 is chosen. Compared with result in Fig. 2(b), the sharp expla-
nation in Fig. 2(c) is favored by sparse prior even by Gaussian prior. The fractional-order
gradient prior with appropriate fractional order chosen can restore textural details suc-
cessfully.
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Fig. 1. Analysis of restoration on 1D signal using first-order gradient prior: (left): sharp and blurred signal;
(right): sum of gradients − log p(X) =

∑

i |∇(x)i |
β as a function of β.

3. Image Deconvolution

Before our algorithm is proposed ,the blur kernel is estimated by algorithm in Krishnan
et al. (2011), which introduces a minimization scheme l1

l2
that solve a series of l1 prob-

lems with different regularization parameters and estimate X and h iteratively. The image
reconstructed with this blur kernel estimated in Krishnan et al. (2011) without any ring
artifacts. This serious undesirable phenomena will show in image reconstructed by algo-
rithm in Fergus et al. (2006), which result from the uncorrect estimation on blur kernel.
The importance of blur kernel estimation is showed in Fig. 3.

3.1. Model of Image Non-Blind Restoration

Motivated by works of Chan et al. (2013), Krishnan et al. (2011) and our analysis above,
we introduce a fractional-order gradient as image prior. The Bayesian estimator combines
both the prior and data knowledge, the model is defined as follows:

p(X|Y,h) ∝ p(Y,h|X)p(X) (4)
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Fig. 2. Comparison of restoration on signal representing image texture: (a) sharp and blurred signal; (b) sum of
gradients − log p(X) =

∑

i |∇v(x)i |
β as a function of β; (c) sum of gradients − log p(X) =

∑

i |∇v(x)i |
β as a

function of β.

where p(Y,h|X) being a Gaussian likelihood, their log distribution is logp(Y,h|X) =

−‖X⊗h−Y‖2
2 and logp(X) = −

∑

i |∇
v
x xi |

β +|∇v
y xi |

β , ∇v
x and ∇v

y are the same deriva-
tive filters in Eq. (3).

In fact, Bayesian MAP approach in Eq. (4) amounts to the minimization of the posterior
energy, so Eq. (4) can rewritten as

X̂ = arg min
X

∑

i

(

λ‖xi ⊗ h − yi‖
2 +

∣

∣∇v
x xi

∣

∣

β
+

∣

∣∇v
y xi

∣

∣

β)

= arg min
X

∑

i

(

λ‖xi ⊗ h − yi‖
2 +

∣

∣xi ⊗ Dv
x

∣

∣

β
+

∣

∣xi ⊗ Dv
y

∣

∣

β)

, (5)

where ∇v
x x = x ⊗ Dv

x , ∇v
y x = x ⊗ Dv

y and Dv is the fractional-order derivative filters
constructed in following.

3.2. Fractional-Order Derivative Filter Operator

The fractional-order gradient operator is constructed by the discretion of the Grnüwald–

Letnikov definition of fractional-order derivative. The v-order definition based fractional
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(a) (b) (c)

(d)

Fig. 3. The effect of estimated blur kernel on restored image: (a) blurred image; (b) latent image given blur
kernel estimated in Fergus et al. (2006); (c) latent image given blur kernel estimated in Krishnan et al. (2011);
(d) details comparison on image window, left: details in (a), middle: details in (b), right: details in (c).

differential can be expressed as

Dv
GL =

dv

[d(x − a)]v

∣

∣

∣

∣

GL

= lim
N→∞

N−1
∑

k=0

Ŵ(k − v)

Ŵ(k + 1)
s

(

x − k

(

x − a

N

))

(6)

where x ∈ [a, x], x − k( x−a
N

) is the discrete sampling. For large N and a = 0, rewrite
Eq. (6) as

dv

dxv

∣

∣

∣

∣

G−L

∼=
x−vNv

Ŵ(−v)

N−1
∑

k=0

Ŵ(k − v)

Ŵ(k + 1)
s

(

x −
kx

N

)

=
x−vNv

Ŵ(−v)

N−1
∑

k=0

Ŵ(k − v)

Ŵ(k + 1)
sk. (7)

For faster execution speeds and better precision of convergence, Eq. (7) can be rewritten
as

dv

dxv

∣

∣

∣

∣

G−L

∼=
x−vNv

Ŵ(−v)

N−1
∑

k=0

Ŵ(k − v)

Ŵ(k + 1)
s

(

x +
vx

2N
−

kx

N

)

(8)

To get these signal value of s(x) on non-nodes, we use the Lagrange 3-point interpolation
using three neighboring nodes s(x − x

N
− kx

N
), s(x − kx

N
), s(x + x

N
− kx

N
). The value of
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x(ε) can be gotten as follows

s(ε) ∼=
(ε − x + kx

N
)(ε − x + x

N
+ kx

N
)

2x2/N2
s

(

x +
x

N
−

kx

N

)

−
(ε − x − x

N
+ kx

N
)(ε − x + x

N
+ kx

N
)

2x2/N2
s

(

x −
kx

N

)

+
(ε − x − x

N
+ kx

N
)(ε − x + kx

N
)

2x2/N2
s

(

x −
x

N
−

kx

N

)

. (9)

Assuming ε = vx/N − kx/N and performing fractional interpolation

s

(

x +
vx

2N
−

kx

N

)

∼=

(

v

4
+

v2

8

)

s

(

x +
x

N
−

kx

N

)

+

(

1 −
v2

4

)

s

(

x −
kx

N

)

+

(

v2

8
−

v

4

)

s

(

x −
x

N
−

kx

N

)

=

(

v

4
+

v2

8

)

sk−1 +

(

1 −
v2

4

)

sk +

(

v2

8
−

v

4

)

sk+1. (10)

Setting k = n ≪ N − 1, from Eq. (10) the anterior n + 2 approximate backward dif-
ference of the fractional partial differentials with respect to the negative x- and y-axes of
two dimensional signals s(x, y) can be expressed as

∂vs(x, y)

∂xv
∼=

(

v

4
+

v2

8

)

s(x + 1, y) +

(

1 −
v2

2
−

v3

8

)

s(x, y) +
1

Ŵ(−v)

×

n−2
∑

k=1

[

Ŵ(k − v − 1)

(k + 1)!
·

(

v

4
+

v2

8

)

+
Ŵ(k − v)

k!
·

(

1 −
v2

4

)

+
Ŵ(k − v − 1)

(k − 1)!
·

(

−
v

4
+

v2

8

)]

s(x − k, y) +

[

Ŵ(n − v − 1)

(n + 1)!Ŵ(−v)

×

(

1 −
v2

8

)

+
Ŵ(n − v − 2)

(n − 2)!Ŵ(−v)
·

(

−
v

4
+

v2

8

)]

× s(x − n + 1, y) +
Ŵ(n − v − 1)

(n − 1)!Ŵ(−v)
·

(

−
v

4
+

v2

8

)

s(x − n,y),

(11)

∂vs(x, y)

∂yv
∼=

(

v

4
+

v2

8

)

s(x, y + 1) +

(

1 −
v2

2
−

v3

8

)

s(x, y) +
1

Ŵ(−v)

×

n−2
∑

k=1

[

Ŵ(k − v − 1)

(k + 1)!
·

(

v

4
+

v2

8

)

+
Ŵ(k − v)

k!
·

(

1 −
v2

4

)
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+
Ŵ(k − v − 1)

(k − 1)!
·

(

−
v

4
+

v2

8

)]

s(x, y − k) +

[

Ŵ(n − v − 1)

(n + 1)!Ŵ(−v)

×

(

1 −
v2

8

)

+
Ŵ(n − v − 2)

(n − 2)!Ŵ(−v)

(

−
v

4
+

v2

8

)]

s(x, y − n + 1)

+
Ŵ(n − v − 1)

(n − 1)!Ŵ(−v)
·

(

−
v

4
+

v2

8

)

s(x, y − n). (12)

For simplicity, we have only used four direction fin the fractional-order gradient oper-
ator for the calculation, corresponding to positive x+ and y+ axis, negative x− and y−

axis. Let Dv
x+, Dv

x−, Dv
y+, Dv

y− denotes the results for the four directions. The coefficients
of the operator in Table 1 and Table 2 are:























































































































































































Cs−1 =
v

4
+

v2

8

Cs0 = 1 −
v2

2
−

v3

8

Cs1 = −
5v

4
−

5v3

16
+

v4

16
...

Csk =
1

Ŵ(−v)

[

Ŵ(k − v − 1)

(k + 1)!
·

(

v

4
+

v2

8

)

+
Ŵ(k − v)

k!
·

(

1 −
v2

4

)

+
Ŵ(k − v − 1)

(k − 1)!
·

(

−
v

4
+

v2

8

)]

...

Csn−2 =
1

Ŵ(−v)

[

Ŵ(n − v − 1)

(n − 1)!
·

(

v

4
+

v2

8

)

+
Ŵ(n − v − 2)

(n − 2)!
·

(

1 −
v2

4

)

+
Ŵ(n − v − 3)

(n − 3)!
·

(

−
v

4
+

v2

8

)]

...

Csn−2 =
Ŵ(n − v − 1)

(n + 1)!Ŵ(−v)
·

(

1 −
v2

8

)

+
Ŵ(n − v − 2)

(n − 2)!Ŵ(−v)
·

(

−
v

4
+

v2

8

)

Csn =
Ŵ(n − v − 1)

(n − 1)!Ŵ−v
·

(

−
v

4
+

v2

8

)

.

(13)

4. Numerical Algorithm

Equation (5) contains non-linear penalties for regularization term, so we propose al-
ternating minimization method, based on a half-quadratic splitting (Joshi et al., 2009;
Wang et al., 2008; Krishnan and Fergus, 2009; Geman and Yang, 1995; Geman and
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Table 1
Operator of x-direction.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 · · · 0
.
.
. 0 0 0

Cs−1 Cs0 Cs1 · · · Csk · · · Csn−2 Csn−1 Csn

0 0 0 · · · 0
.
.
. 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 · · · 0
.
.
. 0 0 0

Csn Csn−1 Csn−2 · · · Csk · · · Cs1 Cs0 Cs−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Table 2
Operator of y-direction.

· · · 0 Csn 0 · · ·

· · · 0 Csn−1 0 · · ·

· · · 0 Csn−2 0 · · ·

.

.

.
.
.
.

.

.

.

· · · 0 Csn 0 · · ·

.

.

.
.
.
.

.

.

.

· · · 0 Cs1 0 · · ·

· · · 0 Cs0 0 · · ·

· · · 0 Cs−1 0 · · ·

· · · 0 Cs−1 0 · · ·

· · · 0 Cs0 0 · · ·

· · · 0 Cs1 0 · · ·

.

.

.
.
.
.

.

.

.

· · · 0 Csk 0 · · ·

.

.

.
.
.
.

.

.

.

· · · 0 Csn−2 0 · · ·

· · · 0 Csn−1 0 · · ·

· · · 0 Csn 0 · · ·

Reynolds, 1992) to solve it. Estimation variable e between X ⊗ h and Y and auxiliary
variable w = (wx ,wy) are introduced, so the objective function in Eq. (5) can be modi-
fied as

(X̂, ê, ŵ) = arg min
X,e,w

∑

i

(

1

2η
‖xi ⊗ h − yi − e‖2 +

1

2θ

(
∥

∥∇v
x xi − wx,i

∥

∥

2

2

+
∥

∥∇v
y xi − wy,i

∥

∥

2

2

)

+ λ
(

|wx,i|
β + |wy,i |

β
)

+ ‖e‖

)

, (14)
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where F the auxiliary variable w at each pixel that allow us to move the ▽
v
xxi and ▽

v
yxi

outside the |.|β expression, η and θ are the weight parameters. When θ → 0, the solution of
Eq. (14) converges to that of Eq. (5). To solve Eq. (14), Alternating Minimization method
is introduced, where solve X e w independently, fixed e w to solve X. The initial value e

and w both are zeros, the initial value of X is the observed image intensity.
There are two step to compute unknown variables in each iteration. In first step, com-

pute X given estimated value e and w from previous iteration by minimizing

X̂ = arg min
X

‖X ⊗ h − Y − E‖2 +
η

θ

∥

∥∇vX − w
∥

∥

2

2
. (15)

Equation (15) is a quadratic and according to Parseval’s theorem, the optimal X can
be computed from Eq. (16)

X = F−1

(

F(h)F (Y + e) + η/θ(F (∂v
x )F (wx) + F(∂v

y )F (wy))

F (h)F (h) + η/θ(F∂v
x )F (∂v

x ) + F(∂v
y )F (∂v

y )

)

, (16)

where F(.) and F−1(.) denote the Fourier transform and inverse Fourier transform, re-
spectively and F(.) is the complex conjugate operator.

Secondly, compute E’s and w’s optimization, based on the value of X estimated in first
step. However, they are independent variables so that their optimization are independent
too. For e, objective function is minimized

ê = arg min
e

1

2

∥

∥e − (X ⊗ h − Y)
∥

∥

2
+ η‖e‖. (17)

Then the value e is gotten as

e = sign(X ⊗ h − Y)max
(
∥

∥e − (X ⊗ h − Y)
∥

∥ − η,0
)

. (18)

The value w can be computed by minimizing objective function in Eq. (19)

ŵ = arg min
w

1

2

∥

∥w − ∂vX
∥

∥

2

2
+ θλ‖w‖β . (19)

For β = 2, the solution of w is quadratic problem and β = 1, the value of w can be derived
according to the shrinkage formula. And in Wright et al. (2009) the special cases of 1 <

β < 2 are analyzed and (Krishnan and Fergus, 2009) address the case 0 < β < 1. Their
excellent algorithms and open source code are applied in our algorithm. Empirically set
η0 = 1, θ0 = λ−1 and ηthreshold = θthreshold = 1e − 2. Figure 4(a) shows tested blurry
photos. Figure 4(b) proves that our algorithm can restore latent image successfully. More
experiments compared to other state-of-the-art image deconvolution will be showed in
next section.
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(a) (b)

Fig. 4. Image deconvolution: (a) blurred image; (b) restore image using our algorithm.

(a) (b) (c)

(d)

Fig. 5. Testing our algorithm with real-life motion blurry images: (a) blurry image; (b) restored image by using
the algorithm in Krishnan et al. (2011); (c) restored image by our algorithm; (d) details comparison on image
window, left: details in (a), middle: details in (b) and right: details in (c).

5. More Experiments

In this section the proposed blind deconvolution algorithms is tested with real-life blurry
image. The tested images are provided in the online image database in Xu and Jia (2010).
As before, we use algorithm to estimate kernel.

We compare the result with the method described in Krishnan et al. (2011). In
Figs. 5(a) and 6(a) shows the burry image caused by camera shake. Figures 5(b) and 6(b)
show that Krishnan et al. (2011) reconstruct latent image with sharp edge and smooth
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(a) (b) (c)

(d)

Fig. 6. Testing our algorithm with real-life motion blurry images: (a) blurry image; (b) restored image by using
the algorithm in Krishnan et al. (2011); (c) restored image by our algorithm; (d) details comparison on image
window, left: details in (a), middle: details in (b) and right: details in (c).

region and without textural details in smooth region. Our result in Figs. 5(c) and 6(c) not
only preserves sharp edge and smooth regions, but keep the textural features in the smooth
area, so that the visual quality is improved. There are comparison in details in Figs. 5(d)
and 6(d) the textural features in the smooth image.

In our experiments, the fractional-order v = 0.3 in Fig. 5, v = 0.4 in Fig. 6.

6. Conclusion

In this paper, we discuss the reason why algorithms using natural image gradient fail
to reconstruct image textural details by analyzing 1D signal restoration and exploit the
fractional-order gradient to deal with image texture. We show that the fractional-order
gradient image prior can restore piece-wise smooth regions without over-smoothing tex-
tured regions, improving the visual quality of reconstructed images as verified by our
experiments. However, in fact, different textures have different fractional-order gradient
statistics even with an image, so our further work is to extend the current research by
adapting to textural characteristics.
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Judesio vaizdo atkūrimas taikant originalaus vaizdo trupmeninės eilės
gradientą

Ying FU, Xi WU, Xiaohua LI, Kun HE, Yi ZHANG, Jiliu ZHOU

Pradinės informacijos apie originalų vaizdą pasirinkimas, lemia atkurto vaizdo kokybę. Naujausi
vaizdų apdorojimo algoritmai latentinio vaizdo su daliniais tolydžiais regionais atkūrimui, kaip pra-
dinę informaciją apie vaizdo originalą, naudoja gradientų paskirstymo funkciją su „sunkia uodega“
(angl. heavy-tailed). Tačiau, tokia pirminė informacija panaikina vaizde vidutinio dažnio kompo-
nentes, tokias kaip tekstūros detales, nors išsaugo aštrius jos kraštus.

Siekiant atkurti tekstūros detales latentiniame vaizde kaip pradinę informaciją apie vaizdo ori-
ginalą siūloma taikyti trupmeninės eilės gradientą, kuris yra labiau tinkamas vaizdo tekstūroms
charakteristikoms aprašyti. Eksperimentiniai tyrimai parodė, kad atkurtame vaizde tekstūrų detalės
matomos aiškiau, pagerėja vizualinė kokybė.


