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Abstract. A secure and high-quality operation of power grids requires frequency to be managed to
keep it stable around a reference value. The deviation of the frequency from this reference value
is caused by the imbalance between the active power produced and consumed. In the Smart Grid
paradigm, the balance can be achieved by adjusting the demand to the production constraints, instead
of the other way round. In this paper, an swarm intelligence-based approach for frequency manage-
ment is proposed. It is grounded on the idea that a swarm is composed of decentralised individual
agents (particles) and that each of them interacts with other ones via a shared environment. Three
swarm intelligence-based policies ensure a decentralised frequency management in the smart power
grid, where agents of swarm are making decisions and acting on the demand side. Policies differ
in behaviour function of agents. Finally, these policies are evaluated and compared using indicators
that point out their advantages.

Key words: swarm intelligence, multi-agent system, behaviour function, energy system, demand
side management, smart grid, resilience, frequency management.

1. Introduction

Achieving stability and improving resilience are important concerns in power grids which
mainly involve frequency control. The grid frequency in the European Continental Grid
has a nominal value of 50 Hz and is related to the speed of rotation of production genera-
tors. Imbalances between electricity production and consumption lead to deviations from
this nominal value.

Any significant deviations from this nominal value must be controlled. Traditionally,
these deviations have been controlled by dispatching production units according to the
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consumption of electricity. This means that consumption has to be predicted in order to
manage production. However, information technologies (IT) are enabling new ways of
managing these imbalances by shedding loads depending on grid conditions. This abil-
ity makes it possible to balance the grid on the demand side and, in addition, to act on
the production side. This is known as Demand Side Management, a core concept of the
Smart Grids1,2 (Wang et al., 2012). The control of the demand side provides flexibility to
integrate renewable energy sources (Moura and deAlmeida, 2011), distributed generation
and storage.

In the previous grid management paradigm, few production units were necessary to
control the grid. Under a new paradigm, every load could be considered as a control-
lable unit. Therefore, many units may be participating in controlling the frequency, as it
is made with electric vehicles in Zhong et al. (2014). Furthermore, it is more than just the
number of units that have to be taken into account, it is also the structure of the control
system. Traditionally, production units were controlled by a central operator, responsible
for scheduling production units according to the consumption. In Smart Grids, since many
units can make local decisions, a decentralised control system should be watching over the
system stability.

From the point of view of artificial intelligence, these units can be considered as agents.
These agents are able to perceive the environmental conditions and make local decisions
that contribute to a global objective, in this case, grid stability. Agents can act following
simple rules to decide whether to decrease or increase electricity consumption.

In this paper, several policies based on swarm intelligence for management grid fre-
quency are presented. These policies are implemented as agent swarms where each agent
acts depending on its perception of the environment. The behaviour that emerges from
these local behaviours should improve the global objective. These policies are also eval-
uated using indicators that point out their advantages.

The remainder of this paper is organised as follows. First, the swarm intelligence and
resilience engineering constructs are reviewed. Then, design of behaviour of swarm agents
for frequency management is proposed and evaluated. Finally, conclusions are discussed.

2. Swarm Intelligence

Artificial intelligence methods are under wide development in various directions. These
developments cover artificial neural networks (Haykin, 2009; Schmidhuber, 2011; Dze-
myda et al., 2007, 2013; Medvedev et al., 2011; Ivanikovaset al., 2011), evolutionary com-
putation (Simon, 2013; Eiben and Smith, 2003; Filatovas et al., 2015; Vaira and Kurasova,
2013, 2014), fuzzy set theory (Ross, 2010), artificial immune systems (Al-Enezi et al.,
2010), etc. Some taxonomy of nature inspired artificial intelligence is given in Goel et al.

(2012). One of widely used nature inspired artificial intelligence techniques is swarm in-
telligence. As noted in Zhang et al. (2013), the areas of application of swarm intelligence

1http://www.smartgrids.eu.
2http://energy.gov/oe/services/technology-development/smart-grid.
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are library materials acquisition, communications,medical dataset classification, dynamic
control, heating system planning, moving objects tracking, and prediction. Thus, swarm
intelligence can be applied to a variety of fields in fundamental research, engineering,
industries, and social sciences.

The concept of Swarm Intelligence (SI) was introduced in Beni and Wang (1993). It is
the emergent collective intelligence of groups of simple agents (or particles) acting almost
independently. The originators were interested in how robots programmed with simplis-
tic behaviours may output intelligence as the result of the emergence coming from their
collective behaviour. Systems of non-intelligent robots exhibiting collectively intelligent
behaviour evident in the ability to produce unpredictably specific (i.e. not in a statistical
sense) ordered patterns of matter in the external environment (Beni and Wang, 1993).

Thus, SI systems are composed of autonomous units called agents or particles. These
units behave according to simple rules related to interaction mechanisms between them-
selves or actions on the environment. Applying simple local rules, a global system be-
haviour emerges. However, this emergent behaviour is not predictable. Basically swarm
intelligent systems are unpredictable for their definition of unpredictably (which is thor-
ough) and they produce results that are improbable so are in some way surprising or un-
expected (Beni and Wang, 1993).

Since intelligent behaviour should emerge from collaboration rather than from indi-
vidual abilities, each agent should:

• be designed to be very simple,
• have a limited knowledge of the environment, which they should be able to modify

only locally,
• be designed according to the reactive paradigm (Martino et al., 2006).

SI allows to explore collective (or distributed) problem solving without centralised
control. In SI systems we can observe several properties that are characteristics of living
systems, i.e. insect colonies (Bonabeau and Meyer, 2001): the colony can respond to in-
ternal perturbations and external challenges (flexibility); tasks are completed even if some
individuals fail (robustness); there is no central controller in the colony (decentralisation);
paths to solutions are emergent rather than predefined (self-organisation).

Thus, SI systems are self-organised systems. They require interactions between its
composing agents. Two types of interaction (direct and indirect) exist. Direct interaction
occurs when there is an explicit information exchange between agents. Indirect interaction
occurs when one agent modifies the environment and other responds to the new environ-
ment at a later time. This interaction is called stigmergy. It is one of the most important
theoretical concept of swarm intelligence (Cagigal, 2014; Garnier et al., 2007). Moreover,
the concept of stigmergy is a feature distinguishing SI from other multi-agent systems,
where the agents communicate directly between each other. In the SI paradigm the agents
communicate by modifying a shared environment (Martino et al., 2006).

Resuming the discussion above, the peculiarities of SI system are as follows:

• it is composed of a collective of relatively homogeneous unintelligent agents with
limited individual capabilities,
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• the behaviour of the collective of agents self-organises so that it exhibits an emergent
intelligent behaviour,

• the interactions among the agents are based on simple rules exploiting local infor-
mation that the agents exchange directly or via the environment (stigmergy),

• in case of stigmergy, indirect agent interaction modifies the environment and such a
modification serves as external memory,

• the collective intelligence of the swarm is emergent observable effect that cannot be
defined explicitly.

There are several approaches to represent SI systems. Most of them are inspired by nat-
ural living systems as, for example, ant colonies and bee or bird swarms. The pheromone-
trail following behaviour of ants has inspired Ant Colony Optimisation (ACO) (Dorigo
et al., 1991; Dorigo, 1992; Colorni et al., 1994). Flocking and swarming behaviour has
inspired Particle Swarm Optimisation (PSO) (Ahmed and Glasgow, 2012).

SI has been previously used to control different aspects in Power Grids. In Yoshida et

al. (2000), the control of reactive power and voltage is made using particle swarm optimi-
sation. In Cao (2004), the power grid is balanced through a collection of local interactions
using ant colony optimisation. An ecosystem of intelligent, autonomous and cooperative
ants is presented in Salehi and Deldari (2006). These ants make decisions when the sys-
tem is unbalanced. An improved version of the ant colony optimisation is used in Sim and
Sun (2003). In this version, multiple colonies are used for optimising the performance of
a congested network by routing energy via several alternative paths.

In this research, SI is used to address the problem of grid balance. This problem is
dealt with smart devices that are able to monitor the grid state and act in accordance.
Here agents of swarm act in a decentralised and indirect manner. That is to say, they do
not cooperate directly due to the fact that power grids are not yet providing support for
the communication. Moreover, the agents are not communicated each with other directly,
but each agent affects and changes environment (Power Grid) and the other agents oper-
ate according to the changed environment. As a result, the challenge that is addressed in
this research is the balance of the grid using decentralised agents which make decisions
considering only the state of the grid.

3. Resilience Engineering

Resilience is defined as the capacity of a system to absorb disturbanceand reorganise while
undergoing change so as to still retain essentially the same function, structure, identity, and
feedback (Walker et al., 2004).

In complex systems, resilience may be considered an emergent property (Berkes et al.,
2003). It cannot be predicted simply by examining the system’s individual components.
Since many complex systems are hierarchic, i.e. each subsystem is included in a larger
system (Allen and Starr, 1982), prediction is even more difficult. Phenomena at each level
of the scale tend to have their own emergent properties, and different levels may be coupled
through feedback relationships (Gunderson, 2001).
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Complex systems are stated around one of several possible attractors. When small
changes appear, a system normally tends to be stable and maintain its current state around
one of these attractors (Berkes et al., 2003). At a certain level of change, the system can
flip to a new attractor. Such a flip may occur very rapidly and even catastrophically and
the new attractor is rarely predictable.

The concept of Engineering Resilience (Holling, 1996) focuses on how to achieve re-
sistance to disturbance and increase the speed of return to equilibrium after the system is
disturbed (Pimm et al., 1991). In the case of engineered complex systems, components
must be designed to monitor and evaluate the state of the system. Based on this evalu-
ation, they should make decisions that maintain system-operating conditions within safe
boundaries. Monitoring the system state should lead to local actions to achieve an adaptive
capacity as the system changes.

Resilience is a major design concern for power grids, large electrical systems that pro-
duce, transport, distribute and supply electricity. Stable power grids supply households
with electricity at 220 V and at a frequency of 50 Hz. In order to achieve this, there should
be a steady balance between production and consumption. Power grids should be resilient
to disturbances in order to avoid power outages and improve the service for the public. The
costs of outages include spoiled inventory, delayed production and damage to infrastruc-
ture. Investment in grid modernisation and resilience will mitigate these costs over time
(Amin, 2001).

4. Design of Behaviour of Swarm Agents for Frequency Management

The aim of this research is to design and optimise behaviour of swarm agents for frequency
management. The behaviour is defined by some function. Three different behaviour func-
tions are proposed and discussed in this section. These three functions lead to three au-
tonomous load shedding policies of smart appliances that allow to manage grid frequency
in order to keep it stable around a reference value.

Since the grid frequency can be measured from any power outlet, a smart appliance
connected to the grid could know the current imbalance on the grid. This means that it is
possible to design a smart appliance that can disconnect or reconnect itself to the grid in
order to improve the stability.

Based on the grid frequency measure, individually and locally, each appliance decides
whether to stop consuming or to support the reserve mechanisms of the power grid, and
thus increase the stability of the system. When frequency reaches normal operating mar-
gins, appliances decide to restart working in their normal mode. This mechanism seems
to work well in stabilising the system after major events like the breakdown of a produc-
tion unit (Kremers et al., 2013a, 2013b). A simulation model of a domestic refrigerator
(micro-level) is coupled with a simplified model of an electrical energy system (macro-
level). In the model, Smart refrigerators are present in numerous households as examples
of appliances which are monitoring and controlling the consumption. However, the stud-
ies also detected that, under certain circumstances, increasing the number of controlled
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Fig. 1. Frequency reaction facing a generation unit failure (base case).

refrigerators, non-desired effects like oscillations occurred. The model allows for a first
analysis by quantifying the risk of such an event.

In term of swarm intelligence, a set of the refrigerators composes a swarm, each re-
frigerator is an agent (or particle) of this swarm. By defining behaviour function of the
agents, we describe the possible reaction of refrigerators to changes of frequency, i.e.,
policies that may be autonomously executed in each refrigerator. These policies make
smart refrigerators react according to significant imbalances locally detected through the
frequency.

Since it is a collective behaviour, we expect to have global emergent behaviours as a
result of dealing with the frequency based on these simplistic local policies. The resul-
tant implementation is a swarm intelligence system in which frequency management is
decentralised.

The scenario that is used for developing and evaluating the policies consists of 4000
households with refrigerators. 4000 households is a representative sample that can be
easily simulated. Households have been set with an external temperature adjusted to a
uniform distribution between 20–30◦. 75% of these refrigerators are smart appliances,
that is to say, controllable. This means, 3000 refrigerators will be monitoring the grid
frequency and making decisions on their own consumption.

The goal to find the optimal behaviour function of agents of the swarm is achieved by
simulation that implements a generation unit failure. This failure causes an abrupt drop
in the frequency from 50 Hz making the power grid unstable. This drop is due to the
production fall while consumption remains the same after the failure. In Fig. 1, the effect
of this failure in the frequency is presented. This is the base case in which there are no
refrigerators that could disconnect themselves to adjust the demand. This case may serve
as the reference point in developing the behaviour functions.

However, the hypothesis is that the demand side may help to improve frequency re-
covery. If consumption were able to follow this production fall, frequency could recover
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Fig. 2. Indicators that are used to evaluate policies.

the nominal value at 50 Hz faster. This can be done by using smart refrigerators that are
able to adapt their consumption disconnecting/reconnecting when frequency drops.

In the next subsections, different demand side policies based on different behaviour
functions of agents are presented and experimentally evaluated. The faster they recover
this production fall, the better the policy is.

4.1. Performance Indicators

To evaluate the performanceof behaviour functions of swarm agents, three indicators have
been defined. These indicators are aimed at obtaining a quantitative comparison among
the different behaviour functions. In Fig. 2, indicators named as Ii show which informa-
tion is used to calculated them. TH and TL are thresholds that delimit what we consider
the normal operating values of the frequency. We consider that the system becomes un-
stable whenever the frequency surpasses these thresholds. The next list shows how these
indicators are calculated:

• I1: is the “total instability”. This is calculated as the area of the frequency curve over
or under the thresholds. It is the pattern filled area in Fig. 2.

• I2: is the “instability length”. It is calculated as the average duration of unstable
periods.

• I3: is the “unstable time”. This is the total duration of unstable periods.

4.2. Policy #1

Let f (t) ∈ {0,1} is a behaviour function that describing a changing state of refrigerator
(agent) operation. t is a time moment when the state of agent changes. f (t) = 0 indi-
cates that the refrigerator is switched off, while f (t) = 1 indicates that the refrigerator
is switched on. A function φ(t) measures power frequency in a time moment t . In the
paper, three policies for managing grid frequency are examined. Each policy consists in
monitoring the power grid frequency and reacting according to detected events. One pol-
icy differs from others in rules of disconnection and reconnection of refrigerators, i.e. in
function f (t).
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Fig. 3. Frequency reaction facing the failure using Policy #1 ν = 49 Hz.

The first policy considers an “event” to be whenever the monitored frequency φ(t) is
lower than a threshold ν. If this occurs, the policy switches off the refrigerator stopping
its consumption instantaneously. However, it keeps monitoring in order to reestablish the
refrigerator’s operation as soon as the frequency is higher than ν. This policy is the same
than the one used in Viejo et al. (2013), Kremers et al. (2013b). Here, the behaviour
function f (t) of agents is expressed by Eq. (1).

f (t) =

{

0, if (f (t) = 1 and φ(t) < ν),

1, if (f (t) = 0 and φ(t) > ν).
(1)

In order to test this policy, a simulation was performed in which all controllable re-
frigerators of the previously described scenario were programmed with the policy. In this
simulation ν = 49 Hz. Figure 3 presents the results obtained on the frequency. As it can
be observed there is a first big oscillation followed by smaller ones. It can be considered
that the system reaches stability after 100 minutes. In comparison to the base situation
in which no refrigerator is being disconnected, this policy clearly produces worse results
than not reacting to the event.

4.3. Policy #2

The second policy is based on the same idea, but the way in which it reacts changes, since
the policy keeps monitoring the frequency grid. Whenever the frequency φ(t) is lower
than a threshold ν, it makes a decision. When this event happens, each refrigerator will
wait a variable amount of time ξ1 distributed uniformly. This amount represents the sleep
time before making the decision. Once this time is over, the refrigerator will check the
frequency state and act accordingly. If the frequency is lower, the refrigerator will stop
consuming, if not, it will keep working in its normal operation mode (Eq. (2)). The idea
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Fig. 4. Frequency reaction facing the failure using Policy #2 ν = 49 Hz, ξ1 ∈ [0,10] in light grey, ξ1 ∈ [0,20]

in dark grey, ξ1 ∈ [0,30] in black.

behind this policy is to avoid that every refrigerator reacts at the same time to the frequency
event, as this provokes a higher impact on the power grid (Kremers et al., 2013a).

f (t) =

{

0, if (f (t) = 1 and φ(t) < ν and φ(t − ξ1) < ν)

1, if (f (t) = 0 and φ(t) > ν).
(2)

In order to test this policy, three simulations were performed with ν = 49 Hz, and
different values of ξ1: in the first one, the range is between 0 and 10 seconds (ξ1 ∈ [0,10]);
the second, between 0 and 20 (ξ1 ∈ [0,20]); and the third onwards between 0 and 30
seconds (ξ1 ∈ [0,30]).

In Fig. 4, frequency curves are presented for these three simulations. It can be observed
that the longer the range is, the faster the frequency recovers its normal operation mode.
Furthermore, oscillations are also lighter with longer ranges. This policy is clearly an
improvement on the first one but it is still worse than the base case.

4.4. Policy #3

Following the idea of the second policy, in the third policy a second delay is established.
Thus, this policy uses two different delays: the disconnection delay and the reconnection
delay. In the previous policy, an oscillatory effect can be observed. This effect happens
since all refrigerators are reconnected at the same time (when frequency recovers). This
means that all refrigerators have a synchronised behaviour. Meaning, all of them consume
and stop consuming at the same time. This synchronisation effect takes time to disappear.

Thus, this third policy does not only apply the same delay in the disconnection, but
another different one in the reconnection. As before, when a frequency event is observed
by the refrigerator, it calculates a delay between 0 and a parametrised number ξ1. When
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Fig. 5. Frequency reaction facing the failure using Policy #3 ν = 49 Hz, δ = 0.8 Hz, ξ1 ∈ [0,60] and
ξ2 ∈ [0,900] in light grey, ξ1 ∈ [0,40] and ξ2 ∈ [0,600] in black.

that time is reached, frequency is checked again in order to decide whether it is necessary
to stop consuming or not.

The second delay works in the same way. This is, if refrigerators are disconnected and
the frequency reaches a reconnection threshold ν + δ, a delay is calculated between 0 and
a second parametrised number ξ2 following a uniform distribution. When the delay time
is reached, the frequency is checked again to see if it is still over ν + δ. In the case it is
not, the refrigerator will wait until the frequency reaches that level and the delay will be
recalculated again (Eq. (3)).

In order to test this policy, two simulations were performed with ν = 49 Hz, δ =

0.8 Hz, and different values of ξ1 and ξ2: in the first one ξ1 ∈ [0,60], ξ2 ∈ [0,900]; and in
the second one ξ1 ∈ [0,40], ξ2 ∈ [0,600].

f (t) =

{

0, if (f (t) = 1 and φ(t) < ν and φ(t − ξ1) < ν)

1, if (f (t) = 0 and φ(t) > ν + δ and φ(t − ξ2)> ν + δ).
(3)

In Fig. 5, two different configurations of this policy are presented. As it can be seen,
oscillatory effects have almost disappeared and frequency is stabilised in a short period of
time. The first configuration seems to be better as frequency speeds up to a good level over
the reconnection threshold (ν = 49 Hz, δ = 0.8 Hz). In this way, resilience is improved.

4.5. Evaluation

In this section, previous indicators I1, I2 and I3 are used to evaluate the advantages of the
different behaviour functions of swarm agents and the efficiency of policies. In Fig. 6, the
indicators calculated for each policy are presented with respect to the values obtained for
the base case. The height of the column is a difference between the value of indicator by
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Fig. 7. Comparison between best policy (black) and base case (light grey) in which no refrigerator reacts to the
frequency event.

some policy and the base case. In the cases of Policies #2 and #3, the best configuration
has been considered only. As it can be observed, best results are obtained by Policy #3
with almost no instability and the shortest total instability time.

In Fig. 7, the best solution of the policies presented against the base case is visually
presented. On the one hand, no refrigerator is used improve the resilience (base case).
On the other hand, the third policy uses refrigerators to improve the resilience using the
configuration where ξ1 ∈ [0,40] and ξ2 ∈ [0,600], as parametrisation. It can be observed
that this policy produces more stable results at the beginning of the frequency event. By
means of this third policy, a good operating frequency level is achieved faster than in the
base case.
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5. Conclusions

In this paper, a swarm intelligence-based approach for frequency management has been
proposed. It is grounded on the idea that a swarm is composed of decentralised individual
agents or particles and that each agent interacts with other agents via a shared environment.

A hypothesis of decentralised control for the frequency management in power grids
has been proposed and tested. Many smart devices on the demand side are observing the
grid frequency and individually acting by disconnecting or reconnecting themselves to the
grid.

From the point of view of the system behaviour, this decentralised control was analysed
as a swarm intelligent system. The emergent behaviour that comes out from individual
behaviour should exhibit stability and resilience improvement. The engineering of these
two properties is complex since synchronised effects should be avoided when many agents
coincide in the decisions they make.

Three swarm intelligence-based policies have been proposed seeking to optimise the
decentralised frequency control in smart power grid, where agents of swarm are making
decisions and acting on the demand side. Policies differ in behaviour functions of agents.
Finally, these policies are evaluated and compared using indicators that point out their
efficiency.

The wide experimental investigation shows that small variations in the behaviour of
devices involve meaningful effects in the grid stability and resilience. It has been observed
that properly organised agent behaviour may improve the base case in which there are no
smart devices that help to stabilise the system.

It has been observed that deterministic policies (base case and Policy #1) involve
synchronisation among devices and accumulative effects that cause undesired instabil-
ities. However, policies that implement random disconnection and reconnection times
(Policy #3) may give better results than deterministic ones.

The research results allow to conclude that the optimal solutions of frequency man-
agement in smart power grids may be found by developing new swarm intelligence-based
policies with various modes of collective behaviour of agents.
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Spiečiaus intelektas dažniui valdyti išmaniuosiuose elektros tinkluose

Jose EVORA, Jose Juan HERNANDEZ, Mario HERNANDEZ, Gintautas DZEMYDA,
Olga KURASOVA, Enrique KREMERS

Elektros energijos tinklų saugumas ir jų kokybiškas funkcionavimas reikalauja dažnio valdymo,
siekiant jo reikšmę išlaikyti stabilia – nedaug nutolusia nuo standartinės reikšmės (50 Hz). Daž-
nio nuokrypį nuo šios reikšmės įtakoja disbalansas tarp pagamintos ir sunaudotos energijos. Pagal
išmaniųjų elektros tinklų paradigmą, balansas gali būti pasiektas reguliuojant vartojimą priklau-
somai nuo elektros energijos gamybos galimybių. Šiame straipsnyje pasiūlytas spiečiaus intelektu
pagrįstas metodas dažniui valdyti. Metodas remiasi idėja, kad spiečius yra sudarytas iš decentrali-
zuotų pavienių agentų (dalelių) ir kiekvienas sąveikauja vienas su kitu per bendrą aplinką. Pasiūlytos
trys spiečiaus intelektu pagrįstos strategijos užtikrina decentralizuotą dažnio valdymą išmaniuosiuo-
se elektros tinkluose, kur spiečiaus agentai veikia ir priima sprendimus elektros vartojimo pusėje.
Strategijos viena nuo kitos skiriasi agentų funkcijomis. Pasiūlytos strategijos yra palygintos eksper-
imentiškai.


