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Abstract. A random walk dan be used to model various types of discrete 
random processes. It may be of interest at some point to find the peak of this 
function. A direct method of doing so involves evaluating the function at every 
point and recording the highest value. ltowever, it 'may be desirable to find the 
peak without having, to evalua.te the function at every point. A search technique 
was developed to find the peak of a random walk with a minimal number of 
function evaluations using probabilistic means to guess at where the peak will 
most likely occur gi*n the parameters of a specific function. A computer pro­
gram was written tqimplement the search strategy and a series- of random walk 
functions of varyin~ lengths were generated to test its performance. Data was 
compiled and the rei>ults show that the search is capable of finding the peak with 
a significant reduction in the number of function evaluations needed for a point 
by point search, especially for funct,ions of greater walk l~ngth. 
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1. Introd uction. The essence of engineering is solving prob­
lems. Naturally, engineering strives to find the best solution to 
a prpblem. This process is known as optimization. Optimization 
constitutes a broad and important field of study in all disciplines of 
engineering. In the field of electrical engineering alone widespread 
applications include the design of communication systems (Stuck-' 
man and Laursen, 1987), nonlinear control systems (Stuckman and 
Hill, 1986), electronic circuits (Groch, Vidigal and Director, igg'5), 
a.nd optical filters (McKeown and Nag, 1974). 
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The field of optimization can. beea;tegQrized into problems of 
the continuous type and problems that.84'e discrete. Continuous 
optimization requires that functions be those of continuousvar~­
ables, meaning that the independent variable may take on any real 
valued number 'at any point in time. Thefundions themselves may 
discrete or continuous in nature, but t~e independent variable mll$t 
always be continuous. Several techniques designed to find the peak 
of such functions with a. minimal number of evaluations have been 
developed and refined over the past years as computer technology 
has improved to make implementation of these techniques more 
feasible. One particular set of methods which has been .proven to 
converge upon the peak more quickly than other methods are the 
Bayesian sampling techniques 'Easom, 1990), (Mockus, 1989). The 
Bayesian methods typically utilize conditional probability to con­
duct a search based on known information, in this case evalua.ted 
of the function. 

However, these methods are not designed for functions of dis­
crete variables. Discrete variable functions are those where the 
independent variable is allowed to take on only rational, or more 
commonly, integer numbers. This paper presents the development 
of an algorithm for finding the global peak of a random walk func­
tion. The most direct way to find the peak is to do a point by point 
comparison test, but this method requires that every point along 
the function be evaluated before the peak can be determined. The 
strategy' presented here attempts to minimize the number of p<:>ints 
which must be evaluated by using probabilistic and successive it­
eration to guess at where the peak will most likely occur. This 
work constitutes some of the first steps toward developing an opti­
mization technique for discrete functions by applying Bayesian op­
timization methods to a specific class of discrete functions known as 
the random walk. Discrete optimization can be narrowed down to 
the area of combinatorial optimization whicQ is concerned wit~ the 
study of arrangements of discrete objects from a finite set (Lawler, 
1976). This work may be viewed as an exercise in combinatorial 
optimization because central to the operation of the algorithm in 
determining where to make its next guess is the analysis of all fea-
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sible walks between each of the evaluated points~ This emphasis on 
arrangement will become more apparent in the section devoted to 

. the derivation of the algorithm, Hopefully, the techniques applied 
here can later be expanded to a broader class of discrete variable 
functions until, ultimately, a general application of Bayesian meth­
ods for discr~te function optimization has been formulated. 

The next section discusses the algorith~ by defining a ran­
dom walk, describing the search strategy, defining important equ .... 
tions, and stepping through one example search. The third section 
presents results of an computer implementation of the algorithm 
on several sets of random walk functions of various lengths. The 
fourth and fifth sections p~nt conclusions, and areas of further 
study. 

2. The algorithm 
The random walk function. The: random walk function, 

like the one shown in Fig. 1, is a step function with discrete indepen­
dent and dependent variables. The independent variable typically 
represents time. It is conventional to have the random walk be­
gin at time zero .~nd progress sequentially, although the function's 
origin is allowed/ to be shifted anywhere along the axis if needed. 
The dependent ~ariable represents the height of the function at any 

I 

particular time and may take on any integer value. The function is 
unique in that f6r .each unit of time along the X -axis, the function 
has an equal probability of one-half of instantaneously jumping up 
or down one unit the Y-axis. The function cannot remain at the 
same value for two consecutive time intervals nor can it jump more 
thap a single unit at a time. 

The random walk function is a discrete model for a Brownian 
motion process, which attempts to imitate the random movt!mcnt 
of a particle in a medium caused by the molecular motion of that 
medium. However, the function may best be understood as a model 
for tossing a coin n successive times, where the function jumps up 
onc unit when one side of the coin shows face up .and jumps down 
when the other side appears. The random walk will serve as" the 
basis for the following algorithm and its resttlts. 
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Fig. 1. A random walk function. 

Search strategy. The search strategy for finding the peak of a 
random walk function is based on a probabilistic method of guessing 
where the peak will most likely occur. At each guess location the 
function is evaluated and broken up into two segments about that 
particular point. As more guesses are made, the original function 
is further subdivided into smaller and smaller segments until the 
peak value is determined, based on a zero probability of finding a 
greater maximum. 

Kn?wing only the endpoints of the function and their respec­
tive values, the search begins looking for a function maximum which 
is at least one greater than the current maximum. This will a.rbi­
trarily be called C value. At each interval of time, aT, the prob­
ability of finding the C va.lue is calculated using equations which 
will be deta,iied later. The time with the highest probability of 
containing the C value, and thus a new maximum, is chosen as the 
best place to look. The function is evaluated at this guess location 
and then it is divided into two segments about this point. 

'The procedure is now repeated for each of the two segments. 
In ea.ch of the t.wo segments, the search is looking for the same C 
value, but each segment will yield its own loea.} guess location with 
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a corresponding probability indicative of the likelihood of finding 
a value greater than or equal to the C value. Consequently, for 

. two segments, there are two guess locations and the one with the 
greatest probability of containing the present C value will be chosen 
as the next place to look. Again, the function is evaluated at this 
location and the segment containing the guess location is divided 
into two segments about this point while the other segment remains 
intact and it~ values are undisturbed. 

The original function has been divided into three segments and 
the same procedure is repeated for each of them. Again, each seg­
ment yields a local guess location with an associated probability. 
The guess location having the greatest probability of all three will 
be chosen as the next location to evaluate the function, and the seg­
ment containing this guess location is divided into segments while 
the other segments and their properties remain unchanged. 

The process continues to divide the original function domain 
into increasingly smaller segments until it converges on the peak. If 
at any time, however, the value of the function at a particular guess 
location turns ou; to bea new maximum, the C value is accordingly 
adjusted to one Foore than this new maximum. When this occurs, 
regardless of h~ many segments the function has been divided 
into, all of the Isegment guess locations and their corresponding 
probabilities are. updated and recalculated based upon the new C 
vaiue. Sometimes 'the guess locations change and sometimes they 
do not, but almost always their respective probabilities decrease as 
the C value increases. Eventually, as the search progresses, all of the 
probabilities of finding' the curre~t C value in any of the segments 
decrease to zero. When this happens, the search is terminated be­
cause the peak has been found. Now, all ofthe previously evaluated 
guess locations need only be~'inpared to determine where the peak 
of the function occurs and what its value is. 

H there are any non-zero segment probabilities after segment 
values have been recalculated to account for a new maximum, the 
search continues as before. If the evaluated guess location is' not 
a new maximum, then the C value is not adjusted, no segment 
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values are recalculated, and the search also continues as before. 
The peak of the random walk function cannot be determined until 
all probabilities of finding a function value one greater than the 
present maximum in any of the segments is equal to zero. 

Deri~tion of search equations. To understand the equa­
tion used to calculate the probability of finding the C value at each 
interval of time within a segment, it is necessary to refer ba-::k to 
the definition of a random walk. First it .~ill be postulated that the 
random walk be~ns at the origin of a Cartesian coordinate system. 
Hence time will begin at zero with a function value of zero, 

" RW(O) = 0, (1) 

where RW stands for the random walk .function. Second, the func­
tion at any time t has equal probability of one-half of stepping up 
one unit, designated +d, or stepping down one unit, -d, stated as 
follows 

P{RW(t) = RW(t - 1) + d} = ~, 
" 1 

P{RW(t) = RW(t -1) - d} = 2' 

(2) 

(3) 

In a random" walk to RW(n) = md, depicted in Fig. 2, the 
variable z will represent the number of times the function takes a 
step up, or the number of +ti's. The number of times the function 
takes a $tep down is (n ~ z). The totaJ distance that the function 
has moved vertically off the X -axis in n steps is md, where m is an 
integer number. The vertical displacement of the right endpoint is 
equal to the difference between the number of times the walk takes 
a step up and the number of times the walk takes 8: step down 

m= z- (n-z), 

m=2z-n. 

The variable z can then be expressed as 

n+m 
z=-2-' 

(4) 

(5) 

(6) 



D 

Fig. 2. RW(_) == rrul. 

where the quantity n + m must be even in order to represent a 
valid random walk. The nJmber of possible walks is equal to the 
number of ways z positive steps can occur in n steps. This can be 
represented as a combination of n things tuen z at a. time. The 
number of walks, N, is equal to 

N= (n), '. z (7) 
.. , r 

which denotes th, fo~owing mathematical calculation ·involving the 
factorial operatidn . , . . . 

. (n) n! ~. 
.. z = z!(n-z)r 

Substituting equation (6) intoequati;;'n (7) gives 

N= {( n1:m) 
o . 

, for (n + ~) even 

otherwise. 

(8) 

. (9)' 

This result may be extended to find the probability of RW(n) = 
td ~ven that RW(i) = md where i> n, depicted in Fig. 3. 

P{R~(n) = tdIRW(i) = md} = P{RW~l;~ti)!~ = md}~(_~O} 
P{RW(n) = tdIRW(i) = md} = N{RwtI;~t;) !~~l= ,,)d} ,"(11) 
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Fig. 3. {RW(n) = td RW(i) = md}. 

Making the appropriate varia.ble substitutions into equation (9) 

N{RW(i) ~ mdJ~ { ( i im ), for (i + m) even l 

-i ~ m ~ i 

otherwise. 

(12) 

The limits placed on m come from the fact that the height of a ran­
dom walk can· never exceed its length. The numerator of equation 
(11) is equal to the number of walks to RW(n) = td multiplied by 
the number of walks from RW(n) = td to RW(i) = md, which can 
be stated as follows . 

N{RW(n) = td, RW(i) = md}.= [N(n, t)][N(i - n, m -t)l' (13) 

for (n +t) & 
(i - n + m - t) even (14) 

, otherwise, 

where the following bol!nds apply 

-n~t' n, 

-(i-n)~ m-t '(i-n). 

So}vi'ng for t in equation (16) yields 

m + n - i , t , m + i - n. 

(15) 

.(16) 

(17) 
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Combining equations (16) and ,(17) gives 

max{m+ n - i,-n} (t (min{m+ i - n,n}. (18) . 
SUbstituting equations (12) and (14) into equatioQ (11) gives the 
following result 

P{RW(n) '= tdIRW(i) = md} 

_ { (nit) (i i ~f~-') 
- (t;m 

o 

, for (n+t),(i+m), 
&(i - n + m - t) even (19) 

, otherwise. 

To find the probability of RW(n) greater than sd, perform summa· 
tion from t equal s to the upper boundary,'on t as follows 

P{RW(n) ~ sdjRW(i) = md} 
miD{m+i-n.n} (20) 

E P{RW(n) = tdIRW(i) = md}. 
" ~', ,t=_ - # 

To verify tt;a.t equation (20) works, consider a .segment with 
endpoints z~ro 4nd :five with values of two and three respectively 
as shown Fig. 4.' With only the knowledge of the endpoints, the C 
·value is four, on~ more than t,he maximum of three. To find the first 
guess location of this function, ~ua.tion (20) will be employed for 
each interval of time in the funciion. Remember that equation (20) 
works on the premise that the random walk begins at the origin. 
Shifting the function to make this true gives the function depicted 
in Fig. 5. Now' the endpoint values of the function are zero and 
one and the C value is two. Equation (20) considers all possible 
walks between the two endpoints in calculating probabilities. All 
the feasible walks are depicted in Fig. 6, but J?ecause they overlap 
each other, each walk is enumerated in Table 1. The algorithm 
is looking for the probability of finding a Junction value of two 
given the known endpoint parameters. Equation (20) states this as 
follows 

P{RW(n) ~ 2IRW(5) = I}. 
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Fig. 4. Example function. 
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Fig. 5. Example function shifted to origin.' 
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f(t) 
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Fig. 6. All possible walks between endpoints of example 
function. 

To calculate the probability of finding the C value at time t equal 
four, equation (20)'yields 

P{RW(4) f 2IRW(5) ~ i} = P{RW(4) = 2IRW(5) = 1}, 

P{RW(4)/= 2JRW(5) = 1} = (~~~~) = ~. 
I 

Table 1 verifies this result because it can be seen that four of the ten 
functions have a v~ue of two at time t equal four. To calculate the 
probability of finding the C value at time equal three equation (20) 
yields 

,.. P{RW(3) ~ 2IRW(5) = l} = P{RW(3) = 3IRW(5) = 1}. 

Fig. 6 helps to illustrate why this is true~ At time t equal three, 
there is only one valid walk that has a value greater than or equal 
to two. It can already be deduced that the probability for this time 
interval will be one-tenth as equation (20) r~veals 

...... 
, <:)(~) 1 

P{RW(3) = 3IRW(5) = 1} = ") =-. t; 10 
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Table 1. Enumeration of all possible walks 

t==O t==l t=2 t=3 t==4 t=5 
0 1 2 3 2. 1 
0 1 2" 1 2 1 
0 1 2 1 0 1 
0 1 0 1 2 1 
0 1 0 1 0 1 
0 1 0 -1 0 1 
0 -1 0 1 2 1 
0 -1 0 1 0 1 
0 -1 0 -1 0 1 
0 -1 -2 -1 0 1 

To find the probability of finding the C value at time t equal two, 
equation (20) yields 

P{RW(2) ~ 2IRW(5) = I} = P{RW(2) = 2IRW(5) = I}, 

"_ _ _ @G)_.!. 
P{RW(2) - 2IRW(5) - I} - m - 10' 

Table 1 also shows that at time t equal two there are three out 
of ten walks which have a function value of two. The probability 
of finding the Cval ue at time t equal one is zero because there 
are no walks through this point which have a value higher than 
one. Fig. 6 Table 1 verify this fact. Now that probabilities for all 
time intervals between the endpoints have been calculated, it can 
be seen that the highest probability of two-fifths occurs at time t 
equal four. For this example, time t equal four" will become the first 
guess location of the function. The example function could easily 
be a segment from another larger function b'eing analyzed and the 
results would be the same. . 

Two other equations which are used to calculate some of the 
final "results also need mention. The first one isthe equation for the 
mean value of the percentage ratio. The percentage ratio, denoted 
as i in the following equations, isa quantity which expresses the 
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number of Elvaluated points versus the number of total points and 
is a measure of how efficient the algorithm is in minimizing the 

. number of function evaluations. The mean of the percentage ratio 
is calculated .as the sample mean. The percent88e ratios for each 
set offundions are totaled and result is then divided by the number 
of functions in the set. 

1 X 
Mean = X ~ i. 

, .=1 

. . 
(21) 

Calculating the standard 'derivation for a. set of random walks is 
slightly more complicated. first, the square of the quantity of the 
percentage ratio minus the mean is calculated for each function. 
Then the variance is fout.d by summing up the results and dividing 
by one less than the total number of functions in the set. The 
reason division is performed with one less than the total number is 
to produce unbiased results. Taking the square root of the variance 
yields the standd deviation. 

karlance =; ~ 1 t (i ~ M~)2, 
. J i-I 

: Standard Deviation == v''variance. 

(22) 

(23) 

Example ~ch. To demonstrate how the algorithm works, 
it would be helpful at this point to step through one example. A 
function of length. 11, zero through ten steps, was generated as 
shown in Fig. 7. ' 

_ The algorithm begins with only the location of the endpoints 
of the function and their values, and from this knowledge creates 
the first segment to be used in the search strategy as shown in 
Fig. 8. The algorithm is searching for a C value of seven, since this 
is one more than the current maximum ot six at the right endpoint. 
The first run of calculations determines that the best locatio •• for 
finding this C value is at time t equal nirre", which hecom~, .the 

. guess location. The probability asso.ciated with this guess location 
is 0.4, or it can be said that there is a 40 percent chance of finding a 
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Fig. 7. Example random walk. 

f(t) 
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Fig. 8. First segment created from example·walk. 
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value of C or gfea.ter at this IQCation. The function is evaluated. at 
this point and found to be seven. Consequently, the first segment 

. depicted in Fig. 8 is divided into two segments about the guess 
location as shown in Fig. 9. 

Ill) 

, 
• 

7 

, 
s 

• 

O~-----------'----'----S----.----~------~t--~~l 

Fig. 9. Exa~pJi walk divided into t;"o segments. 
I • 

Now the algbrithm is searching for a value of eight or greater, 
one more than the present maximum. The same calculations are 
now performed. on each segment separately. Segment two, being the 
shortest possible length, yields a ~ero probability of finding the C 
value, but segment one yields a 33 percent chance of finding the C 
value at time t equal eight. The guess location is evaluated to be six 
and .. segment one is divided. about this location as shown in Fig. 10. 
These results depict how segment one is truncated and the newest 
segment i.s created from the right portion of the original. This 
pattern of subdividing segments remains consistent throughout the 
algorithm and will become more apparent as the search continues. 
Since the function value of six is not a new maximum, the zsearch 
continues looking for the highest probability-of finding the value of 
eight or greater in each of the three segments. The three segments 
are analyzed in' the previous manner and segment one yields an 11 
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Fig. 10. Example walk divided into three segments. 

percent chance of finding the C value at time t equal six, while the 
other two segments have a zero probability factor. The function is 
evaluated to be eight and the segment· is divided in the usual man­
ner as depicted in Fig. 11. Since the function value of eight consti­
tutes a new maximum, the C value is accordingly increased to nine 
and all segment values are recalculated based on this change. The 
recalculation procedure updates the guess locations and associated 
probabilities of each segment as the function maximum' continues 
to rise. .For this particular example, the probabilities recalculated 
by this process did not change since they had already, reached a 
value of zero. The probabilities for segments one and four were Bot 
affected by the recalculation process because they had previ~sly 
been determined when the segments were first divided. The effects 
of the recalculation process are more evident for longer walks when . 
more segments of a significant length are inyolved. As a rule, seg­
mentprobabilities tend to decrease as the fQ,nction maximum and 
C value increase. '. 

After everything has been recalculated, the algorithm contin­
ues its search for the peak of the random .walk and it is determined 
that there is a 17 percent chance for finding 'the a. value of nine 
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fCd 
A 

. , 
• 
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.. 
l 

2 

O~----------3----'~"~-S--~'~'~~7~~'~~'~~~C 

Fig. 11. Example walk divided into four segments. 
. . , 

or' greater at time. t equal five. All other segment prob~bilities 
are zero. The function is evaluated to be seven and Segment one 
is again divided ip the familiar manner d.epicted in Fig. 12. The 
function value 0tf/seven is not. a new maximum and S!> none ~f the 
segments need t be re-examlDed. All five segments are subjected 
.' . 

tothe same analysis as before and it is determined that all segment 
probabilities'are,now zero, meaning that the search is looking for a 
function maxim~n1 in each segment tha~ is unattainable with the 
given parameters. This zero probability concludes the search and 
the f'unction peak is revealed to be a value of eight which occu.rs 
at time t equal six. Looking a.t. the' random walk in . Fig .. 7 it is 
evident that the algorithm has indeed successfully converged upon 
the peak of the function, after only having to evaluate six points 
in the function .to do so. Compared to a point by point aea.rch, 
this algorithm constitutes 80.40 percent reduction in the number of 
evaluated points needed to find the pea,k.. 

3. Results. The ~mputer code used tG·implement the search 
stra.tegy previ~usly described was written in Turbo Pascal. A 'pseu­
docode representation of the program is presented below: ' 
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Fig. 12~ Example walk divided into five segments~ 

Ma.jor Va.riabl~: 

Flag used to signal when a new maximum has occurred 
Flagl, Flag2 'used to end search once all segment probabilities 

have reached .zero 

Program Flow: 

Generated random walk 
Set Flag to False, Flagl and Flag2 to True 
Read endpoints. and values.. 
Determine current maximum and C value 
Find guess location and probability 

While (Flagl) do 
Find segment with best guess location 
Evaluate function-at guess locra.tion­
Set Flag to True if new maximum 
Set Flagl and Flag2 to False ~f zero probability'­

factor occurs 
If (Flag2) then -

Divide segment abuut guess location 
- If (Flag) then ' 
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Endif 
Endif 

Update segments. with new guess 
loca.tions and probabilities 

Set Flag and Flag2 to False if 
zero probability factor occurs 

Reset Flag to False 
Endwhile 

Calculate final resl.dts 
Display chart of final results 

Fig. 13 presents a How ch",rt of the progra.m. 
The following results were obtained after running the program 

five times for five sets of ra.ndom walks of different lengths. Each 
separate program run generated a.nd examined ten ra.ndom walks of 
equal length. Tables 2 through 6 summarize the results of each run 
by listing the number of points that had to be evaluated for each 
function before the peak was found and the ratio of the number of 
evaluated points versus the total number of points as a percentage. 
Also, the average number of points evaluated are calculated as are 
the mea.n and standa.rd deviation for th~ percentage ratios .. 

Compiling the data fro~ all five tables it was discovered that 
I • 

the mean perceqtage ratio for all fifty functions was 43.19 percent, 
meaning that 0* tlie average the number of points that had to be 
ev.a.luated using,this algorithm was less than half the total number 
of points involved·in a direct comparison method. Also, the corre­
sponding standard deviation for all fifty functions was calculated 
to be 2.20. 

The average percentage ratio and average number of guesses 
for .. each set of functions is plotted versus length in Figures 14 and 
15, respectively. Both graphs show a nonlinear trend which tends 
to level off at greater lengths. It is assumed that this trend remains 
consistent and serves as an aCcurate predictor for data concerning 
functions of extensive' length. ' 

4. Conclusions. The goal of the algorithm is to converge 
upon· the peak of the random walk function with a mimmal num­
ber of function evaluations. Although the numt.;r of times a par-
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RECAl..CUUIE 

ticular random walk must be evaluated to find its peak depends 
upon the configuration of that function, the results show that the 
number of points that had to be evaluated with the algorithm were 
significantly less than the total number of points in the function. 
The number of function evaluations depends on both the length 
and the rela.tive height of the function. Tables 2 through 6 show 
that as the length of the function increases, so does the number of 
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Table 2. Data for ten random walk functions of length six 

Random walk Number of guesses . Percentage ratio. 
number to find peak . '(evaluated points / 

1 
2' 
3 
4 
5 
6 
7 
8 
9 
10 

:4 
4 
4, 
3 
4 
4 
3 
4 
4 
-4 

. total points) 

·66.67% 
66.67% 
66.67% 
50.00% 
66.67% 
66.67% 
50.00% 
66.67% 
66.67% 
66.67% 

Average number .of guesseS is 3.8 
Mean is 63.33 % .. .Siandard deviation is 2.22 

Table 8. Da.ta for ten random walk functions oflength 11 . 

Random walk N umber of guesses 
number to find peak 

1 6 
2 6 
3 5 
4 7 
5 5 
6 5 
7 7 

.8 6 
9 7 
10 7 

Percentage ratio , 
(evaluated p~ints / 

Total Points) 
54.55% 
54.55% . 
45.45% 
63.64% . 
45.45% 
45.45% 
63.64% 
54.55% 
63.64% 
63.64% 

Average number of guesses. is 6.1 
Mean is 55.45 % Standard devia.tion is 2.52 
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Table 4. Data for ten ra.ndom walk functions of length 21 

Random walk Number of guesses 
num ber to find peak 

1 6 
2 9 
3 9 
4 10 
5 7 
6 10 
7 7 
88 
9 5 
10 6 

Percentage ratio 
(eval uated points / 

total points) 
28.57% 
42.86% 
42.86% 
47.62% 
33.33% 
47.62% 
33.33% 
38.10% 
23.81 % 
28.57% 

Average number of guesses is 7.7 
Mean is 36.67% Standard deviation is 2.66 

Table 5. Data far ten random walk fun-ctions of length 31 

Random walk ' Number of guesses 
. number to find peak 

1 11 
2 8 
3 10 
4 9 
5 8 
6 11 
7 14 
8 8 
9 11 
10 9 

Percentage ratio 
(evaluated points / 

total points) 
35.48% 
25.81 % 
32.26% 
29.03% 
25.81 % 
35.48% 
45.16% 
25.81 % 
'35.48% 
29.03% 

Average number of guesses is 9.9 
Mean is 31.94% Standard devia.tion is 1.9.J 
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Table 6. Data for ten random walk functions of length 41 

Random walk 
number 

1 
2 
3 
.4 
5 
6 
7 
8 
9 
10 

Number of guesses 
to find peak 

14 
12 
9 
13 
7 

12 
12 

'12 
14 
12 

Percentage ra.tio 
(evaluat.ed point.s / 

total points) 
34.15% 
29.27% 
21.95% 
31.71 % 
17.07% 
29.27% 
29.27% 
29.27% 
34.14% 
29.27% 

Average number of guesses is 11.7 
Mean is 28.54 % Standard deviation is 1.67 
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points that have to be evaluated. The number of evaluated points 
tends to decrease, however, for "steep" functions with a wide swing 
between maximum and minimum values, and tends to increase for 
functions with little variation in height. The ratio of the number 
of evaluated points versus total points decreased as the function 
lengths increased. This indicates that the algorithm works better 
with longer functions, remembering that the performance criteria 
is the minimization of the number of function evaluations. 

, One result which needs mention is that for functions with. mul­
tiple peaks of identical values, the algorithm tends to pick one a.nd 
exclude the others. If one of the peaks happens to be an endpoint, 
the endpoint will almost always be chosen. as the function peak. 
This does not pose any problem, however, since the location of one 
function peak is sufficient to meet the goal of the sea.rch strategy. 
The' other peaks do not usually figure into the results because the 
algorithm never searches for values equal to the current maximum, 
but always a value that exceeds the maximum by one, 
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5. Areas 9f further study. The global optimization algo­
rithm for a random walk is a beneficial tool for finding the peak 

. value ~th minimal function evaluations. However, the random 
walk {unction itself is somewhat limited in the ability to model 
real world experiences. The qualities which define a random walk 
ultimately restrict its usefulness in: 'practical applications. A step 
function characterized by a greater degree of versatility would be 
more adaptable to real world situations. Such an enhanced step 
function should not be constrained to stepping only one unit at a 
time but should instead be able to jump any number of units at 
any instant of time. A logical consequen'ce of this would be to also 
allow the function to remain constant for an unlimited period of 
time. , 

.~ 

Taking into account the function modifications, areas of fur­
ther study would parallel the st.eps taken to produce the results 
described in ihis thesis. Before an algorithm could be developed 
to find the peak of this new function, the derivation of a mathe­
matical equation like that of equation (20) would be necessary to 
caJc'lllatethe pr09abilities associated with finding a specific search 
yalue.'Then an ifrtplementationofthis equation in a .similar search 
,strategy, like the' one presented here would be next. Finally, con­
verting the alg~ithl1l into, computer code to develop a workable 
prQgram would Qe the last step. The step function created from the 
amended random walk would be an improved model for simulating 
authentic situations and research into this area would undoubtedly 
be a'worthwhile endeavor. 
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