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Abstract. A random walk ¢an be used to model various types of discrete
random processes. It may be of interest at some point to find the peak of this
{ﬁnctiqn. A direct method of doing so involves evaluating the function at every
point and recording the highest value. However, it may be desirable to find the
peak without having to evaluate the function at every point. A search technique
was developed to find the peak of a random walk with a minimal number of
function evaluations using probabilistic means to guess at where the peak will
most likely occur given the parameters of a specific function. A computer pro-
gram was written toimplement the search strategy and a series of random walk
functions of varying lengths were generated to test its performance. Data was
compiled and the results show that the search is capable of finding the peak with
a significant reduction in the number of function evaluations needed for a point
by point search, especially for functions of greater walk length.
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1. Introduction. The essence of engineering is solving prob-
lems. Naturally, engineering strives to find the best solution to
a problem. This process is known as optimization. Optimization
constitutes a broad and important field of study in all disciplines of
engineering. In the field of electrical engineering alone widespread
applications include the design of communication systems (Stuck-:
man and Laursen, 1987), nonlinear control systems (Stuckman and
Hill, 1986), electronic circuits (Groch, Vidigal and Director, 1985),
and optical filters (McKeown and Nag, 1974).
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The field of optimization can be categorized into problems of
the continuous type and problems that are discrete. Continuous
optimization requires that functions be those of continuous vari-
ables, meaning that the independent variable may take on any real
valued number at any point in time. The functions themselves may
discrete or continuous in nature, but the independent variable must
always be continuous. Several techmques designed to find the peak
of such functions with a minimal number of evaluations have been
developed and refined over the past years as computer technology
has improved to make implementation of these techniques more
feasible. One particular set of methods which has been proven to
converge upon the peak more quickly than other methods are the
Bayesian sampling techniques (Easom, 1990), (Mockus, 1989). The
Bayesian methods typically utilize conditional probability to con-
duct a search based on known information, in this case evaluated
of the function.

However, these methods are not designed for functions of dis-

crete variables. Discrete variable functions are those where the
independent variable is allowed to take on only rational, or more
commonly, integer numbers. This paper presents the development
of an algorithm for finding the global peak of a random walk func-
tion. The most direct way to find the peak is to do a point by point
comparison test, but this method requires that every point along
the function be evaluated before the peak can be determined. The
strategy presented here attempts to minimize the number of points
which must be evaluated by using probabilistic and successive it-
eration to guess at where the peak will most likely occur. This
work constitutes some of the first steps toward developing an opti-
mization technique for discrete functions by applying Bayesian op-
timization methods to a specific class of discrete functions known as’
the random walk. Discrete optimization can be narrowed down to
the area of combinatorial optimization which is concerned with the
study of arrangements of discrete objects from a finite set (Lawler,
1976). This work may be viewed as an exercise in combinatorial
optimization because central to the operation of the algorithm in
determining where to make its next guess is the analysis of all fea-
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sible walks between each of the evaluated points. This emphasis on
arrangement will become more apparent in the section devoted to
“the derivation of the algorithm. Hopefully, the techniques applied
here can later be expanded to a broader class of discrete variable
functions until, ultimately, a general application of Bayesian meth-
ods for discrete function optimization has been formulated.

The next section discusses the algorithrh by defining a ran-
dom walk, describing the search strategy, defining important equa-
tions, and stepping through one example search. The third section
presents results of an computer implementation of the algorithm
on several sets of random walk functions of various lengths. The
fourth and fifth sections present conclusions, and areas of further
study.

2. The algorithm

The random walk function. The random walk function,
like the one shown in Fig. 1, is a step function with discrete indepen-
dent and dependent variables. The independent variable typically
represents time. It is conventional to have the random walk be-
gin at time zero ind progress sequentially, although the function’s
origin is a,]lowed{ to be shifted anywhere along the axis if needed.
The dependent variable represents the height of the function at any
particular time and may take on any integer value. The function is
unique in that for each unit of time along the X-axis, the function
has an equal probability of one-half of instantaneously jumping up
or down one unit the Y-axis. The function cannot remain at the
same value for two consecutive time intervals nor can it jump more
than a single unit at a time.

The random walk function is a discrete model for a Brownian
motion process, which attempts to imitate the random movement
of a particle in a medium caused by the molecular motion of that
medium. However, the function may best be understood as a model
for tossing a coin n successive times, where the function jumps up
one unit when one side of the coin shows face up and jumps down
when the other side appears. The random walk will serve as the
basis for the following algorithm and its results.
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Fig. 1. A random walk function.

Search strategy. The search strategy for finding the peak of a
random walk function is based on a probabilistic method of guessing
where the peak will most likely occur. At each guess location the
function is evaluated and broken up into two segments about that
particular point. As more guesses are made, the original function
is further subdivided into smaller and smaller segments until the
peak value is determined, based on a zero probability of finding a
greater maximum. ‘

Knowing only the endpoints of the function and their respec-
tive values, the search begins looking for a function maximum which
is at least one greater than the current maximum. This will arbi-
trarily be called C value. At each interval of time, AT, the prob-
ability of finding the C value is calculated using equations which
will be detailed later. The time with the highest probability of
containing the C value, and thus a new maximum, is chosen as the
best place to look. The function is evaluated at this guess location
and then it is divided into two segments about this point.

The procedure is now repeated for each of the two segments.
In each of the two segments, the search is looking for the same C
value, but each segment will yield its own local guess location with
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a corresponding probability indicative of the likelihood of finding
a value greater than or equal to the C value. Consequently, for

"two segments, there are two guess locations and the one with the
greatest probability of containing the present C value will be chosen
as the next place to look. Again, the function is evaluated at this
location and the segment containing the guess location is divided
into two segments about this point while the other segment remains
intact and its values are undisturbed.

The original function has been divided into three segments and
the same procedure is repeated for each of them. Again, each seg-
ment yields a local guess location with an associated probability.
The guess location having the greatest probability of all three will
be chosen as the next location to evaluate the function, and the seg-
ment containing this guess location is divided into segments while
the other segments and their properties remain unchanged.

The process continues to divide the original function domain
into increasingly smaller segments until it converges on the peak. If
at any time, however, the value of the function at a particular guess
location turns ou* to be a new maximum, the C value is accordingly
adjusted to one fnore than this new maximum. When this occurs,
regardless of how many segments the function has been divided
into, all of the 'segment guess locations and their corresponding
probabilities are updated and recalculated based upon the new C
vaiue. Sometimes the guess locations change and sometimes they
do not, but almost always their respective probabilities decrease as
the C value increases. Eventually, as the search progresses, all of the
probabilities of finding the currefit C value in any of the segments
decrease to zero. When this happens, the search is terminated be-
cause the peak has been found. Now, all of the previously evaluated
guess locations need only be ¢dmpared to determine where the peak
of the function occurs and what its value is.

If there are any non-zero segment probabilities after segment
values have been recalculated to account for a new maximum, the
search continues as before. If the evaluated guess location is not
a new maximum, then the C value is not adjusted, no segment



M. Herndon et al. . 203

values are recalculated, and the search also continues as before.
The peak of the random walk function cannot be determined until
all probabilities of finding a function value one greater than the
present maximum in any of the segments is equal to zero.

Derivation of search equations. To understand the equa-
tion used to calculate the probability of finding the C value at each
interval of time within a segment, it is necessary to refer back to
the definition of a random walk. First it will be postulated that the
randoin walk begins at the origin of a Cartesian coordinate system.
Hence time will begin at zero with a function value of zero,

- RW(0) =0, : (1

where RW stands for the random walk function. Second, the func-
tion at any time t has equal probability of one-half of stepping up
one unit, designated +d, or stepping down one unit, —d, stated as
follows

P{RW(t) = RW(t-1)+d} = % (2)
P{RW(t) = RW(t - 1) - d} = % 3)

In a random walk to RW(n) = md, depicted in Fig. 2, the
variable z will represent the number of times the function takes a
step up, or the number of +d's. The number of times the function
takes a step down is (n — z). The total distance that the function
has moved vertically off the X-axis in n steps is md, where m is an
integer number. The vertical displacement of the right endpoint is
equal to the difference between the number of times the walk takes
a step up and the number of times the walk takes a step down

m=z—-(n-2), ) 4
m=2z—-n. C(8)
The variable z can then be expressed as

n+m

5 N0

T =



204 ' Global optimization
“ lobd’ opTmizel

Fig. 2. RW(n) =md.

where the quantity n + m must be even in order to represent a
valid random walk. The niimber of possible walks is equal to the
number of ways z positive steps can occur in n steps. This can be
represented as a combination of n things taken z at a time. The
number of walks, N, is equal to

e e

PR
which denotes th¢ following mathematical calculation involving the
factorial operation

n n! '
= ——— : 8
, ) (2) gin-z)! : ®
Substituting equation (6) into equation (7) gives

N={(D"‘g'm) , for(n+m)§ven ) .(‘9)‘

0 , otherwise.

This result may be extended to find the probability of RW(n) =
td given that RW(i) = md where i > n, depicted in Fig. 3.
P{RW(n) = td, RW() =md} .\
PRW(i) = md} )
N{RW(n) = td, RW({i) = .ad)} P
N{RW (i} = md}

P{RV'V(n) = tleW(i) = md} =

P{RW(n) = td|RW (i) = md} = 1)
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Fig. 8. {RW(n) = td RW(i) = md}.

Making the appropriate variable substitutions into equation (9) ‘

‘ L .( $ ) fo¥'(i+m) even,
_N{RW(:'):md}:{ Hm s —ig<ms (12)

0 , otherwise.

The limits placed on m come from the fact that the height of a ran-
dom walk can never exceed its length. The numerator of equation
(11) is equal to the number of walks to RW(n) = td multiplied by
the number of walks from RW(n) = td to RW(i) = md, which can
be stated as follows ' ‘

N{RW(n) = td, RW(5) = md}.= [N(n,O][NG— n, m—1)]  (13)
n L di—n
. - m — Ty (n &
= (W) (.’ 5 ‘ t) f?l:-(nifr)x—t) even (14)
0 , otherwise,

where the following bounds apply
| . -ongtgn, )
—G-n)Em-t<(i-n). (16)
Solving for ¢ in equation (16) yields - |

min-—i<t<m+i-n - an
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Combxnmg equations (16) and (17) gives
. max{m+n-z,-n}€t<mm{m+z-—n n}. (18)

Substituting equations (12) and (14) into equation (11) gives the
following result

P{RW(n) = td|RW(i) = md}

ﬁl#)((_‘—j‘)y“—"‘) Y e 19
L‘sﬂ _ m— v

0 , otherwise.

To find the probability of RW(n) greater than sd, perform summa-
tion from t equal s to the upper boundary on t as follows

P{RW(n) > sd|RW (i) = md}

' min{m+i-n,n} . (20)

= Y P{RW(n) = td|RW(i) = md}.

. / !vl=l - e '

To verify that equation (20) works, consider a-segment with
endpoints zero Z;d:ﬁve with values of two and three respectively
as shown Fig. 4. With only the knowledge of the endpoints, the C
‘value is four, one more than the maximum of three. To find the first
guess location of this function, equation (20) will be employed for
each interval of time in the function. Remember that equation (20)
works on the premise that the random walk begins at the origin.
Shifting the function to make this true gives the function depicted
in Fig. 5. Now the endpoint values of the function are zero and
one and the C value is two. Equation (20) considers all possible
walks between the two endpoints in calculating probabilities. All
the feasible walks are depicted in Fig. 6, but because they overlap
each other, each walk is enumerated in Table 1. The algorithm
is looking for the probability of finding a function value of two
given the known endpoint parameters. Equation (20) states this as
follows '
P{RW(n) > 2|RW(5) = 1}.
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Fig. 4. Example function.

£(t)

-1

-2

Fig. 5. Example function shifted to originv.’v
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Fig. 6. All possible walks between endpoints of example
function.

To calculate the probability of finding the C value at time ¢ equa.l
four, equation (20) yields

P{RW(4) ;z 2|RW(5) = 1} = P{RW{4) = 2|RW(5) = 1},
[HIE
P{RW(4) 2JRW(5) = 1} = 220 = —.
@ 5
Table 1 verifies this result because it can be seen that four of the ten
functions have a value of two at time ¢ equal four. To calculate the

probability of finding the C value at time equal three equation (20)
yields

i

P{RW(3) > 2|RW(5) =1} = P{RW(3) = 3|RW(5) = 1}.

Fig. 6 helps to illustrate why this is true. At time ¢t equal three,
there is only one valid walk that has a value greater than or equal
to two. It can already be deduced that the probability for this time
interval will be one-tenth as equation (20) reveals

P{RW(3) = 3|RW(5) = 1} = @—(2—
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Table 1. Enumeration of all possible walks

t=0 t=1 t=2 t=3 t=4 t=5
0 1 2 3 2 1
0 1 2 1 2 1
0 1 2 1 0 1
0 1 0 1 2 1
0 1 0 1 0 1
0 1 0 -1 0 1
0 -1 0 1 2 1
1] -1 0 1 0 1
0 -1 0 -1 0 1
0 -1 . -2 -1 0 1

To find the probability of finding the C va.lue at time ¢ equa.l two,
equation (20) yields

P{RW(?) > ARW(5) = 1} = P{RW(2) 2RW(5) = 1},

P{RW(2)=2|RW(5) =1} = (8)
| (2)

Table 1 also shows that at time ¢ equal two there are three out
of ten walks which have a function value of two. The probability
of finding the C value at iime ¢ equal one is zero because there
are no walks through this point which have a value higher than
one. Fig. 6 Table 1 verify this fact. Now that probabilities for all
time intervals between the endpoints have been calculated, it can
be seen that the highest probability of two-fifths occurs at time ¢
equal four. For this example, time ¢ equal four will become the first
guess location of the function. The example function could easily
be a segment from another larger function b‘emg analyzed and the
results would be the same. :

Two other equations which are used to calculate some of the
final results also need mention. The first one is the equation for the
mean value of the percentage ratio. The percentage ratio, denoted
as i in the following equations, is a quantity which expresses the
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number of evaluated points versus the number of total points and
is a measure of how efficient the algorithm is in minimizing the
“number of function evaluations. The mean of the percentage ratio
is calculated as the sample mean. The percentage ratios for each
set of functions are totaled and result is then divided by the number
of functions in the set. -

1 X
=% Z (21)

Calculating the standard derivation for a set of random walks is
slightly more complicated. First, the square of the quantity of the
percentage ratio minus the mean is calculated for each function.
Then the variance is fouid by summing up the results and dividing
by one less than the total number of functions in the set. The
reason division is performed with one less than the total number is
to produce unbiased results. Taking the square root of the variance
yields the standard deviation.

"anance —' f——— Z(z - Mean )%, ] (22)

'Standard Deviation . = v/Variance. o (23)

Example search. To demonstrate how the algorithm works,
it would be helpful at this point to step through one example. A
function of length 11, zero through ten steps, was generated as
shown in Fig. 7.

- The algorithm begins with only the loca,tlon of the endpoints
of the function and their values, and from this knowledge creates
the first segment to be used in the search strategy as shown in
Fig. 8. The algorithm is searching for a C value of seven, since this
is one more than the current maximum of six at the right endpoint.
The first run of calculations determines that the best locatic.. for
finding this C value is at time ¢ equal nime, which hecomes the

 guess location. The probability associated with this guess location
is 0.4, or it can be said that there is a 40 percent chance of finding a

-
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£(t)

Fig. 7. Example random walk.

£(t)

0 1 2 3 ‘ s & R R 10

Fig. 8. First segment created from exa,mple"lwa,lk.



212 Global optimization .

value of C or greater at this location. The function is evaluated at
this point and found to be seven. Consequently, the first segment
"depicted in Fig. 8 is divided into two segments about the guess
location as shown in Fig. 9.

[{{}]

(] 1 1 3 6 S [ ? L} 9 10

Fig. 9. Exaniple walk divided into two segments.

Now the algbrithm is searching for a value of eight or greater,
one more than the present maximum. The same calculations are
now performed on each segment separately. Segment two, being the
shortest possible length, yields a zero probability of finding the C
value, but segment one yields a 33 percent chance of finding the C
value at time ¢ equal eight. The guess location is evaluated to be six
and segment one is divided about this location as shown in Fig. 10.
These results depict how segment one is truncated and the newest
segment is created from the right portion of the original. This
pattern of subdividing segments remains consistent throughout the
algorithm and will become more apparent as the search continues.
Since the function value of six is not a new maximum, the search
continues looking for the highest probability-of finding the value of
eight or greater in each of the three segments. The three segments
are analyzed in the previous manner and segment one yields an 11
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Fig. 10. Example walk divided into three segments.

percent chance of finding the C value at time t equal six, while the
other two segments have a zero probability factor. The function is
evaluated to be eight and the segment is divided in the usual man-
ner as depicted in Fig. 11. Since the function value of eight consti-
tutes a new maximum, the C value is accordingly increased to nine
and all segment values are recalculated based on this change. The
recalculation procedure updates the guess locations and associated
probabilities of each segment as the function maximum continues
to rise. For this particular example, the probabilities recalculated
by this process did not change since they had already reached a
value of zero. The probabilities for segments one and four were not
affected by the recalculation process because they had previously
been determined when the segments were first divided. The effects
of the recalculation process are more evident for longer walks when
more segments of a significant length are involved. As a rule, seg-
ment probabilities tend to decrease as the function maximum and
C value increase. ' )
After everything has been recalculated, the algorithm contin-
ues its search for the peak of the random walk and it is determined
that there is a 17 percent chance for finding the a value of nine
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Fig. 11. Example walk divided into fouf segments.

or greater at time t equal five. All other segment probabilities
are zero. The function is evaluated to be seven and segment one
is again divided ip the familiar manner depicted in Fig. 12. The
function value of/seven is not a new maximum and so none of the
segments need t¢ be re-examined. All five segments are subjected
to the same analysis‘as before and it is determined that all segment
probabilities are now zero, meaning that the search is looking for a
function maximuni in each segment that is unattainable with the
given parameters. This zero probability concludes the search and
the function peak is revealed to be a value of eight which occurs
at time t equal six. Looking at the random walk in Fig. 7 it is
evident that the algorithm has indeed successfully converged upon
the peak of the function, after only having to evaluate six points
in the function .to do so. Compared to a point by point search,
this algorithm' constitutes a 40 percent reduction in the number of
evaluated points needed to find the peak. ’

3. Results. The computer code used to-implement the gea;ch
strategy previously described was written in Turbo Pascal. A pseu-
docode representation of the program is presented below:
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Fig. 12. Example walk divided into five segments.

Major Variables:

Flag used to signal when a new maximum has occurred
Flagl, Flag2 ' used to end search once all segment probabilities
have reached .zero

Program Flow:

Generated random walk
Set Flag to False, Flagl and Flag2 to True
Read endpoints and values.
Determine current maximum and C value
Find guess location and probability
While (Flagl) do
: Find segment with best gu&ss location
Evaluate function at guess location
Set Flag to True if new maximum
- Set Flagl and Flag2 to False if zero probability-
factor occurs
If (Flag2) then
Divide segment about guess location
If (Flag) then
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- Update segments with new guess
locations and probabilities
Set Flag and Flag2 to False if
zero probability factor occurs

Endif
Endif
Reset Flag to False
Endwhile

Calculate final results
Display chart of final results

Fig. 13 presents a flow chart of the program.

The following results were obtained after running the program
five times for five sets of random walks of different lengths. Each
separate program run generated and examined ten random walks of
equal length. Tables 2 through 6 summarize the results of each run
by listing the number of points that had to be evaluated for each
function before the peak was found and the ratio of the number of
evaluated points versus the total number of points as a percentage.
Also, the average number of points evaluated are calculated as are
the mean and standé.rd deviation for the percentage ratios.

Compiling the data from all five tables it was discovered that
the mean percer}ta.ge ratio for all fifty functions was 43.19 percent,
meaning that o the average the number of points that had to be
evaluated using‘this algorithm was less than half the total number
of points involvéd.in a direct comparison method. Also, the corre-
sponding standard deviation for all fifty functions was calculated
to be 2.20. '

The average percentage ratio and average number of guesses
for.each set of functions is plotted versus length in Figures 14 and
15, respectively. Both graphs show a nonlinear trend which tends
to level off at greater lengths. It is assumed that this trend remains
consistent and serves as an accurate predxctor for data concerning
functions of extensive length.

4. Conclusions. The goal of the algorithm is to converge
upon' the peak of the random walk function with a mimimal num-
ber of function evaluations. Although the num! :r of times a par-
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DRAW GRAPH

Fig. 18. Program flowchart.

ticular random walk must be evaluated to find its peak depends
upon the configuration of that function, the results show that the
number of points that had to be evaluated with the algorithm were
significantly less than the total number of points in the function.
The number of function evaluations depends on both the length
and the relative height of the function. Tables 2 through 6 show
that as the length of the function increases, so does the number of
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Fig. 14. Average percentage ratio versus length.
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Fig. 15. Average number of guesses versus lengik.
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Table 2. Data for ten random walk functions of length six -

Random walk  Number of guesses  Percentage ratio
number . to find peak ~ (evaluated points /
: o total points)

-66.67 %
66.67 %
66.67 %
50.00 %
66.67 %
66.67 %
50.00 %
66.67 %
66.67 %
66.67 %

.

|50 ok -
F N QN X G X G G N £

~ Average number of guesses is 3.8
Mean is 63.33%  Standard deviation is 2.22

Table 8. Data for ten random walk functions of length 11°

Random walk = Number of guesses Percentage ratio .
number to find peak (evaluated points /
‘ Total Points)

o1 6 . 54.55%
2 6 54.55% -
3 5 45.45%
4 7 63.64% -
5 5 45.45%
6 5 45.45%
7 7 63.64%
-8 6 . 54.55%
9 7 _ 63.64% =
10 7 " 63.64% -

. Average number of guesses.is 6.1
Mean is 55.45% - Standard deviation is 2.52
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Table 4. Data for ten random walk functions of length 21

Random walk  Number of guesses Percentage ratio
number to find peak (evaluated points /
total points)

28.57%
42.86 %
42.86 %
47.62%
33.33%
47.62%
33.33%
38.10%
23.81%
28.57%

o R N O
R o I
DUBN N5 OOD

Average number of guesses is 7.7
Mean is 36.67% Standard deviation is 2.66

Table 5. Data for ten random walk functions of length 31

Random walk’ Number of guesses Percentage ratio
number - to find peak - (evaluated points /
- total points)

1 11 35.48%
-2 8 25.81%
3 10 32.26%

4 9 29.03 %

5 8 ‘ 25.81%

6 11 35.48%

7 14 45.16%

8 8 25.81%

9 11 '35.48%

10 9 29.03 %

Average number of guesses is 9.9
Mean is 31.94% = Standard deviation is 1.9,
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"Table 8. Data for ten random walk functions of length 41

Random walk = Number of guesses Percentage ratio
number to find peak (evaluated points /
total points)
1 14 34.15%
2 12 29.27%
3 9 : 21.95%
4 13 31.711%
5 7 17.07%
6 12 29.27%
7 12 : 29.27%
8 “12 29.27%
9 14 34.14%
10 12 29.27%

: Average number of guesses is 11.7
Mean is 28.54 % Standard deviation is 1.67

points that have to be evaluated. The number of evaluated points
tends to decrease, however, for ”steep” functions with a wide swing
between maximum and minimum values, and tends to increase for
functions with little variation in height. The ratio of the number
of evaluated points versus total points decreased as the function
lengths increased. This indicates that the algorithm works better
with longer functions, remembering that the performance criteria
is the minimization of the number of function evaluations.

" One result which needs mention is that for functions with mul-
tiple peaks of identical values, the algorithm tends to pick one and
exclude the others. If one of the peaks happens to be an endpoint,
the endpoint will almost always be chosen as the function peak.
This does not pose any problem, however, since the location of one
function peak is sufficient to meet the goal'of the search strategy.
The other peaks do not usually figure into the results because the
algorithm never searches for values equal to the current maximum,
but always a value that exceeds the maximum by one.
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. 5. Areas of further study. The global optimization algo-
rithm for a random walk is a beneficial tool for finding the peak
"value with minimal function evaluations. However, the random
walk function itself is somewhat limited in the ability to model
real world experiences. The qualities which define a random walk
ultimately restrict its usefulness in practical applications. A step
function characterized by a greater degree of versatility would be
more adaptable to real world situations. Such an enhanced step
function should not be constrained to stepping only one unit at a
time but should instead be able to jump any number of units at
any instant of time. A logical consequence of this would be to also
allow the function to remain consta.nt for an unlimited period of
time.

: Taking into account the function modifications, areas of fur-
ther study would parallel the steps taken to produce the results
described in this thesis. Before an algorithm could be developed
to find the peak of this new function, the derivation of a mathe-
matical equation like that of equation (20) would be necessary to
calculate the probabilities associated with finding a specific search
value. Then an iﬁ)plémenta.tion of this equation in a similar search
strategy like the one presented here would be next. Finally, con-
- verting the algorithm into. computer code to develop a workable
program would be the last step. The step function created from the
amended random walk would be an improved model for simulating
authentic situations and research into this area would undoubtedly
be a'worthwhile endeavor. ‘
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