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Abstract. In current paper a problem of classification of T-distributed random field observation
into one of two populations specified by common scaling function is considered. The ML and LS
estimators of the mean parameters are plugged into the linear discriminant function. The closed form
expressions for the Bayes error rate and the actual error rate associated with the aforementioned
discriminant functions are derived. This is the extension of one for the Gaussian case. The actual
error rates are used to evaluate and compare the performance of the plug-in discriminant function
by means of Monte Carlo study.
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1. Introduction

Discriminant analysis (DA) (sometimes called supervised classification) traditionally as-
sumes that observations to be classified are normally distributed, independent and, most
often, identically distributed. Due to their mathematical tractability, Gaussian models have
received the majority of the attention within the statistical modeling literature. However,
according to numerous authors, not all data behave as a realization of a Gaussian distri-
bution (see Roislien and Omre, 2011; Batsidis and Zografos, 2011). A well-known insuf-
ficiency of the normal distributions are their light tails. To tackle insufficiencies of the
normal distributions, there has been an intense research in the use of non-normal distribu-
tions and there are several other parametric classes of multivariate distributions to choose
from. The class of elliptically (spherically) contoured distributions is a particularly ap-
pealing family of multivariate symmetric distributions with simple density functions and
possesses properties that provide a useful competitor of the multivariate normal model.
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This family of multivariate distributions, includes as the particular cases, the multivari-
ate normal, multivariate T distribution, Pearson type II and VII, multivariate symmetric
Kotz type distribution, scale mixtures of normal, etc. The multivariate T-distribution are
suitable models to formulate and describe the random phenomenon involving high prob-
ability in the tails. To this respect T-distribution is a particularly useful model in, for in-
stance, economics and actuarial sciences and many other disciplines (Sutradhar and Ali,
1986). Another motivation for considering of the multivariate T-distribution is its widely
recognized capability to handle outliers more readily than multivariate Gaussian distribu-
tion. In observing spatial phenomena it is sometimes found that the T-distributed random
field model is particularly useful whenever multiple, sparsely sampled realizations of the
random field are available. The known estimation, discrimination and simulation methods
for independent observations from multivariate T-distributions are reviewed by Nadarajah
and Kotz (2008). Andrews et al. (2011) proposed classification technique of independent
(or uncorrelated) observations based on mixtures of multivariate T-distributions. How-
ever, in practical situations with spatially distributed data the observations often are not
independent. Data that are close together in space are likely to be correlated. Thus, is
very important to include spatial dependencies in the prediction and classification prob-
lem. Kim and Mallick (2003) considered spatial prediction problems using the elliptical
distribution. Batsidis and Zografos (2011) derived the asymptotic approximation of the
distribution function for the probabilities of misclassification of elliptic random field ob-
servations. However their approach leads to the expression containing implicit function
and they did not explore approximations and estimators of the expected error rate. We
extend their work by considering empirical estimator of the expected error rate (ERR).

The current paper is concerned with Bayes rule (BR) that is an optimal classification
rule in the sense of minimum overall misclassification probability in the case of com-
pletely specified populations. However, the complete statistical certainty of populations
is usually not possible. Training sample is required for the estimation of the probabilistic
characteristics of both populations. These estimators are plugged into the BR.

Many authors have investigated the performance of the plug-in version of the BR when
the parameters are estimated from the training samples with independent observations,
or training samples where observations are temporally dependent (see Okamoto, 1963;
Lawoko and McLachlan, 1985; Shutoh, 2012). McLachlan (2004) have given a good re-
view of the work done in this field. Switzer (1980) was the first to treat classification of
spatial data, a work that was extended by Mardia (1984). However, neither of these au-
thors analyzed the error rate of classification. Šaltytė and Dučinskas (2002) derived an
asymptotic expansion of the expected error rate when classifying the observation of the
univariate Gaussian random field into one of two classes with different regression mean
models and common variance. This result was extended to multivariate spatial-temporal
regression model in Šaltytė-Benth and Dučinskas (2005).

The first extensions to the case when spatial correlations between Gaussian observa-
tions to be classified and observations in training sample are not assumed equal to zero is
done in Dučinskas (2009) and Dučinskas and Stabingienė (2011). Dučinskas et al. (2015)
also proposed a classification procedure for spatially correlated Gaussian observations for
a case of more than two classes.
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In the current paper a problem of classification of T-distributed random field obser-
vations into one of two populations specified by different parametric linear mean models
and common known stationary dependence function is considered. The formula for Bayes
error rate is derived. The maximum likelihood (ML) and ordinary least squares (OLS) es-
timators of the mean parameters obtained from training sample are plugged in the Bayes
discriminant function corresponding to the BR. The closed form expressions of the actual
error rates associated with the aforementioned plug-in linear discriminant functions are
derived. These expressions are used in constructing the empirical estimator of the expected
error rate by means of Monte Carlo simulations. This estimator is used for the evaluation
and comparison of performances of the proposed classification procedures. This is the
extension of the results previously obtained for the Gaussian case.

The outline of paper is as follows. In Section 2 the main concepts concerning multi-
variate T-distribution and T-distributed random field are presented. The exact formulas for
the Bayes error rate and actual error rate are derived in Section 3. MC study of obtained
analytical results and conclusions are presented in Section 4. Bulk density of the log ob-
servations from the wells in Gullfaks field in the North are modeled by a T-random field
(see Roislien and Omre, 2011). These observations need to be classified to the different
layer sections. This is an example of the real situation where obtained theoretical results
could be effectively applied.

2. The Main Concepts and Definitions

The main objective of this paper is to classify the observations of T-distributed random
field (TRF), that is a random field defined by the multivariate T-distribution.

Definition 1. A random vector Z ∈ Rn is multivariate T-distributed, denoted by
Z ∼ Tn(µ,�,m), with a mean vector µ ∈ Rn, a positive definite n × n scal-
ing matrix � and degrees of freedom m > 0 if its probability density function

is f (z) = Ŵ((m + n)/2)|�|−1/2[1 + (z − µ)′�−1(z − µ)/m]−(m+n)
2 /

(
Ŵ(m/2)(mπ)n/2)

where Ŵ(•) is the gamma function.

This definition specifies a spherical-symmetric pdf centered at µ with � controlling
scale and multivariate dependence,while m controls the tail behavior (Mardia et al., 1979).

The moments of the multivariate T-distributed random vector are summarized below:
E(Z) = µ, m> 2; cov(Z) = 6 = m�/(m − 2), m> 3; while for m less than the specified
values the moments are infinite. Next we define random field associated to the multivariate
T-distribution (cf. Roislien and Omre, 2011).

Definition 2. A random field {Z(s) : s ∈ D ⊂ Rp} is termed a T-distributed random field
(TRF) if Z = [Z(s1), . . . ,Z(sn)]′ ∼ Tn(µ,�,m) for all n ∈ N+ and all configurations
(s1, . . . , sn) ∈ Dn.



560 K. Dučinskas, E. Zikarienė

Suppose that the model of observation Z(s) in the population 5l is

Z(s) = x ′(s)βl + ε(s), (1)

where x(s) is a q × 1 vector of non random regressors and βl is a q × 1 vector of param-
eters, l = 1,2. The error term is generated by zero-mean stationary TRF {ε(s) : s ∈ D}
with covariance function defined by model for all s, u ∈ D

cov
{
ε(s), ε(u)

}
= r(s − u)σ 2 = mω(s − u)/(m − 2), (2)

where r(s − u) is a spatial correlation function, σ 2 is a variance, ω(s − u) is a scaling
function, and m ∈ R+ is degrees of freedom. So � is the n × n matrix with (i, j), element
specified by ω(si − sj ), i, j = 1, . . . , n.

Denote by Sn = {si ∈ D; i = 1, . . . , n} the set of locations (STL) where training sam-
ple Z′ = [Z(s1), . . . ,Z(sn)] is taken. It specifies the spatial sampling design or spatial
framework for training sample (Shekhar et al., 2002).

Assume that each training sample realization Z = z and Sn are arranged in the follow-
ing way. The first n1 components are the observations of Z(s) from 51 and remaining
n2 = n − n1 components are the observations of Z(s) from 52. So Sn is partitioned into
a union of two disjoint subsets, i. e. Sn = S(1) ∪ S(2), where S(j) is the subset of Sn that
contains nj locations of the feature observations from 5j , j = 1,2. We shall assume that
the deterministic spatial sampling design and all analyses are carried out conditional on
the given STL.

Joint training sample Z is specified by Z′ = (Z′
1,Z

′
2), where training sample Zl is the

nl × 1vector of nl observations of Z(s) from 5l , l = 1,2. Then Z is the n × 1 vector
specified by the model

Z = Xβ + E, (3)

where X is the n × 2q design matrix, β ′ = (β ′
1, β

′
2) and E is the n × 1 vector of the random

errors that has the multivariate T-distribution Tn(0,�,m).
The design matrix X in Eq. (3) is specified by X = X1 ⊕ X2 where the symbol ⊕

denotes the direct sum of matrices and Xl is the nl × q matrix of regressors for Zl , l = 1,2.
Consider the problem of classification of the single observation of TRF at the location

s0 denoted by Z0 into one of two populations specified above with the given training
sample Z.

Denote by r0 the vector of spatial correlations between Z0 and Z and let R = 6/σ2 =
m�/(σ2(m − 2)) denote a matrix of spatial correlation of Z. The conditional distribution
of Z0 given Z = z in population 5l is T1(µlz,ω0z,m + n) (see Roislien and Omre, 2011)
with the mean function which is linear in the training sample observations:

µ0
lz = E(Z0|Z = z;5l) = x ′

0βl + α′(z − Xβ), l = 1,2 (4)

and the scaling parameter

ω0z = (m + n − 2)Var(Z0|Z = z;5l)/(m + n) = σ 2ρ0ξ(z)(m − 2)/m,
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where α = R−1r0, ρ0 = 1 − r ′
0α and

ξ(Z) =
[
1 + (z − Xβ)′�−1(z − Xβ)

/
m

]/
(1 + n/m).

3. Error Rates of Classification

Under the assumption that the populations are completely specified and for the known
prior probabilities of the populations π1 and π2 (π1 +π2 = 1), the BR is based on the log
ratio of the conditional densities described above.

Set µ0
l = x ′

0βl , l = 1,2 and assume π1 = 0,5 under insignificant loss of generality.
Then the BR is associated with the linear discriminant function (LDF)

Lz(Z0) =
(

Z0 − 1

2

(
µ0

1z + µ0
2z

)
− α′(z − Xβ)

)(
µ0

1z − µ0
2z

)
. (5)

Put Sn(•) and tn(•) as cdf and pdf of T1(0,1, n) and let 1µ0 = µ0
1 − µ0

2 > 0 and
10 = 1µ0/(σ

√
ρ0 ).

Lemma 1. The probability of misclassification based on LDF is

PB(z) = Sm+n

(
− (10/2)

√(
m

/(
(m − 2)ξ(z)

)) )
. (6)

Proof. The probability of misclassification for Lz(Z0) is defined as PB(z) =
∑2

l=1πlP0l ,
where, for l = 1,2, P0l = P0z((−1)lLz(Z0) > 0|5l) is the conditional probability that
Lz(Z0) specified in Eq. (5) misclassifies Z0, when it comes from �l .

It is obvious that (Lz(Z0)|5l) ∼ T1(El,ωL,m + n), where

El = E
(
Lz(Z0)

∣∣5l

)
= (−1)l+1

(
1µ0

)2
/2,

ωL = (m + n − 2)Var(Lz(Z0)|5l)/(m + n) = σ2(1µ0)
2
ξ(z)ρ0(m − 2)/m.

From the properties of the multivariate T-distribution it follows that

(
Lz(Z0) − El

)/√
ωL ∼ T1(0,1,m + n)

in population 5l , l = 1,2. Therefore we easily complete the proof of lemma. �

Derived probability of misclassification is usually called the Bayes error rate.
In practical applications not all statistical parameters of populations are known. Then

the estimators of unknown parameters can be found from the joint training sample. When
the estimators of unknown parameters are plugged into the LDF specified in Eq. (6), the
plug-in LDF (PLDF) is obtained. In this paper we assume that the true values of the pa-
rameters β are unknown. Let β̂ be an estimator of β based on Z.
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Then the PLDF is obtained from the LDF by replacing β with β̂ in Eq. (5)

Lz(Z0; β̂) =
(

Z0 − α′(z − Xβ̂) − 1

2
x ′

0Hβ̂

)(
x ′

0Gβ̂
)
, (7)

with H = (Iq , Iq ) and G = (Iq ,−Iq), where Iq denotes the identity matrix of order q .
Performance of the plug-in discriminant functions is usually evaluated by an actual error
rate (AER) (Le Roux et al., 1997).

Put b = α′X − x ′
0H/2, al = x ′

0βl − α′Xβ, l = 1,2.

Lemma 2. The actual error rate for PLDF specified in Eq. (7) is

Pz(β̂) =
2∑

l=1

Sm+n(Q̂l)/2, (8)

where Q̂l = (−1)l
(al+bβ̂)sgn(x ′

0Gβ̂)

σ
√

ρ0ξ(z)

√
(m + n)/(m + n − 2).

Proof. AER for PLDF Lz(Z0; β̂) is defined as Pz(β̂) =
∑2

l=1 πlP̂0l where, for l = 1,2,
P̂0l = P0z((−1)lLz(Z0; β̂) > 0

∣∣5l) is the conditional probability that Lz(Z0; β̂) misclas-
sifies Z0 when it comes from �l (conditional probability is based on conditional distri-
bution of Z0 with mean µ0

lz Eq. (4) and variance σ 2
0z).

It is obvious that (Lz(Z0; β̂
∣∣5l)) ∼ T1(Êl, ω̂L,m + n), where

Êl = E
(
Lz(Z0; β̂)

∣∣5l

)
= (al + bβ̂)

(
1µ̂0

)
,

ω̂L = (m + n − 2)Var(Lz(Z0; β̂)|5l)/(m + n) = σ 2(1µ̂0)2ξ(z)ρ0(m − 2)/m.
From the properties of the multivariate T-distribution it follows that

(
Lz(Z0; β̂) − Êl

)/√
ω̂L ∼ T1(0,1,m + n)

in the population 5l , l = 1,2. Therefore we easily complete the proof of lemma. �

Definition 3. The expected error rate is obtained by averaging the actual error rate with
respect to the distribution of the training sample and is defined as EER = Ez(Pz(β̂)).

The actual error rate is useful in providing a guide to the performance of the plug-in
classification rule when it is actually formed from training sample. It depends on observed
values of training observations as well as their locations. The EER is the performance
measure of PLDF before a training sample is observed and it depends on the set of training
locations and the location of the observation to be classified s0. It plays a similar role as
the mean squared prediction error (MSPE) plays in the evaluating the performance of
the plug-in kriging predictor (Diggle et al., 2002). MSPE and its estimators are used for
the spatial sampling design criterion for prediction (Zhu and Zhang, 2006; Zimmerman,
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2006). These facts strengthen the motivation for the deriving of the estimators of the EER
associated with the PLDF.

In this paper we propose the empirical estimator of the EER obtained by the rule based
on the proposed PLDF. Maximum likelihood (ML) and ordinary least squares (LS) esti-
mators of β are denoted by β̂ML and β̂LS respectively. Properties of ML estimators for
parameters of stationary GRF are explored by numerous authors (see e.g. Mardia and
Marshall, 1984; Sakalauskas, 2013). The following steps are performed to construct this
empirical estimator of EER:

1. Simulate M training sample Z realizations according to the model specified in
Eqs. (1)–(3).

2. For each simulated realization of Z = z(l), l = 1,M compute the appropriate esti-
mates of parameter β and denote them by β̂κ

(l), where κ denotes the abbreviation of
the estimator type, i.e. it takes the values ML or LS.

3. By using the derived formula for AER equation (8) compute the empirical estimator
of the EER

ÊRκ =
M∑

l=1

Pz

(
β̂κ

(l)

)
/M. (9)

Denote by ÊRML and ÊRLS the empirical estimators of the EER given in Eq. (9) with the
implemented ML and LS parameter estimators, respectively.

Set P B =
∑M

l=1 PB(z(l))/M .
In the paper we consider the maximum likelihood and the ordinary least squares esti-

mators and denote them by β̂ML and β̂LS , respectively.
It is easy to show (see Sutradhar and Ali, 1986), that the ML estimator of β from the

training sample Z is given by β̂ML = (X′R−1X)
−1

X′R−1Z.
From the properties of the multivariate T-distribution it follows that

β̂ML∼T2q

(
β,σ 2RML(m − 2)/m,m

)

and

β̂LS =
(
X′X

)−1
X′Z ∼ T2q

(
β,σ 2RLS(m − 2)/m,m

)
,

where RML = (X′R−1X)
−1

and RLS = (X′X)
−1

X′RX(X′X)−1 .

4. Example and Discussions

To investigate the influence of the parameter estimation methods to the proposed empirical
estimators of the EER in the finite (even small) training sample case a numerical example
is considered.
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Fig. 1. S8, S24 with S(1) and S(2) points marked as asterisks and dots.

In this example, the observations are assumed to arise from the stationary TRF with
a constant mean in each population and a covariance function given by C(h) = σ 2r(h),
where σ 2 is a known variance (sill) and r(h) is the spatial correlation function specified
by r(h) = exp{−h/ϕ} is considered. Here h is the distance between the locations, and
denotes the range parameter (see Cressie, 1993).

Assume that D is a regular two-dimensional lattice with unit spacing. Consider the
case s0 = (1,1) and two fixed STL for S8 and S24 respectively specified by

S8 =
{
S(1) =

{
(0,0), (0,1), (0,2), (1,2)

}
S(2) =

{
(2,2), (2,1), (2,0), (1,0)

}}

and

S24 =
{
S(1) =

{
(0,0), (0,1), (0,2), (1,2), (1,−1), (0,−1), (−1,−1), (−1,0),

(−1,1), (−1,2), (−1,3), (0,3)
}
,

S(2) =
{
(2,2), (2,1), (2,0), (1,0), (1,3), (2,3), (3,3), (3,2),

(3,1), (3,0), (3,−1), (2,−1)
}}

STL distributions are shown in Fig. 1.
The values of empirical estimators of EER calculated by Eq. (9) with M = 1000 for

S8 and S24 for various 1 and ϕ are presented in Table 1.
Analyzing the figures in Table 1 we see that both estimators of the EER monotonically

decreases when 1 and ϕ decreases. For all cases ÊRLS > ÊRML for S8 and S24. For all
cases both ÊRLS and ÊRML are larger than PB .

So from Table 1 we can conclude that the ML case have an advantage against the LS
case by the sense of minimal value of the empirical estimator of the EER. The visual
comparison of these two cases of parameter estimators is also done by plotting the values
of index η = ÊRML/ÊRLS . The dependence of values of this index on the parameter ϕ is
shown for 1 = 0.5; 1.5 (Fig. 2).
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Table 1
Values of PB , ÊRML , ÊRLS for S8 and S24, for various 1 and ϕ.

ϕ/1 Error
type

0.5 0.7 0.9 1.1 1.3 1.5

S8 S24 S8 S24 S8 S24 S8 S24 S8 S24 S8 S24

0.1 PB 0.3467 0.3467 0.2931 0.2930 0.2457 0.2456 0.2049 0.2048 0.1705 0.1704 0.1418 0.1417

ÊRML 0.3539 0.3501 0.3025 0.2971 0.2565 0.2501 0.2164 0.2095 0.1820 0.1750 0.1530 0.1461

ÊRLS 0.3539 0.3501 0.3025 0.2971 0.2565 0.2501 0.2164 0.2095 0.1820 0.1750 0.1530 0.1461

0.5 PB 0.3421 0.3426 0.2872 0.2879 0.2391 0.2399 0.1980 0.1989 0.1636 0.1645 0.1351 0.1360

ÊRML 0.3508 0.3470 0.2985 0.2932 0.2520 0.2457 0.2115 0.2048 0.1770 0.1702 0.1480 0.1414

ÊRLS 0.3510 0.3472 0.2988 0.2935 0.2523 0.2460 0.2118 0.2051 0.1773 0.1705 0.1483 0.1417

0.9 PB 0.3213 0.3210 0.2617 0.2615 0.2114 0.2111 0.1700 0.1698 0.1366 0.1366 0.1101 0.1101

ÊRML 0.3327 0.3276 0.2762 0.2694 0.2273 0.2196 0.1862 0.1782 0.1522 0.1444 0.1246 0.1173

ÊRLS 0.3338 0.3298 0.2775 0.2719 0.2288 0.2223 0.1876 0.1809 0.1536 0.1470 0.1259 0.1197

1.3 PB 0.2989 0.2992 0.2353 0.2357 0.1837 0.1842 0.1432 0.1436 0.1119 0.1124 0.0880 0.0885

ÊRML 0.3139 0.3093 0.2535 0.2473 0.2030 0.1960 0.1619 0.1549 0.1292 0.1226 0.1035 0.0975

ÊRLS 0.3167 0.3160 0.2567 0.2546 0.2063 0.2034 0.1652 0.1619 0.1324 0.1290 0.1064 0.1032

1.7 PB 0.2789 0.2792 0.2127 0.2130 0.1612 0.1614 0.1223 0.1224 0.0935 0.0934 0.0722 0.0720

ÊRML 0.2983 0.2915 0.2348 0.2265 0.1833 0.1747 0.1429 0.1347 0.1118 0.1043 0.0880 0.0814

ÊRLS 0.3032 0.3000 0.2401 0.2362 0.1886 0.1845 0.1479 0.1439 0.1162 0.1125 0.0918 0.0885

2.1 PB 0.2592 0.2598 0.1910 0.1916 0.1400 0.1407 0.1032 0.1037 0.0768 0.0773 0.0580 0.0584

ÊRML 0.2822 0.2719 0.2161 0.2047 0.1643 0.1531 0.1249 0.1147 0.0955 0.0866 0.0737 0.0662

ÊRLS 0.2878 0.2831 0.2223 0.2174 0.1704 0.1657 0.1305 0.1263 0.1005 0.0968 0.0780 0.0749

2.5 PB 0.2447 0.2456 0.1759 0.1770 0.1261 0.1273 0.0911 0.0923 0.0668 0.0679 0.0498 0.0508

ÊRML 0.2670 0.2585 0.2001 0.1903 0.1490 0.1396 0.1113 0.1029 0.0837 0.0767 0.0637 0.0579

ÊRLS 0.2724 0.2740 0.2061 0.2069 0.1550 0.1553 0.1167 0.1168 0.0884 0.0884 0.0677 0.0676

2.9 PB 0.2311 0.2280 0.1621 0.1588 0.1137 0.1106 0.0808 0.0780 0.0584 0.0560 0.0431 0.0411

ÊRML 0.2549 0.2382 0.1867 0.1697 0.1362 0.1207 0.0999 0.0866 0.0742 0.0630 0.0560 0.0467

ÊRLS 0.2619 0.2566 0.1944 0.1885 0.1436 0.1376 0.1065 0.1008 0.0798 0.0745 0.0606 0.0558

3.3 PB 0.2188 0.2169 0.1499 0.1482 0.1032 0.1017 0.0722 0.0709 0.0516 0.0506 0.0377 0.0369

ÊRML 0.2460 0.2315 0.1771 0.1623 0.1273 0.1139 0.0923 0.0809 0.0679 0.0584 0.0508 0.0430

ÊRLS 0.2536 0.2478 0.1850 0.1800 0.1345 0.1304 0.0984 0.0951 0.0728 0.0703 0.0547 0.0527

It is easy to see (Fig. 2) that η 6 1 and the values of this index decreases when ϕ

increases. The same situation is valid for all levels of the population separation specified
by the values of 1.

5. Conclusions

In this paper, the closed form expression for the Bayes error rate equation (6) and the actual
error rate equation (8) in classification of TRF observationbased on the linear discriminant
function and the plug-in linear discriminant function are derived. Based on these formulas,
the comparison of the two PLDF based ML and LS estimators of the mean parameters
is done by the simulated values of the empirical estimators of the EER. The simulation
experiment shows that the advantage of the PLDF based on the ML estimator against
the one based on the LS estimator. This advantage is greater for the cases with stronger
spatial dependence between observations (i. e. larger values of ϕ). This conclusion is valid
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Fig. 2. Values of η for 1 = 0,5;1,5.

to different levels of separation between populations. Hence the results of this paper give
us strong arguments to conclude that often untractable ML estimators of spatial mean
parameters should be used in highly correlated spatial data modeled by TRF, and these
estimators could be replaced by the simpler LS estimators for weakly correlated spatial
data without significant loss of the PLDF performance.
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Tikrosios T-atsitiktinio lauko stebinių klasifikavimo klaidų tikimybės
panaudojant iterptąją tiesinę diskriminantinę funkciją

Kęstutis DUČINSKAS, Eglė ZIKARIENĖ

Šiame straipsnyje nagrinėjamas T-atsitiktinio lauko stebinių klasifikavimo į dvi populiacijas, besi-
skiriančias vidurkio funkcijomis, uždavinys. Klasifikavimo procedūra pagrįsta įterptąja tiesine dis-
kriminantine funkcija, naudojančia vidurkių parametrų maksimalaus tikėtinumo ir mažiausių kvad-
ratų įvertinius. Išvedamos orginalios Bajeso klaidos tikimybės ir tikrosios klasifikavimo klaidos
tikimybės formulės. Pastarosios panaudojamos skaitiniame siūlomų klasifikavimo procedūrų efek-
tyvumo vertinime ir palyginime.


