
INFORMATICA, 2015, Vol. 26, No. 3, 453–472 453
 2015 Vilnius University

DOI: http://dx.doi.org/10.15388/Informatica.2015.58

eXolutio: Methodology for Design and Evolution
of XML Schemas Using Conceptual Modeling

Jakub KLÍMEK, Jakub MALÝ, Martin NEČASKÝ, Irena HOLUBOVÁ∗

Department of Software Engineering, Faculty of Mathematics and Physics

Charles University in Prague, Czech Republic

e-mail: klimek@ksi.mff.cuni.cz, maly@ksi.mff.cuni.cz, necasky@ksi.mff.cuni.cz,

holubova@ksi.mff.cuni.cz

Received: August 2013; accepted: June 2014

Abstract. Recently, XML has achieved the leading role among languages for data representation
and, thus, the amount of related technologies and applications exploiting them grows fast. However,
only a small percentage of applications is static and remains unchanged since its first deployment.
Most of the applications change with newly coming user requirements and changing environment.
In this paper we describe a framework and a methodology for management of evolution and change
propagation throughout XML applications. We also describe its proof-of-concept implementation
called eXolutio, which has been developed and improved in our research group during last few
years. The text should help the reader to get acquainted with the target area of XML evolution and
the approach we have proposed and implemented.

Key words: XML data modeling, evolution of XML applications, change management.

1. Introduction

The eXtensible Markup Language (XML) (Bray et al., 2008) is currently a de-facto stan-
dard for data representation and together with accompanying standards, such as XML
Schema (Thompson et al., 2004; Biron and Malhotra, 2004), XQuery (Boag et al., 2007),
XSLT (Kay, 2007) etc., it becomes a powerful tool for data management. Consequently,
the amount and complexity of software systems that utilize XML and/or selected XML-
based standards and technologies for information exchange and storage grows very fast.
The systems represent information in a form of XML documents. One of the crucial parts
of such systems are XML formats which describe the syntax of the XML documents. XML

schemas, expressed in a selected XML schema language, e.g., DTD (Bray et al., 2008) or
XSD (Thompson et al., 2004), are used to express the formats. Usually, a system does
not use only a single XML format, but a set of different XML formats, each in a partic-
ular logical execution part. The XML formats usually represent particular views on the
application domain of the software system. For example, a software system for customer
relationship management (CRM) exploits different XML formats for purchase orders, cus-
tomer details, product catalogs, etc. All these XML formats represent different views on

*Corresponding author.

454 J. Klímek et al.

the CRM domain. We can, therefore, speak about a family of XML formats used by a
software system.

Having such a system, we face the problem of XML format evolution as a specific part
of evolution of the software system as a whole. The XML formats may need to be evolved
whenever user requirements or surrounding environment changes. Each such change may
influence multiple different XML formats in the family. Without a proper technique, we
have to identify the XML formats affected by the change manually and ensure that they are
evolved coherently with each other and the rest of the system. When the XML formats have
already been deployed, there will also be XML documents which might become invalid
and will require appropriate modification.

In our research group, we have focused on the area of efficient and correct management
of a family of XML formats for recent years. Starting with a simple idea of propagation
of changes among related XML formats, we have gradually extended our efforts towards
a robust framework called five-level framework for XML design and evolution and its im-
plementation in a tool called eXolutio.2 It currently supports the original idea of designing
XML formats using the principles of Model Driven Architecture (MDA) (Miller and Muk-
erji, 2003), their evolution, and integration of new XML formats.

Contributions. The key contributions of this paper are as follows:

• the description of the five-level framework for design and evolution of a family of
XML formats,

• the novel methodology which describes how an XML designer should work with the
framework, and

• the evaluation of the methodology and the tool on a complex domain of eHealth
proving the concept and efficiency.

Outline. The rest of the paper is structured as follows: In Section 2 we provide a moti-
vation for the problems we solve. In Section 3 we describe the eXolutio framework and
in Section 4 the methodology for working with the framework. In Section 5 we provide
experimental evaluation of our approach. In Section 6 we present a comparative analysis
with other tools and in Section 7 we conclude.

2. Motivation

As a demonstration of the problem of evolution and management of XML formats from a
more general point of view, let us consider a company that receives purchase orders and
let us focus on a part of the system that processes purchases. Let the messages used in the
system be XML messages formatted according to a family of different XML formats. Con-
sider the two sample XML documents in Fig. 1. The former one is formatted according to
an XML format for a list of customers. The latter one is formatted according to a different

2See http://www.eXolutio.com for download.

eXolutio: Methodology for Design and Evolution of XML Schemas 455

<custList version="1.3">

 <cust>

 <name>Martin Necasky</name>

 <address>Vaclavske nam. 123, Prague</address>

 <phone>123 456 789</phone>

 </cust>

 <cust>

 <name>Charles University</name>

 <hq>Malostranske nam. 25, Prague</hq>

 <storage>Ke Karlovu 3, Prague</storage>

 <secretary>Ke Karlovu 5, Prague</secretary>

 <phone>111 222 333</phone>

 </cust>

</custList>

<purchaseRQ version="1.0">

 <cust>

 <name>Charles University</name>

 <code>ksi@mff.cuni.cz</code>

 <bill-to>Malostranske 25, Prague</bill-to>

 <ship-to>Ke Karlovu 3, Prague</ship-to>

 </cust>

 <items>

 <item code="P045"><price>17</price></item>

 <item code="P332"><price>34</price></item>

 </items>

</purchaseRQ>

Fig. 1. XML documents formatted according to different XML schemas.

XML format for purchase requests. There are also other XML formats in the family (e.g.,
customer details, purchase responses, purchase transport details, etc.). All share the same
application domain (customer relationship management).On the other hand, the same part
of the domain may be represented according to various XML formats in different ways
because of the different purposes for which the XML formats are exploited by the system.
For example, the concept of customer is represented in each of our sample XML formats
in a different way.

Let us now consider a new user requirement that an address should no longer be repre-
sented as a simple string. Instead, it should be divided into elementsstreet,city,zip,
etc. Such a situation would require a skilled domain expert to identify all the XML formats
which involve an address and correct them respectively. In a complex system comprising
tens or even hundreds of XML formats (possibly some of them integrated from external
partners and, hence, out of our control), this is a difficult and error-prone task. Even iden-
tifying the affected parts of an XML format is not an easy and straightforward process. For
example, we may need to make the modification only for addresses that represent a place
to ship the goods (which are the elements address and storage in the XML format
instantiated in the first schema and element ship-to in the second schema). We do not
want to modify addresses that represent headquarters, etc. Hence, we need to be able to
preserve a kind of semantic relationship between the represented parts of the system.

3. Five-Level Framework for Design, Evolution and Integration of XML Formats

Our five-level evolution management framework allows for design and later maintenance
(semantically coherent evolution) of a set of XML formats of a given family. We estab-
lished a formal base of the framework in Nečaský et al. (2011) and firstly described its
levels in Nečaský et al. (2011a). However, so far we have not described the framework as a
whole. We provide such description in this section and we refer to the previous papers for
further details. Even so, this section is interesting for the reader familiar with our previous
results – it provides a detailed overall description of the framework, verbose explanation
of its technical concepts and extensive examples.

The architecture of the framework is depicted in Fig. 2. It is partitioned both hori-
zontally and vertically. Vertical partitions represent individual XML formats. Horizontal

456 J. Klímek et al.

XML
documents

XML
documents

XML

documents

XML
documents

XML
documents

XML queries

XML schema 1

PSM diagram 1

PIM diagram

XML
documents

XML
documents

XML

documents

XML
documents

XML
documents

XML queries

XML schema i

PSM diagram i PSM diagram n. . .

Platform-Independent

Level

Platform-Specific

Level

Logical

Level

Operational

Level

Extensional

Level

. . .

. . .

Fig. 2. Five-level XML evolution framework.

partitions represent different levels which characterize each of the XML formats from
different viewpoints:

• The extensional level contains XML documents formatted according to the XML
format.

• The operational level contains operations performed over the XML documents from
the extensional level. These can be queries over the instances or transformations of
the instances.

• The logical level contains a logical XML schema which specifies the syntax of the
XML format. It is expressed in an XML schema language.

• The platform-specific level contains a schema which specifies the semantics of the
XML format in terms of the platform-independent level.

• The platform-independent level contains a common conceptual schema. It provides
the information model of the system and covers the common semantics of the XML
formats.

As we can see, the framework covers the syntax and semantics of the XML formats as
well as their instances and operations performed over the instances. However, the XML
documents, queries and schemas at different horizontal levels are not the only first-class
citizens of our framework. There are also mappings between the horizontal levels depicted
as solid lines. They are crucial for correct evolution. Evolution means that a change to any
XML format made by a designer is correctly propagated to all other relevant affected
parts so that all parts of the framework remain consistent. The relevancy results from a
particular real-world application. For example, in the area of XML data the propagation
from extensional to logical level is not used much, though there exist approaches dealing
with this direction (see Section 6). On the other hand, while propagation from logical
level to operational level is crucial, the opposite direction makes sense only in very special
cases.

As Fig. 2 shows, we consider that the designer makes a change at the logical, platform-
specific or platform-independent level (the upward arrows). From here, it is propagated
to all other parts of the framework (i.e. to all levels for all XML formats). Changes at

eXolutio: Methodology for Design and Evolution of XML Schemas 457

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

<purchaseRQ version="1.0">

 <bill-to>Malostranske nam. 25, Prague</bill-to>

 <ship-to>Ke Karlovu 3, Prague</ship-to>

 <cust>

 <name>Department of Software Engineering,

 Charles University</name>

 <email>ksi@mff.cuni.cz</email>

 </cust>

 <items>

 <item>

 <code>P045</code>

 </item>

 <item>

 <code>P332</code>

 </item>

 </items>

</purchaseRQ>

<purchaseRQ version="1.0">

 <bill-to>Malostranske nam. 25, Prague</bill-to>

 <ship-to>Ke Karlovu 3, Prague</ship-to>

 <cust>

 <name>Department of Software Engineering,

 Charles University</name>

 <email>ksi@mff.cuni.cz</email>

 </cust>

 <items>

 <item>

 <code>P045</code>

 </item>

 <item>

 <code>P332</code>

 </item>

 </items>

</purchaseRQ>

<purchaseRQ version="1.0">

<bill-to>Malostranske nam. 25, Prague</bill-to>

<ship-to>Ke Karlovu 3, Prague</ship-to>

<cust>

<name>Department of Software Engineering,

Charles University</name>

<email>ksi@mff.cuni.cz</email>

</cust>

<items>

<item>

<code>P045</code>

</item>

<item>

<code>P332</code>

</item>

</items>

</purchaseRQ>

<custList version="1.3">

 <cust>

 <name>Martin Necasky</name>

 <address>Vaclavske 123, Prague</address>

 <phone>123 456 789</phone>

 </cust>

 <cust>

 <name>Department of Software Engineering,

 Charles University</name>

 <hq>Malostranske nam. 25, Prague</hq>

 <storage>Ke Karlovu 3, Prague</storage>

 <secretary>Ke Karlovu 5, Prague</secretary>

 <phone>111 222 333</phone>

 </cust>

</custList>

for $p in /purchaseRQ

return fn:sum(

for $it in $p//item

where $it/price > 20

return $price)

for $c in //cust

where $c/hq

return

 <corporate>{$c/name}

 </corporate>

<element name="custList">

 <sequence>

 <element name="cust" type="Customer" .../>

 </sequence>

</element>

<complexType name="Customer">

 <sequence>

 <element name="name" type="string"... />

 <choice>

 <element name="address" type="string" />

 <sequence>

 <element name="hq" type="string" />

 ...

 </sequence>

 </choice>

 </sequence>

</complexType>

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

<purchaseRQ version="1.0">

 <bill-to>Malostranske nam. 25, Prague</bill-to>

 <ship-to>Ke Karlovu 3, Prague</ship-to>

 <cust>

 <name>Department of Software Engineering,

 Charles University</name>

 <email>ksi@mff.cuni.cz</email>

 </cust>

 <items>

 <item>

 <code>P045</code>

 </item>

 <item>

 <code>P332</code>

 </item>

 </items>

</purchaseRQ>

<purchaseRQ version="1.0">

 <bill-to>Malostranske nam. 25, Prague</bill-to>

 <ship-to>Ke Karlovu 3, Prague</ship-to>

 <cust>

 <name>Department of Software Engineering,

 Charles University</name>

 <email>ksi@mff.cuni.cz</email>

 </cust>

 <items>

 <item>

 <code>P045</code>

 </item>

 <item>

 <code>P332</code>

 </item>

 </items>

</purchaseRQ>

<purchaseRQ version="1.0">

<bill-to>Malostranske nam. 25, Prague</bill-to>

<ship-to>Ke Karlovu 3, Prague</ship-to>

<cust>

<name>Department of Software Engineering,

Charles University</name>

<email>ksi@mff.cuni.cz</email>

</cust>

<items>

<item>

<code>P045</code>

</item>

<item>

<code>P332</code>

</item>

</items>

</purchaseRQ>

<purchaseRQ version="1.0">

 <cust>

 <name>Department of Software Engineering,

 Charles University</name>

 <code>ksi@mff.cuni.cz</code>

 <bill-to>Malostranske 25, Prague</bill-to>

 <ship-to>Ke Karlovu 3, Prague</ship-to>

 </cust>

 <items>

 <item code="P045"><price>17</price></item>

 <item code="P332"><price>34</price></item>

 </items>

</purchaseRQ>

for $p in /purchaseRQ

return fn:sum(

for $it in $p//item

where $it/price > 20

return $price)

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

<element name="purchaseRQ">

 <sequence>

 <element name="cust" type="Cust" />

 <element name="items">

 <sequence>

 <element name="item" type="Item" .../>

 </sequence>

 </element>

</sequence>

</element>

<complexType name="Cust">

 <sequence>

 <element name="name" .../>

 <element name="code" .../>

 <element name="ship-to" .../>

 <element name="bill-to" .../>

 </sequence></complexType>

(a) XML format for list of customers (b) XML format for purchase requests

Lo
g

ic
a

l
Le

v
e

l
O

p
.

Le
v

e
l

E
x

te
n

si
o

n
a

l
 L

e
v

e
l

Fig. 3. Sample XML formats represented in the framework.

the operational or extensional level can also appear. However, as we have mentioned, even
though it could be theoretically possible to propagate them to the upper levels, it is usually
not meaningful. For example, it is not much meaningful to propagate a change from the
extensional level (i.e. a change made in a particular XML document) to the logical level
(i.e. to the corresponding XML schema) and higher. A change in an XML document does
not usually mean that the respective XML schema needs to be adapted. On the other hand,
the framework can identify that the change in the XML document does not correspond to
the XML schema and notify the designer. However, we omit this issue in this paper and
focus on the more “natural” cases.

3.1. Mapping Between the Levels

The lower three levels are depicted in Fig. 3, representing our two sample XML formats
from Fig. 1. If we consider only them, we have no explicit relationship between the vertical
partitions, i.e. between the XML formats modeled by the framework. As we have already
discussed, a change in one XML format can trigger changes in the other XML formats to

458 J. Klímek et al.

keep their consistency. Therefore, a change in one XML schema must be propagated to
the other affected XML formats manually by a designer. This is, of course, highly time-
consuming and error-prone solution. The designer must be able to identify all the affected
formats and propagate the change correctly. Often, (s)he is not able to do such a complex
work and needs a help of a domain expert who understands the problem domain, but is,
typically, a business expert rather than a technical XML format expert. Therefore, it is
very hard for him to navigate in the logical XML schemas, operations and instances.

To overcome these problems, we introduce the two additional levels. They repre-
sent two additional levels of abstraction of the XML formats and are motivated by the
MDA (Miller and Mukerji, 2003) principles. The platform-independent level comprises
a single conceptual schema of the problem domain. We call it PIM schema and use the
notation of UML (2007) class diagrams to express it. A sample PIM schema modeling
the domain of customers and their purchases is depicted in Fig. 4. The platform-specific

level comprises an individual schema for each XML format. We call it PSM schema and
use UML class diagrams as well. We introduced few extensions to the UML notation to
be suitable for modeling XML formats, so-called XSEM schema (Nečaský, 2009). How-
ever, these extensions are not important for this paper. For their full description we refer
to Nečaský et al. (2011). A PSM schema has a hierarchical structure since it models and
XML format. Two sample PSM schemas for our two XML formats are depicted in Fig. 4.

4. Methodology for Design and Evolution of XML Formats

In this section, we introduce a methodology which guides XML format designers in using
our framework to (1) design new XML formats which are semantically consistent with
already existing XML formats in the family, (2) integrate existing XML formats into the
framework (e.g., XML formats defined by an industrial standardization organization), and
(3) evolve the whole family of XML formats while preserving the achieved consistency.

The methodology consists of various steps. Some of them must be done manually

by the designer (and/or domain expert). Some of them are performed automatically by
the framework or semi-automatically, i.e. the framework finds possible solutions and a
human user selects the correct one. In this section, we do not describe the algorithms for
the automatic and semi-automatic steps. They are thoroughly described in our previous
paper (Nečaský et al., 2011a). We only point out what needs to be done manually and
what can be automated. The methodology is described in steps performed by the designer
and/or system. We denote the steps which must be performed manually by the designer
with (M). The steps which are performedautomatically by the system are marked with (A).
The steps which need the system to cooperate with the designer are denoted with (S–A).

4.1. Forward-Engineering of XML Formats

Let us first discuss a methodology which allows a designer to design a new XML format.
The designer proceeds in the forward direction from the PIM level to the logical level and,
therefore, we call the methodology forward-engineering of XML schemas. The result of

eXolutio: Methodology for Design and Evolution of XML Schemas 459

<element name="custList">

 <sequence>

 <element name="cust" type="Cust" .../>

 </sequence>

</element>

<complexType name="Cust">

 <sequence>

 <element name="name" ... />

 <choice>

 <element name="address" ... />

 <sequence>

 <element name="hq" ... />

 ...

 </sequence>

 </choice>

 </sequence>

</complexType>

<element name="purchaseRQ">

 <sequence>

 <element name="cust" type="Cust" />

 <element name="items">

 <sequence>

 <element name="item" type="Item" .../>

 </sequence>

 </element>

</sequence>

</element>

<complexType name="Cust">

 <sequence>

 <element name="name" .../>

 <element name="code" .../>

 <element name="ship-to" .../>

 <element name="bill-to" .../>

 </sequence></complexType>

Customer

code

name

email

phone

CorporateCus Purchase

status

date

number

made

Item

price

Product

code

title

list-price

0..*

1..*
0..*

CustomerListSchema

custList

CustomerList

|

cust

PrivateCus CorporateCus

headquarters

storage

secretary

name

address

phone

name

hq

storage

secretary

phone

PurchaseRQSchema

Purchase

purchaseRQ

PrivateCus

address

|

PrivateCus CorporateCus

name

code

ship-to

bill-to

name

code

ship-to

bill-to

cust

Items

Item

price

Product

@code

item

items

(a) XML format for list of customers (b) XML format for purchase requests

Lo
g

ic
a

l
Le

v
e

l
P

S
M

 L
e

v
e

l
P

IM
 L

e
v

e
l

a

=

e

e

m

a

e

r

m

d

C

=

e

m

m

a

n

m

m

Q

e

y

>

/

>

m

a

a

>

n

e

e

a

a

a

a

>

n

n

e

t

c

t>

>

p

>

n

n

n

n

r

u

t

i

=

a

o

h

l

a

s

m

u

"

"

o

o

1..*1..*

Fig. 4. Sample XML formats represented at logical, PSM and PIM levels.

the process are XML schema, PSM schema and possible extension to the PIM schema
and also mappings between them. We demonstrate the methodology in Fig. 5(a). Here,
a designer is given a task to design a new XML format for a list of supplies of a given
supplier. The designer initiates the following steps:

1. (M) The application domain is studied and described in a form of a PIM schema.
It may happen that the PIM schema already exists but it does not fully cover the
semantics of the designed XML format. Hence, it must be extended. The designer
cooperates with a domain expert. This is necessarily a manual process. In our sam-
ple scenario, the designer extends the PIM schema with the model of suppliers (class
Supplier) and product supplies (class Supply) (Fig. 5(a), step 1).

2. For each XML format which needs to be newly designed:
(a) (M) In cooperation with the domain expert, the designer analyzes what infor-

mation (i.e. relevant concepts and relationships) must be represented in the in-

460 J. Klímek et al.

Customer

code

name

email

phone

CorporateCus Purchase

status

date

number

made

Item

price

Product

code

title

list-price

0..*

0..*
0..*

headquarters

storage

secretary

PrivateCus

address

Supplier

code

name

email

Supply

amount

1..*
1..*

Product

code

title

list-price
Supplier

code

name

email

Supply

amount

1..*
1..*

SuppliesSchema

supplier

Supply

Product

supply

code

1..*

Supplier

code

amount

1

2(a,b)

PSM-to-PIM

mapping

2(c)

<element name="supplier">

 <sequence>

 <element name="code" type="string" />

 <element name="supply"

 type="Supply" .../>

 </sequence>

</element>

<complexType name="Supply">

 <sequence>

 <element name="code" .../>

 <element name="amount" .../>

 </sequence>

</complexType> 2(d)

logical-to-PSM

mapping

<element name="store">

 <sequence>

 <element name="address" type="string" />

 <element name="reserve"

 type="Reserve" .../>

 </sequence>

</element>

<complexType name="Reserve">

 <sequence>

 <element name="code" .../>

 <element name="amount" .../>

 </sequence>

</complexType>

StoreSchema

supplier

Reserve

reserve

code

amount

1..*

Store

address

1

Customer

code

name

email

phone

CorporateCus Purchase

status

date

number

made

Item

price

Product

code

title

list-price

0..*

0..*
0..*

headquarters

storage

secretary

PrivateCus

address

Supplier

code

name

email

Supply

amount

1..*
1..*

2(c)

Store

address

Reserve

amount

Customer

code

name

email

phone

CorporateCus Purchase

status

date

number

made

Item

price

Product

code

title

list-price

0..*

0..*
0..*

headquarters

storage

secretary

PrivateCus

address

Supplier

code

name

email

Supply

amount

1..*
1..*

2(a)

auto

discovered

mappings

StoreSchema

supplier

Reserve

reserve
1..*

Store

address

Product

code

amount

2(b)

0..*

1..*

PSM-to-PIM

mapping

logical-

to-PSM

mapping

(a) Forward-engineering (b) Reverse-engineering

Fig. 5. Demonstrations of forward/reverse engineering methodologies.

stances of the target XML format (Fig. 5(a), step 2(a)). This process is neces-
sarily manual.

(b) (M) The designer manually identifies the part of the PIM schema which models
the concepts and relationships identified in the previous step. In our example, it
means classes Product, Supply and Supplier (Fig. 5(a), step 2(b)).

(c) (S–A) The selected part of the PIM schema is shaped into a PSM schema which
models the aimed XML schema. The conversion is partly manual and partly au-

tomatic. The designer specifies the hierarchical structure manually. The map-
pings to the PIM schema are generated automatically as the designer builds the
PSM schema from the PIM schema part. The designer must manually create
additional PSM components which are not mapped to the PIM schema. In our
example, the designer specifies that class Supplierwill be specified as a root
with nested class Supply which contains a product code (attribute code of
class Product) and a supplied amount (attribute amount) (Fig. 5(a), step
2(c)).

(d) (A) The resulting PSM schema is automatically converted to a logical XML
schema expressed in the selected XML schema language. The mapping of
the logical XML schema to the PSM schema is also created automatically

(Fig. 5(a), step 2(d)). The full translation algorithm was published in Nečaský
et al. (2011).

eXolutio: Methodology for Design and Evolution of XML Schemas 461

The methodology has several advantages. The designer works at the user-friendly level
of UML class diagrams abstracted from the details of XML schemas. It also saves time,
because shaping the part of the PIM schema to the PSM schema is much easier than
manual creation of the XML schema. And, it avoids errors since the overall description
of the problem domain is given and, therefore, the designer does not miss important real-
world concepts or relationships in the designed XML schema. Additionally, (s)he does
not add new concepts without seeing the impact to the overall PIM schema, which avoids
introducing redundant or overlapping structures into the PIM.

4.2. Reverse-Engineering of XML Formats

The designer can also integrate existing XML schemas into his/her solution in the bottom-

up manner which we also call reverse-engineering. Such XML schema might be a legacy
XML schema or an XML schema prescribed by a standardization organization or used
by other party that we want to integrate into our system. We demonstrate the reverse-
engineering methodology in a sample scenario depicted in Fig. 5(b). A designer is given
a task to integrate an existing XML schema of an XML format for reserves on a given
store. The designer proceeds in the following steps:

1. (A) The XML schema is automatically converted to a corresponding PSM schema.
The mapping of the XML schema to the PSM schema is also created automatically
(Fig. 5(b), step 1). The full translation algorithm was published in Nečaský et al.

(2011).
2. The designer maps the PSM schema to the PIM schema in the following steps:

(a) (A) Various algorithms for automatic mapping discovery (Euzenat and Shvaiko,
2007) are applied to help the designer with creating the mappings (Fig. 5(b),
step 2(a)).

(b) (M) The designer can be required to augment the generated PSM schema man-

ually. In our case, the generated class Reserve contains attributes code and
amount. However, code belongs to PIM class Product from the concep-
tual perspective while amount belongs to the reserve information which is
not modeled in the PIM schema yet. Therefore, the designer moves code to
PSM class Product which will be mapped to PIM class Product. (S)he
also creates an association connecting PSM classes Reserve and Product
(Fig. 5(b), step 2(b)).

(c) (M) (S)he might also be required to manually complement the PIM schema in
case it does not cover the semantics of the imported XML schema. The impact
of the performed changes in the PIM schema to the other XML formats inte-
grated in the framework is analyzed and reported to the designer. In our case,
the designer creates new PIM classes Reserve and Store to cover the new
kind of information (Fig. 5(b), step 2(c)).

The advantages are similar to the forward-engineeringmethodology. The main advan-
tage for the designer is that (s)he works with UML class diagrams. It is much easier to
map the PSM schema than the XML schema (because both PSM and PIM schema uses
the UML notation).

462 J. Klímek et al.

4.3. Evolution of XML Formats

When all required XML formats are designed or integrated into the framework it is in
some point in time necessary to evolve them consistently. We demonstrate the evolution
methodology in a sample scenario depicted in Fig. 6. The designer needs to split private
customer single-valued name into two values first name and last name in the PSM schema
of the XML format for customer lists (the right-hand side PSM schema in Fig. 6(a)). The
scenario shows how the change is propagated to all affected parts of the framework. The
designer proceeds in the following steps:

1. (M) The designer analyzes a new user requirement or change in the system environ-
ment in cooperation with the domain expert. This is necessarily a manual process.
(S)he decides whether the subject of change is the whole application domain or only
a particular XML format. In the former case, it is necessary to implement the change
at the PIM level. In the latter one, the change will be done at the PSM level. The de-
signer can also make a change in a particular XML document, i.e. at the extensional
level.

2. (M) The designer makes the initial change at the identified level. In our sample
scenario, the initial change was made in the PSM schema on the right-hand side of
Fig. 6(b) as indicated by the black arrow pointing to class PrivateCus with two
new attributes fname and lname which replaced the original attribute name.

3. First, the upwards propagation is performed:
(a) (A) The impact analysis of the change to the upper level is computed auto-

matically and presented to the designer (see Nečaský et al., 2011a for formal
description of impact analysis algorithms). The mappings between the levels
are exploited. The analysis shows inconsistencies caused by the change. The
designer can rollback the initial change and the whole propagation process at
this point.

(b) (S–A) Possible scenarios of propagation of the change to the upper level are
identified automatically and proposed to the designer (see Nečaský et al., 2011a
for formal description of impact analysis algorithms). Each scenario consists of
a sequence of change operations which needs to be performed at the upper level
to restore the consistency between the current and upper level. The designer
selects one of the scenarios manually.

(c) (A) The chosen scenario is performed at the upper level automatically.
(d) If the PIM level is not reached, steps 3(a–c) are repeated for each operation from

the chosen scenario. The upper level becomes the current level.
In our sample scenario, the initial change was performed at the PSM level, so the
upwards propagation has only one cycle – propagation to the PIM level. The result
is highlighted in Fig. 6(b) by the grey arrow pointing to PIM class PrivateCus
with two new attributes fname and lname instead of the original attribute name.

4. Second, the downwards propagation is performed for each operation made at the
PIM level. For each XML format, the propagation continues until the extensional
level is reached:

eX
o
lu

ti
o
:

M
et

h
o
d
o
lo

g
y

fo
r

D
es

ig
n

a
n
d

E
vo

lu
ti

o
n

o
f
X

M
L

S
ch

em
a
s

46
3

Customer

code

name

email

phone

CorporateCus Purchase

status

date

number

made

Item

price

Product

code

title

list-price

0..*

0..*
0..*

headquarters

storage

secretary

PrivateCus

address

PurchaseRQSchema

Purchase

purchaseRQ

cust

Items

Item

price

Product

@code

item

items
1..*

Customer

name

code

CustomerListSchema

custList

CustomerList

|

cust

PrivateCus CorporateCus

name

address

phone

name

hq

storage

phone

1..*

P
IM

 L
e

v
e

l
P

S
M

 L
e

v
e

l

<element name="custList">

 <sequence>

 <element name="cust" ...>

 <sequence>

 <element name="name" .../>

 ...

 </sequence>

 </element>

 </sequence>

</element>

<element name="purchaseRQ">

 <sequence>

 <element name="cust" ...>

 <sequence>

 <element name="name" .../>

 ...

 </sequence>

 </element> ...

 </sequence>

</element>

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

<custList version="1.3">

 <cust>

 <name>Martin Necasky</name>

 ...

 </cust>

 ...

</custList>

for $p in /purchaseRQ

return fn:sum(

for $it in $p//item

where $it/price > 20

return $price)

for $c in //cust

where $c/address

return

 <private>{$c/name}

 </private>

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

<purchaseRQ version="1.0">

 <cust>

 <name>Department </name>

 ...

 </cust>

 ...

</purchaseRQ>

for $p in /purchaseRQ

return fn:sum(

for $it in $p//item

where $it/price > 20

return $price)

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)O
p

.
Le

v
e

l
O

p
.

Le
v

e
l

Lo
g

.
Le

v
e

l

Customer

code

email

phone

CorporateCus Purchase

status

date

number

made

Item

price

Product

code

title

list-price

0..*

0..*
0..*

name

headquarters

storage

secretary

PrivateCus

fname

lname

address

PurchaseRQSchema

Purchase

purchaseRQ

cust

Items

Item

price

Product

@code

item

items
1..*

Customer

name

code

CustomerListSchema

custList

CustomerList

|

cust

PrivateCus CorporateCus

fname

lname

address

phone

name

hq

storage

phone

1..*

PurchaseRQSchema

Purchase

purchaseRQ

cust

PrivateCus

fname

lname

code

CustomerListSchema

custList

CustomerList

|

cust

PrivateCus CorporateCus

fname

lname

address

phone

1..*

<element name="custList">
 <sequence>
 <element name="cust" ...>
 <choice>
 <element name="name" .../>
 <sequence>
 ...fname, lname...
 </sequence>
 ...
 </choice>
...

<element name="purchaseRQ">
 <sequence>
 <element name="cust" ...>
 <choice>
 <element name="name" .../>
 <sequence>
 ...fname, lname...
 </sequence>
 ...
 </choice>
...

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

<custList version="1.3">
 <cust>
 <fname>Martin</fname>
 <lname>Necasky</lname>
 ...
 </cust>
 ...
</custList>

for $p in /purchaseRQ

return fn:sum(

for $it in $p//item

where $it/price > 20

return $price)

for $c in //cust
where $c/hq
return
 <private>
 {$c/fname,$c/lname}
 </private>

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

<purchaseRQ version="1.0">

 <cust>

 <name>Department </name>

 ...

 </cust>

 ...

</purchaseRQ>

for $p in /purchaseRQ

return fn:sum(

for $it in $p//item

where $it/price > 20

return $price)

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

Customer

code

email

phone

CorporateCus

name

headquarters

storage

secretary

Purchase

status

date

number

made

Item

price

Product

code

title

list-price

0..*

0..*
0..*

PrivateCus

fname

lname

address

name

hq

storage

phone

|

CorpCus

name

code

items

...

<element name="custList">

 <sequence>

 <element name="cust" ...>

 <sequence>

 <element name="name" .../>

 ...

 </sequence>

 </element>

 </sequence>

</element>

<element name="purchaseRQ">

 <sequence>

 <element name="cust" ...>

 <sequence>

 <element name="name" .../>

 ...

 </sequence>

 </element> ...

 </sequence>

</element>

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

<custList version="1.3">

 <cust>

 <name>Martin Necasky</name>

 ...

 </cust>

 ...

</custList>

for $p in /purchaseRQ

return fn:sum(

for $it in $p//item

where $it/price > 20

return $price)

for $c in //cust

where $c/address

return

 <private>{$c/name}

 </private>

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

<purchaseRQ version="1.0">

 <cust>

 <name>Department </name>

 ...

 </cust>

 ...

</purchaseRQ>

for $p in /purchaseRQ

return fn:sum(

for $it in $p//item

where $it/price > 20

return $price)

for $p in /purchaseRQ

return fn:sum(

 for $it in $p//item

 where $it/price > 20

 return $price)

(a) Initial state (b) Upward change propagation (c) Downward change propagation

Fi
g.

6.
D

em
on

st
ra

tio
n

of
ev

ol
ut

io
n

m
et

ho
do

lo
gy

.

464 J. Klímek et al.

(a) (A) The impact analysis of the change to the lower level is computed automat-
ically and presented to the designer. The mappings between the levels are ex-
ploited. Similarly to step 3(a), the designer can rollback the whole propagation
process here.

(b) (S–A) Similarly to step 3(b), possible scenarios of propagation of the change to
the lower level are identified and the designer selects one of them manually.

(c) (A) The chosen scenario is performed at the lower level automatically.
(d) If the extensional level is not reached, steps 4(a)–4(c) are repeated for each

operation from the chosen scenario. The lower level becomes the current level.
In our sample scenario, the downwards propagation has an impact on both XML
formats as highlighted in Fig. 6(c) by the grey arrow.

The approach naturally preserves the semantic consistency between the XML formats.
It facilitates the work of the designer by performing the impact analysis first and then by
providing possible propagation scenarios. The designer only selects from the offered pos-
sibilities or provides own scenarios when the offered ones are not sufficient or none sce-
nario can be offered. The propagation according to the selected scenario is then automatic.

5. Experiments

We made experimental evaluation of the proposed approach in the domain of electronic
health (eHealth). We experimented with the Data Standard for eHealth in the Czech Re-

public (DASTA).3 The data standard comprises tens of XML formats for exchanging infor-
mation about patients, drugs, hospitals, medical examinations, etc. Only XML schemas
and textual documentation is provided by the DASTA authors. We therefore extended
DASTA with a PIM schema of the medical domain and modeled 14 XML formats with
PSM schemas. To evaluate the methodologies presented in this paper, we created some
of the PSM schemas using the forward engineering methodology and others using the re-
verse engineering methodology. We then proceeded with the evaluation of the evolution
methodology.

To be able to do the evaluation, our first goal was to design the PIM schema on the
basis of the textual documentation provided by the DASTA authors. Its part is shown
in Fig. 7. It models patients and doctors, insurance, diagnoses, vaccination and working
disabilities. The whole PIM schema contains 76 classes, 124 associations and more than
300 of attributes.

We first evaluated our forward-engineering methodology. We chose 4 different XML
formats for representing various kinds of XML messages related to manipulation with
drugs (prescription, prescribed drugs, dispensation and vaccination detail). We did the
experiment with 2 XML schema designers. Each created PSM schemas of two of the
XML formats from the provided PIM schema. The resulting PSM schemas contain 42
classes, 38 associations and 76 attributes in total.

3http://ciselniky.dasta.mzcr.cz/ (in Czech).

eXolutio: Methodology for Design and Evolution of XML Schemas 465

Patient

patient_id

birth_number

birth_date

death_date

sex

occupation

nationality

citizenship

education

blood_type

rh_factor

Physiology

height

weight

measure_date
Address

street

street_number

zip

city

countryInsurance

insurance_id

insurance_type

valid_from

valid_to InsuranceCompany

code

title

0..*

0..1

0..1
0..*

0..*

Vaccination

type

description

dosage_id

batch_id

vaccination_date

Drug

name

generic_name

code

0..*

Doctor

doctor_id

specialization

function

0..*

Person

first_name

surname

title

Diagnosis

type

code

findings_date

specification

0..*

0..*

WorkDisability

evidence_id

cssa_id

valid_from

injury

sickness

interrupted

expiration_date

Certificate

electronic_id

print_id

issue_date

0..1
entering

final
0..1

author

author

author

0..*

0..* 0..*

Fig. 7. PIM schema of eHealth domain in the Czech Republic.

We discussed the results with the designers as well as with the authors of DASTA.
Their experience and evaluation is summarized below:

1. A designer saves a significant amount of time. The 4 XML schemas contain 106
declarations of XML elements and attributes (the declarations are modeled by all
attributes and some associations). Instead of encoding them manually, which takes
a lot of coding time, the designer just does drag and drop operations. He drags
and drops classes and associations from the pre-defined PIM schema to the PSM
schemas (i.e. 42 + 38 drag and drop operations). For each of the 42 classes he
chooses required PIM attributes from an automatically displayed list. These are au-
tomatically moved to the PSM schema.

2. The number of errors in the modeled XML schemas and semantic inconsistencies
among them caused by different understandings of the domain by the XML schema
developers is reduced for each of the 156 PIM components thanks to the common
PIM schema.

3. The accuracy of the resulting XML schemas can be easily checked by a domain
expert since he can validate each declaration in the XML schemas against the PIM
schema visually without studying complex and technical XML schema code. The
tool automatically shows a mapping of each chosen declaration to the corresponding
PIM component. Therefore, the time needed to find the corresponding PIM compo-
nent is significantly reduced.

4. It can be easily checked whether any of more than 500 of medicinal concepts mod-
eled in the whole PIM schema is represented in the XML schemas and how. Vice
versa, having one of the declarations from the resulting XML schemas it is easy to
see in the PIM schema what medicinal concept it represents.

Even though it is hard to exactly measure the time saved and errors reduced, the ex-
periment demonstrates that the savings are significant. The time the designer needs to
manually encode an XML element or attribute declaration is much longer than the time
required to dragging and dropping components from the PIM schema to the PSM schemas

466 J. Klímek et al.

. Even more time is saved when the domain expert checks the validity of the created XML
schemas against the conceptual representation expressed in the form of the PIM schema.

We also evaluated our reverse-engineering methodology. We chose 8 XML schemas
from the rest of the DASTA XML schemas (i.e. from those we did not use for the for-
ward engineering evaluation). According to the methodology, we converted them to their
PSM equivalents. This is an automatic process without participation of the designer. The
resulting PSM schemas contained 62 classes, 54 associations and 93 attributes. Most of
them were then mapped to their PIM equivalents automatically. This is not surprising be-
cause the PIM schema was created manually according to the XML schemas. Therefore,
the names of the XML elements and attributes declared in the XML schemas correspond
to the names of classes, attributes and associations in the PIM schema. If the reader is
interested in how our reverse engineering method is successful in cases where the names
in the PSM schemas do not exactly correspond to the PIM schema we refer to Klímek and
Nečaský (2010).

There were several inconsistencies which could not be resolved automatically and the
mapping had to be created manually. This included approx. 20% of PSM components. The
revealed inconsistencies resulted in proposals of changes to the original XML schemas
so that they could be made semantically consistent with the rest of the DASTA XML
schemas. For example, it has appeared that 3 different kinds of medical doctor identifiers
were used in three different XML schemas. We discussed the PIM and PSM schemas with
the DASTA authors and they discovered other inconsistencies which they did not see while
reading the XML schemas (different structures for addresses, identifiers, etc.).

The evaluation shows that the reverse engineeringprocess helps to reveal various errors
and semantical inconsistencies among XML schemas in a given set. The inconsistencies
are discovered mainly during the mapping of automatically generated PSM schemas to
the PIM schema. The components which cannot be mapped automatically are candidate
inconsistencies and need to be inspected by the designer. Most of them are hard to reveal
when only XML schemas exist which need to be explored manually. On the other hand,
our approach requires the existence of the PIM schema – its creation takes some time.

And, finally, we also evaluated the evolution methodology. The DASTA standard is
changed four times a year by the authors. This makes 24 versions since 2006. We do not
discuss all the changes which appeared in these 24 versions. Instead we select one of the
recent versions which included an interesting change – replacement of one of the original
DASTA XML formats related to working disabilities with another XML format for the
same kind of messages used by the Czech Social Security Administration (CSSA).4 In this
experiment, we evolved the PSM schema of the original XML format to a new version
which modeled the XML format used by CSSA. The old one is depicted in Fig. 8(a). The
new one is depicted in Fig. 8(b). The figures contain only parts of the PSM schemas – the
original PSM schemas are more complex (they contain 10/29 classes, 9/28 associations,
and 14/41 attributes, respectively).

There are many differences between both versions. Some of them are displayed in
Fig. 8 in red. For example, the red arrow connecting the attribute interruption on the left

4http://www.cssz.cz/en/about-cssa/.

eXolutio: Methodology for Design and Evolution of XML Schemas 467

DisabilitySchema

DASTA

Patient

@patient_id

Disabilities

WorkDisability

@evidence_id

@valid_from

@injury

@sickness

@interrupted

@expiration_date

StartDiagnosis

@start_diag_code

EndDiagnosis

@end_diag_code

Certificate

@issue_date

1..*

0..10..1

dasta

ip

pn

pnz

DisabilitySchemaCSSA

DASTA

Patient

@patient_id

Disabilities

WorkDisability

@evidence_id

@valid_from

@interruption_date

@interruption_note

StartDiagnosis

@code

EndDiagnosis

@code

0..1

0..1
0..1

dasta

ip

pn

hpn

Patient

Hospitalization

@date_from

@date_to

0..*hsp

Expiration

expiration_date

expiration_reason

dg

start end

pat exp

Diagnoses

@occupation

Fig. 8. PSM schema of (a) old XML format for working disabilities and (b) CSSA XML format for working
disabilities.

with the attributes interruption_date and interruption_note on the right show that the orig-
inal attribute was split by the designer to 2 new attributes. On the other hand, the attribute
injury has been removed. Some components were renamed, e.g., start_diag_code and
end_diag_code were both renamed to code. Some components have been newly created,
e.g., class Hospitalization on the right.

Many changes made at the PSM level needed to be propagated to the PIM schema be-
cause they affected the conceptual representation of the medical domain. For example, the
split of the attribute interruption was propagated in this way. From here, they needed to
be propagated to the other PSM schemas. (For the experiment, we had 12 PSM schemas
modeled from the previous evaluation of the forward and reverse engineering methodolo-
gies where the changes had to be propagated from the PIM level.) The designer performs
edit operations on a chosen schema. The edit operations are expressed as a sequence of
atomic operations of four kinds: creation, removal, update and synchronization. The de-
signer does not use these atomic operations as they are too simple. Instead, he performs
operations like split attribute which is defined as a sequence of atomic operations of all
kinds. Therefore, the designer performs a single operation but, in fact, he executes a se-
quence of several atomic operations.

In the experiment, we measure the number of atomic operations which had to be per-
formed to evolve the old PSM schema to the new one. We also measure the number of
atomic operations which were performed by our propagation mechanism to ensure that
the PIM schema and all related PSM schemas are evolved correspondingly. We show the
total number of atomic operations, the number of operations which were performed by the
designer manually, and the number of operations which were performed automatically by
our propagation mechanism.

The result is depicted in Fig. 9. Figure 9(a) shows the number of operations performed
manually by the designer to evolve the old version of the PSM schema to the new ver-

468 J. Klímek et al.

67

142

11
8

52
47

7
6

73

58

46

28

Fig. 9. Numbers of atomic operations performed during the evolution of the XML format depicted in Fig. 8.

sion. Figure 9(b) shows the number of operations automatically propagated to the PIM
schema on the basis of the manually performed operations from Fig. 9(a). Figure 9(c)
shows the number of operations automatically propagated from the PIM level to all other
PSM schemas. The columns of each graph represent the kinds of operations – creation,
update, removal, synchronization. For example, Fig. 9(a) says that there were 67 creation
operations, 142 updates, etc.

Let us now analyze the numbers of operations in a more detail. The numbers show that
there have been 67 creation operations performed manually by the designer. However, the
propagation mechanism resulted only in 52 creation operations performed automatically
on the PIM schema. This is because not all creation operations at the PSM level lead to
creation operations at the PIM level. The designer may create a PSM component which
only models a grammatical rule without a semantical equivalent at the PIM level. The
same holds for the other kinds of operations. The most significant difference is in update
operations. Only 1/3 of update operations were propagated to the PIM level. This is be-
cause the designer only renamed XML components without changing the names of their
PIM equivalents. In case of removal and synchronization operations, the reason is that
removed or synchronized components have no equivalent at the PIM level.

Figure 9(b) demonstrates the amount of work saved by our propagation mechanism to
keep the PIM schema consistent with changes made by the designer in the PSM schema.
Without propagation, the designer would have to perform all operations summarized in
Fig. 9(b) manually. If we compare the numbers with the numbers in Fig. 9(a) we see
that we saved more than 1/3 of operations. Figure 9(c) shows the number of operations
performed automatically by our propagation mechanism on other PSM schemas after the
PIM schema has been automatically updated. These operations are necessary to keep the
other PSM schemas semantically consistent with the changes made by the designer in the
primary updated PSM schema.

The numbers show that without our propagation mechanism the designer would have
to do a lot of operations manually on other XML schemas to keep them semantically

eXolutio: Methodology for Design and Evolution of XML Schemas 469

XML schema

XML schema

visualization

XML schema

UML diagram
Platform-Specific

Level

Logical

Level

Operational

Level

Extensional

Level
XML

documents

XML
documents

XML
documents

XML
documents

XML
documents

XML
documents

XML schema

XML
documents

XML
documents

XML
documents

XML schema

XML queries

(a) (b) (c) (d)

Fig. 10. Other existing approaches in scope of the framework.

consistent. More than 1/2 of the necessary operations were performed automatically by
our change propagation mechanism. However, this means saving much more than 1/2

of time. For each change in the primary XML schema the designer would have to think
how to propagate the change to the other XML schemas. Using our approach the designer
works at the PSM level and the changes are propagated automatically through the PIM
schema.

6. Comparative Analysis

Naturally, eXolutio is not the first tool that deals with change management of XML ap-
plications. However, none of the existing approaches focuses on such a complex case, or
they solve only a part of the problem.

We can divide the current approaches into several groups depicted in the context of
our framework in Fig. 10. Approaches in the first group (Fig. 10(a)) consider changes
at the logical level and differ in the selected XML schema language, i.e. DTD (Al-Jadir
and El-Moukaddem, 2003; Coox, 2003) or XML Schema (Tan and Goh, 2005; Cavalieri,
2010). In general, the transformations can be variously classified. For instance, paper of
Tan and Goh (2005) distinguishes migratory (e.g., movements of elements/attributes),
structural (e.g., adding/removal of elements/attributes) and sedentary (e.g., modifications
of simple data types). The changes are expressed variously and more or less formally. For
instance in Cavalieri (2010) a language called XSUpdate is described. The changes are
then automatically propagated to the extensional level to ensure validity of XML data.
There also exists an opposite approach that enables one to evolve XML documents and
propagate the changes to their XML schema (Bouchou et al., 2004). Approaches in the
second and third group (Fig. 10(b) and 10(c)) are similar, but they consider changes at
an abstraction of logical level – either visualization (Klettke, 2007) or a kind of UML
diagram (Domínguez et al., 2005). Both work at the PSM level, since they directly model
XML schemas with their abstraction. However, no PIM schema is considered, since all
the three groups consider only a single evolving XML schema.

Another open problem related to schema evolution is adaptation of the respective XML
queries (see Fig. 10(d)), i.e. propagation to the operational level. Unfortunately, the amount

470 J. Klímek et al.

of existing works is relatively low. Paper of Moro et al. (2007) gives recommendations on
how to write queries that do not need to be adapted for an evolving schema. In Geneves
et al. (2009) the authors consider a subset of XPath 1.0 for which they study the impact
changes in an XML schema.

Contrary to the described papers, in Passi et al. (2009) multiple local XML schemas
are considered and mapped to a global object-oriented schema. However, the global
schema does not represent a common problem domain, but a common integrated schema;
the changes are propagated just upwards and the operations are not defined rigorously.
The need for a well defined set of simple operations and their combination is identified
in Bellahsene et al. (2011).

In the field of commercial tools, every tool profiles itself either as a UML tool (EA,
2014; MagicDraw, 2014) or an XML tool (Oxygen, 2014; XML Spy, 2014). Some of
the UML tools offer features for translation UML class diagrams to XML schemas (EA,
2014), but the translation algorithms are straightforward and not applicable for the situa-
tion where a family of schemas describe the common model. In the state-of-the-art XML
tools, the user can use various views, representations and visualizations for editing, query-
ing and validating XML schemas and documents, but they do not target schema evolution.
Tools for XML schema comparison are available as well (Coox, 2003). They operate at
the logical level and solving the ambiguity (required in all comparison approaches) is left
up to the user. None of the XML tools, however, offers mapping a family of schemas to a
common model and complex evolution with propagation, as does eXolutio.

7. Conclusion and Open Problems

The aim of this paper was to provide a summary and overview of the work that has been
done in our research group in the area of XML evolution in recent years. We have described
various aspects of our general framework, called eXolutio, which serves as an experimental
tool for proving the proposed concepts and evaluation of respective algorithms. This text
should help the reader to get acquainted with the target area and to find the relation between
the published papers and our work.

In our future work we want to continue in our effort towards a robust evolution man-
agement framework and extend it so that it can be used in the industry as a complete tool.
We also want to focus on several open issues, namely propagation of changes to the opera-
tional level, preserving of integrity constraints at all the levels and also other data formats
than XML.

Acknowledgements. This work was supported by the project SVV-2014-260100.

References

Al-Jadir, L., El-Moukaddem, F. (2003). Once upon a time a DTD evolved into another DTD. . . In: Proceedings

of OOIS 2003. Springer, Berlin/Heidelberg, pp. 3–17.

eXolutio: Methodology for Design and Evolution of XML Schemas 471

Bellahsene, Z., Bonifati, A., Rahm, E. (2011). Schema Matching and Mapping, Section 6. Data-Centric Systems

and Applications. Springer, Berlin/Heidelberg.
Biron, P.V., Malhotra, A. (2004). XML Schema Part 2: Datatypes, second edition. W3C. http://www.w3.org/

TR/xmlschema-2/.
Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J. (2007). XQuery 1.0: An XML

Query Language. W3C. http://www.w3.org/XML/Query/.
Bouchou, B., Duarte, D., Halfeld, M., Alves, F., Laurent, D., Musicante, M.A. (2004). Schema Evolution for

XML: A Consistency-Preserving Approach. Mathematical Foundations of Computer Science. Springer,
Prague, pp. 876–888.

Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F. (2008). Extensible Markup Language (XML)

1.0, fifth edition. W3C. http://www.w3.org/XML/.
Cavalieri, F. (2010). EXup: an engine for the evolution of XML schemas and associated documents. In: Pro-

ceedings of 2010 EDBT/ICDT Workshops. ACM Press, New York, pp. 1–10.
Coox, S. V. (2003). Axiomatization of the evolution of XML database schema. Programming and Computer

Software, 29(3), 140–146.
DiffDog (2014). Altova. http://www.altova.com/diffdog/.
Domínguez, E., Lloret, J., Rubio, A.L., Zapata, M.A. (2005). Evolving XML schemas and documents using

UML class diagrams. In: Proceedings of DEXA 2005, LNCS, Vol. 3588. Springer, Berlin, pp. 343–352.
EA (2014). Enterprise Architect. http://www.sparxsystems.com.au/products/ea/index.html.
Euzenat, J., Shvaiko, P. (2007). Ontology Matching. Springer, Berlin, Heidelberg. http://book.ontologymatching.

org/.
Geneves, P., Layaida, N., Quint, V. (2009). Identifying query incompatibilities with evolving XML schemas. In:

Proceedings of ICFP 2009, ACM Press, New York, pp. 221–230.
Kay, M. (2007). XSL Transformations (XSLT) Version 2.0. W3C. http://www.w3.org/TR/xslt20/.
Klettke, M. (2007). Conceptual XML schema evolution – the CoDEX approach for design and redesign. In:

Proceedings of BTW 2007 Workshop, Aachen, Germany, pp. 53–63.
Klímek, J., Nečaský, M. (2010). Integrating XML schemas for evolution of web services. In: Proceedings of

ICWS 2010, IEEE Computer Society, Miami, pp. 307–314.
MagicDraw (2014). http://www.magicdraw.com/.
Miller, J., Mukerji, J. (2003). MDA Guide Version 1.0.1. Object Management Group. http://www.omg.org/cgi-

bin/doc?omg/03-06-01.
Moro, M.M., Malaika, S., Lim, L. (2007). Preserving XML queries during schema evolution. In: Proceedings

of WWW 2007, ACM Press, New York, pp. 1341–1342.
Nečaský, M. (2009). Conceptual Modeling for XML. Dissertations in Database and Information Systems,

Vol. 99. IOS Press, Amsterdam.
Nečaský, M., Klímek, J., Malý, J., Mlýnková, I. (2011a). Evolution and change management of XML-based

systems. Systems and Software, 85(3), 683–707.
Nečaský, M., Mlýnková, I., Klímek, J., Malý, J. (2011b). When conceptual model meets grammar: a dual ap-

proach to XML data modeling. Data & Knowledge Engineering, 72, 1–30.
Oxygen (2014). An XML Editor. http://www.oxygenxml.com.
Passi, K., Morgan, D., Madria, S. (2009). Maintaining integrated XML schema. In: Proceedings of IDEAS 2009,

ACM Press, New York, pp. 267–274.
Tan, M., Goh, A. (2005). Keeping pace with evolving XML-based specifications. In: Proceedings of EDBT 2004

Workshops, Springer, Berlin/Heidelberg, pp. 280–288.
Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N. (2004). XML Schema Part 1: Structures, second

edition. W3C. http://www.w3.org/TR/xmlschema-1/.
UML (2007). Unified Modeling Language. Object Management Group. http://www.uml.org/.
XML Spy (2014). Altova. http://www.altova.com.

472 J. Klímek et al.

J. Klímek received his PhD. degree in Computer Science in September 2013 from the
Charles University in Prague, Czech Republic, where he currently works at the Depart-
ment of Software Engineering as a researcher. In addition, he works at the Faculty of
Information Technology, Czech Technical University in Prague as an assistant professor
at the Department of Software Engineering. His research areas involve Linked Data, XML
data design, integration and evolution. He has published 23 refereed conference papers (2
of them Best Papers), 4 journal papers and 1 book chapter. He is a co-organizer of 1 local
workshop and a PC member of an international conference. Jakub is a founding member
of the OpenData.cz initiative.

J. Malý received his PhD degree in Computer Science in September 2013 from the
Charles University in Prague, Czech Republic. His research areas involve conceptual mod-
eling of XML data and evolution of XML applications, integrity constraints in models and
Object Constraint Language. He has published 4 journal and 11 conference papers.

M. Nečaský received his PhD degree in Computer Science in 2008 from the Charles Uni-
versity in Prague, Czech Republic, where he currently works in the Department of Soft-
ware Engineering as an assistant professor. His research areas involve XML data design
and integration, Linked Data and Semantic Web. He has published more than 50 refereed
conference papers and journal articles. Martin is a founding member of the OpenData.cz
initiative.

I. Holubová received her PhD degree in Computer Science in 2007 from the Charles
University in Prague, Czech Republic. Currently she is an associate professor at the De-
partment of Software Engineering of the Charles University and an external member of
the Department of Computer Science and Engineering of the Czech Technical University.
She has published more than 60 publications in the area of XML data management and
Web engineering, 4x she gained the Best Paper Award. She is a PC member or reviewer
of 15 international events and co-organizer of 4 international workshops.

eXolution: metodika XML schemoms projektuoti ir modifikuoti

panaudojant koncepcinį modeliavimą

Jakub KLÍMEK, Jakub MALÝ, Martin NEČASKÝ, Irena HOLUBOVÁ

Pastaruoju metu XML kalba tapo svarbiausia duomenų vaizdavimo kalba. Todėl su šia kalba
siejamų technologijų ir tas technologijas naudojančių dalykinių programų skaičius sparčiai auga.
Tačiau tik nedidelis procentas tokių programų yra statinės ir, jas įdiegus, nebėra keičiamos. Daugu-

ma jų yra keičiamos, įgyvendinant naujus vartotojų keliamus reikalavimus arba dėl to, kad pakito

jų vykdymo aplinka. Straipsnis aprašo programinį karkasą ir metodiką, skirtus tokiose programose

naudojamų XML schemų evoliucijai ir jose padarytų pakeitimų pasekmių sklaidai per visą progra-

mą valdyti. Jis taip pat aprašo siūlomo programinio karkaso, pavadinto eXolution, eksperimentinę

realizaciją, sukurtą per kelerius pastaruosius metus autorių ir jų bendradarbių. Straipsnis supažin-

dina skaitytojus su plačia XML schemų evoliucijos tyrimų sritimi ir specifiniais autorių siūlomos

metodikos bei ją palaikančio programinio karkaso realizacijos ypatumais.

