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Abstract. The Generalized Traveling Salesman Problem is one of a well known complex combina-
torial optimization problems. Equality-Generalized Traveling Salesman Problem is a particular case
of it. The main objective of the problem it is to find a minimum cost tour passing through exactly one
node from each cluster of a large-scale undirected graph. Multi-agent approaches are successfully
used nowadays for solving real life complex problems. The aim of the current paper is to illustrate
some agent-based algorithms, including particular ant-based models and virtual robots-agents with
specific properties for solving Equality-Generalized Traveling Salesman Problem.
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1. Introduction

A large number of combinatorial optimization problems are NP-hard. Today, approxima-
tion and heuristic algorithms are used widely in order to find near optimal solutions of
difficult problems, within reasonable running time. Heuristics are among the best strate-
gies in terms of efficiency and solution quality for complex problems (Pop and Zelina,
2004).

The Generalized Traveling Salesman Problem (GTSP) introduced in Laporte and
Nobert (1983) and Noon and Bean (1991) is also a difficult complex problem. One of
its variants, E-GTSP where E means “equality”, it is named generally just GTSP, as in
the current paper. In E-GTSP, in a partitioned complex graph, exactly one node from a
cluster is visited.

Several approaches for solving the GTSP in a relatively short period of time, were
considered. In Fischetti et al. (2002a) a branch-and-cut algorithm for Symmetric GTSP is
described and analyzed and in Cacchiani et al. (2011) it is proposed a multistart heuristic
with a decomposition approach combined with improvement procedures. In Renaud and
Boctor (1998) it is proposed an efficient composite heuristic for the Symmetric GTSP

including insertion of a node from each non-visited node-subset. A random-key genetic
algorithm for the GTSP is described in Snyder and Daskin (2006) were genetic algorithm
includes a local tour improvement heuristic and the solutions are encoded using random
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keys. The memetic algorithm, proposed in Gutin and Karapetyan (2010) exploited a strong

local search procedure together with a well tuned genetic framework.

There are significant achievements in the area of local search algorithms for the GTSP.

In Karapetyan and Gutin (2012) is provided an exhaustive survey of GTSP local search

neighborhoods and proposed efficient exploration algorithms for each of them. A hybrid

ACS approach using an effective combination of two local search heuristics of different

classes is introduced in Reihaneh and Karapetyan (2012).

Hybrid heuristics are some of nowadays valuable instruments for finding good results

on complex real-life problems. Some successful hybrid techniques involve agent-based

algorithms and also in particular ant systems and virtual robot agents. The specific agents

features as the level of sensibility, direct communications, the capability to learn and stig-

mergy have a direct and in many cases a positive impact on the solution of a difficult,

complex problem. The current survey paper illustrates and finally makes a comparison on

the several agent-based approaches stated below.

In Pintea et al. (2006) was used for the first time the Ant Colony System (ACS) for

solving GTSP. Ant-based optimization was introduced by Marco Dorigo in his PhD thesis,

as stated in Dorigo and Gambardella (1996) and used for solving the classical Traveling

Salesman Problem. Based on newly updating rules and some MAX–MIN Ant System’s

features stated in Stützle and Hoos (1997), a reinforced ACS algorithm for GTSP was

introduced in Pintea et al. (2006). The reinforced algorithm was competitive with the

already proposed heuristics for the GTSP.

Several new heuristics involving agents properties were also introduced: Sensitive Ant

Colony System (SACS), Sensitive Robot Metaheuristic (SRM) and Sensitive Stigmergic

Agent System (SSAS). Sensitive ACS (SACS) (Chira et al., 2007a) heuristic uses the sen-

sitive reactions of ants to pheromone trails. Numerical experiments illustrated in Chira et

al. (2007a) shows the potential of the SACS model. Sensitive Robot Metaheuristic (SRM)

(Pintea et al., 2008) uses virtual autonomous robots in order to obtain improved solutions.

In SSAS (Chira et al., 2007b) the agents adopt a stigmergic behavior in order to iden-

tify problem solutions and have the possibility to share information about dynamic envi-

ronments improving the quality of the search process. Using an Agent Communication

Language (ACL) (Wooldridge and Dunne, 2005) the agents communicate by exchanging

messages.

Generalized Traveling Salesman Problem has many applications, as location and

telecommunication problems (Fischetti et al., 2002a; Laporte and Nobert, 1983) or in

routing problems (Pintea et al., 2011; Pop et al., 2009).

The paper is organized as follows. Section 2 provides a description and a mathematical

model of the Generalized Traveling Salesman Problem. The proposed agent-based models

are illustrated in Section 3. Several discussions and analysis of the agent-based techniques

involved for solving GTSP are illustrated in Section 4. The paper concludes with further

research directions.



A Unifying Survey of Agent-Based Approaches for Equality-GTSP 511

2. The Generalized Traveling Salesman Problem

The current section includes the description of the Generalized Traveling Salesman Prob-

lem including a mathematical model and its complexity. For the mathematical model of
GTSP it is considered a complete undirected graph G = (V ,E) with n nodes. The graphs
edges are associated with non-negative costs. The cost of an edge e = {i, j } ∈ E is denoted
by cij .

The generalization of TSP implies an existing partition of set V . The subsets of V are
called clusters. Let V1, . . . , Vp be a partition of V into p clusters: V = V1 ∪V2 ∪ · · ·∪Vp

and Vl ∩Vk = ∅ for all l, k ∈ {1, . . . , p}. The objective of the Generalized Traveling Sales-

man Problem is to find a minimum-cost tour. In other words, it has to find a minimum-cost
tour, a subset H , with exactly one node from each cluster Vi , i ∈ {1, . . . , p}.

A tour is a subset of nodes such that the subset contains exactly one node from each
cluster of the graph partition. There are involved the following decisions: (i) choose a
node subset S ⊆ V , such that |S ∩ Vk| = 1, for all k = 1, . . . , p; (ii) find a minimum cost
Hamiltonian cycle H in the subgraph of G induced by S.

Definition 1. The Generalized Traveling Salesman Problem is called symmetric if and
only if the equality c(i, j) = c(j, i) holds for every i, j ∈ V , where c is the cost function
associated to the edges of G.

The time complexity for an exact algorithm is |Vk1
|O(m + n logn) and in the worst

case the complexity is O(nm + n log n) (Pop, 2007). An accurate discussion about time
complexity for the GTSP is given in Karapetyan and Gutin (2012).

3. Agent-Based Approaches for Solving the Generalized Traveling Salesman

Problem

The following subsections will describe in detail the Ant Colony System, the reinforced,
sensitive, multi-agent hybrid sensitive and stigmergic agent-based approaches for solving
Generalized Traveling Salesman Problem.

3.1. Ant Colony System for Generalized Traveling Salesman Problem

The first Ant Colony Optimization (ACO) heuristic was Ant System (AS). The algorithm
was proposed in Dorigo (2011). ACO it is a particular multi-agent approach introduced
for solving complex combinatorial optimization problems. The ant-based algorithms, as
the entire ACO framework, was inspired by the observation of real ant colonies.

In ant-based models an artificial ant can find shortest paths between ‘food’ sources
and a ‘nest’. While walking the ants deposit on the ground a substance called pheromone.
In real life ants smells pheromone when choosing their paths and the trails with the
largest amount of pheromone is choose. This behavior leads to the emergence of short-
est paths and after a while the entire ant colony uses the shortest path. These features
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are used also in the algorithmic mechanism of artificial ant systems (Dorigo, 2011;
Crisan, 2007). The artificial agents called artificial ants iteratively construct candidate
solution to an optimization problem. The solution construction is guided by pheromone
trails and the specific information of the problem, in particular GTSP.

Ant Colony System (ACS) (Dorigo and Gambardella, 1996) was developed to improve
Ant System making it more efficient and robust. The model was developed and extended
for the GTSP by Pintea et al. (2006). Based on the mathematical model of GTSP from
Section 2, let Vk(y) be the node y from the cluster Vk . The number of clusters is denoted
with nc. The extended model works as follows.
Initialization procedure. Initially the ants are placed in the nodes of the graph, choosing
randomly the clusters and also a random node from a chosen cluster. Each edge has a label
with a trail intensity: τij (t) the trail intensity of the edge (i, j) at time t . Each trail has a
given initial pheromone value, τ0. Build an initial tour T using a Greedy algorithm.
Construction of a tour. At each iteration every ant moves to a new node from an unvisited
cluster and the parameters controlling the algorithm are updated. An ant decides which
node is the next move with a probability that is based on the distance to that node, or the
cost of the edge, and the amount of trail intensity on the connecting edge. The inverse of
distance from a node to the next node is known as the visibility, ηij . At each time unit
evaporation takes place in order to stop the intensity of pheromone on the trails. The rate
evaporation is ρ ∈ (0,1).

A tabu list is maintained with the purpose to forbid ants visiting the same cluster in
the same tour. The ant tabu list is cleared after each completed tour. In order to favor
the selection of an edge that has a high pheromone value, τ , and high visibility value,
η a probability function pk

iu is considered. J k
i are the unvisited neighbors of node i

by ant k and u ∈ J k
i, u = Vk(y), being the node y from the unvisited cluster Vk . The

probability function is defined as follows, where β is a parameter used for tuning the
relative importance of edge cost in selecting the next node.

pk
iu(t) =

[τiu(t)][ηiu(t)]
β

6o∈J k
i
[τio(t)] · [ηio(t)]β

, (1)

pk
iu is the probability of choosing j = u, where u = Vk(y) is the next node, if q > q0,

when the current node is i; else the next node j is chosen as follows, where q is a random
variable uniformly distributed over [0,1] and q0 is a parameter similar to the temperature
in simulated annealing, q0 ∈ [0,1]

j = argmax
u∈J k

i

{

τiu(t)
[

ηiu(t)
]β}

. (2)

The ants guides the local search by constructing promising solutions based on good locally
optimal solutions. A local update rule for pheromone trails is based on ACS (Dorigo and
Gambardella, 1996) local rule:

τij (t + 1) = (1 − ρ) · τij (t) + ρ · τ0. (3)



A Unifying Survey of Agent-Based Approaches for Equality-GTSP 513

Compute a solution. After each step is computed the local best tour length. The length of
each tour is computed and compared with the length of the already known best tour. If it
is found an improved tour, the best tour T + and its length L+ are updated.
Global update procedure. The global update procedure for the generalized problem is
based on Ant Colony System for Traveling Salesman Problem only the ant that generate the
best tour is allowed to globally update the pheromone. The current update rule is applied
to the edges of the best tour. The correction rule follows where 1τij (t) is the inverse cost
of the best tour.

τij (t + 1) = (1 − ρ)τij (t) + ρ1τij (t). (4)

The algorithm concludes with finding an optimal cost tour, a subset of nodes with
exactly one node from each partition of the GTSP. The main steps of Ant Colony System

for GTSP are summarized in Algorithm 1.

Algorithm 1: Ant colony system for GTSP

1: Initialization procedure
2: repeat

3: Construction of a tour
4: Compute a solution (3.1)
5: Global update procedure (4)
6: until end condition
7: return the shortest tour and its length

3.2. Reinforcing Ant Colony System for Generalized Traveling Salesman Problem

An Ant Colony System for the Generalized Traveling Salesman Problem it is introduced
and detailed in Pintea et al. (2006), Pintea (2010). In order to enforces the construction
of a valid solution used in ACS a new algorithm called Reinforcing Ant Colony System

(RACS) it is elaborated with a new pheromone rule as in Pintea and Dumitrescu (2005) and
pheromone evaporation technique as in Stützle and Hoos (1997). The main improvements
of the introduced algorithm are further described.
Reinforced construction of tours. The construction of a tour Section 3.1 from Algorithm 1
is changed as follows. After each transition the trail intensity is updated using the inner
correction rule from Pintea and Dumitrescu (2005). The inner rule updates the pheromone
trail for the neighbors u of a potential candidate node j , where L+ is the cost of the current
known best tour

τiu(t + 1) = (1 − ρ) · τiu(t) + ρ ·
1

n · L+
. (5)

Reinforced global update procedure. It is used the global update procedure 4 and when
the pheromone trail is over an upper bound τmax, the pheromone trail is re-initialized. In
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order to avoid stagnation it is used the pheromone evaporation technique introduced in
MAX–MIN Ant System (Stützle and Hoos, 1997) (6).

if (τij (t) > τij (t)) then τij (t) = τ0. (6)

The reinforcement technique, as illustrated in Algorithm 2, gives good results for GTSP as
are stated in Pintea et al. (2006) and as follows in Section 4, Evaluations of Agent-Based

Algorithms for E-GTSP.

Algorithm 2: Reinforcing ant colony system for GTSP

1: Initialization procedure.
2: repeat

3: Reinforced construction of tours.
4: Compute a solution (3.1)
5: Reinforced global update procedures (4), (6).
6: until end condition
7: return the shortest tour and its length

3.3. Sensitive Ant Colony System for Generalized Traveling Salesman Problem

The Sensitive Ant Colony System (SACS) for GTSP is based on the Heterogeneous Sensitive

Ant Model for Combinatorial Optimization (Chira et al., 2008). In sensitive ant-based
models there are used a set of heterogeneous agents (sensitive ants) able to communicate
in a stigmergic manner and take individual decisions based on changes of the environment
and on pheromone sensitivity levels specific to each agent. The sensitivity variable induce
various types of reactions to a changing environment.

A good balance between search diversification and exploitation can be achieved by
combining stigmergic communication with heterogeneous agent behavior. Each agent is
characterized by a pheromone sensitivity level, PSL expressed by a real number from
[0,1]. The transition probabilities from ACS model (Dorigo and Gambardella, 1996) are
changed using the PSL values in a re-normalization process. The ACS transition probabil-
ity is reduced proportionally with the PSL value of each agent in the sensitive ant-based
approach (Chira et al., 2008). Extreme situations for pheromone sensitivity level values
are when an ant is ’pheromone blind’, PSL = 0, with a null sensitivity level the ant will
ignore completely the stigmergic information and when an ant has maximum pheromone
sensitivity, PSL = 1.

Low PSL values indicate that a sensitive ant will choose very high pheromone levels
moves. These ants are more independent and can be considered environment explorers
and have the potential to discover in an autonomous way new promising regions. The
ants with high PSL values are able to intensively exploit the promising search regions
already identified. The PSL value can increase or decrease according to the search space
encoded in the ant’s experience. In the SACS model for solving GTSP two ant colonies
are involved. Each ant is endowed with a pheromone sensitivity level. In the first colony
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the ants have small PSL values (sPSL) and the second colony with high PSL values
hPSL. The sPSL ants autonomously discover new promising regions of the solution space
to sustain search diversification. The sensitive-exploiter hPSL ants normally choose any
pheromone marked move. SACS for solving GTSP (Chira et al., 2007a) works as follows.
Initialization procedure for sensitive ants. The ants are placed randomly in the nodes of
the graph and the parameters are initialized. The sensitivity level is denoted by s and
its value is randomly generated in (0; 1). For sPSL ants the sensitivity parameter s is
considered between 0 and s0 and for hPSL ants s values are randomly chosen in (s0; 1),
where s0 ∈ [0,1]

Construction of a tour for sensitive ants. At each iteration every sPSL-ant moves to a new
node and the parameters are updated. When an ant decides which node from a cluster is
the next move it does so with a probability that is based on the distance to that node and
the amount of trail intensity on the connecting edge (Section 3.1).
New Local Updating Rule. The trail intensity is updated (Chira et al., 2007a), using the
local rule as following, where n is the total number of the nodes

τij (t + 1) = s2 · τij (t) + (1 − s)21τ(t) ·
1

n
. (7)

These steps are reconsidered by the hPSL-ant using the information of the sPSL ants.
Compute a solution and Global update procedure are performed as in Section 3.1. The
shortest tour found by sensitive ants is the result of the algorithm. Algorithm 3 illustrates
the Sensitive Ant Colony System model for GTSP.

Algorithm 3: Sensitive ant colony system for GTSP

1: Initialization procedure for sensitive ants
2: repeat

3: Construction of a tour for sensitive ants; a local update rule (7)
for each sPSL-ant and hPSL-ant

4: Compute a solution (3.1)
5: Global update procedure (4)
6: until end condition
7: return the shortest tour and its length

3.4. Sensitive Robot Metaheuristic for Generalized Traveling Salesman Problem

A particular technique, inspired from both SACS and involving autonomous robots is Sen-

sitive Robot Metaheuristic (SRM) (Pintea et al., 2008). The model relies on the reaction
of virtual sensitive autonomous robots to different stigmergic variables. Each robot is en-
dowed with a distinct stigmergic sensitivity level. SRM ensures a balance between search
diversification and intensification. As it is detailed in Pintea et al. (2008), a stigmergic
robot action is determined by “the environmental modifications caused by prior actions
of other robots”. Sensitive robots are artificial entities with a Stigmergic Sensitivity Level

(SSL) which is expressed by a real number in the unit interval [0,1].
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As it is in general for agents, here, in particular, robots with small SSL values are
considered explorers of the search space and are considered independent sustaining diver-
sification. The robots with high SSL values are exploiting the promising search regions
already identified by explorers. The SSL values in SRM model increase or decrease based
on the search space topology encoded in the robot experience.

Now something about the stigmergic robots involved in the process of solving a com-
binatorial optimization problem (Zelina, 2008), including GTSP. Qualitative stigmergy
means a different action and quantitative stigmergy is interpreted as a continuous variable
which change the intensity or probability of future actions (Bonabeau et al., 1999). Be-
cause the robots have not the capability of ants to deposit chemical substances on their
trail, a qualitative stigmergic mechanism is involved in Sensitive Robot Metaheuristic.
These robots communicate using the local environmental modifications that can trigger
specific actions. There is a set of so called “micro-rules” defining the action-stimuli pairs
for a homogeneous group of stigmergic robots. These rules define the robots particular
behavior and find the type of structure the robots will create (Bonabeau et al., 1999).

In Pintea et al. (2008) the algorithm is used to solve a large drilling problem, a par-
ticular GTSP. It follows a detailed description of the Sensitive Robot Metaheuristic for
GTSP.
Initialization procedure for robots. Initially the robots are placed randomly in the search
space. A robot moves at each iteration to a new node. The parameters controlling the
algorithm are set.
Construction of a tour with sensitive robots.The next move of a robot is probabilistically
based on the distance to the candidate node and the stigmergic intensity on the connect-
ing edge. In order to stop increasing stigmergic intensity, evaporation process is invoked.
Also, is maintained a tabu list preventing robots to visit a cluster twice in the same tour.
The stigmergic value of an edge is τ and the visibility value is η. As already mentioned
in Section 3.1, J k

i is the unvisited successors of node i by robot k and u ∈ J k
i . The

sSSL robots probabilistically choose the next node. i is the current robot position. The
probability of choosing u as the next node is given by (1).

An autonomous robot could be in the team with high or in the team with low stigmer-
gic sensitivity on the basis of a random variable uniformly distributed over [0,1]. Let q

be a realization of this random variable and q0 a constant, q0 ∈ [0,1]. The robots with
small stigmergic sensitivity sSSL are characterized by the inequality q > q0 while for the
robots with high stigmergic sensitivity hSSL robots q0 >= q holds. A hSSL-robot uses
the information given by the sSSL robots. hSSL robots choose the new node j in a deter-
ministic manner according to (2). The trail stigmergic intensity is updated using the local
stigmergic correction rule:

τij (t + 1) = q2
0τij (t) + (1 − q0)

2 · τ0. (8)

Global update procedure. Global updating (Eq. (9)) the stigmergic value is the role of the
elitist robot that generates the best intermediate solution. These elitist robots are the only
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robots having the opportunity to know the best tour found and reinforce this tour in order
to focus future searches more effectively.

τij (t + 1) = q2
0τij (t) + (1 − q0)

2 · 1τij (t), (9)

where 1τij (t) is the inverse value of the best tour length. Furthermore q0 is used as the
evaporation rate factor. An execution of the algorithm returns the shortest tour found. The
description of the Sensitive Robot Metaheuristic for solving the GTSP is illustrated further
in Algorithm 4.

Algorithm 4: Sensitive robot algorithm for GTSP

1: Initialization procedure-for robots.
2: repeat

3: Construction of a tour with sensitive robots
4: Compute a solution (3.1)
5: Global update procedure (9)
6: until end condition
7: return the shortest tour and its length

3.5. Sensitive Stigmergic Agent System for Generalized Traveling Salesman Problem

The Sensitive Stigmergic Agent System for GTSP (SSAS) introduced in Chira et al. (2007b)
is based on the Sensitive Ant Colony System (SACS) (Chira et al., 2007a) and Stigmergic

Agent System (SAS) (Chira et al., 2006). In Chira et al. (2006) was introduced the concept
of stigmergic agents, involving a direct communication and also a communication based
on stigmergy using artificial pheromone trails similar with some biological systems. The
novelty of SSAS is that the agents are endowed with sensitivity. The advantage is that
agents with both sensitivity and stigmergy have an increased capability to solve complex
static and dynamic real life problems.

A multi-agent system (MAS) approach to developing complex systems involves the em-
ployment of several agents capable of interacting with each other to achieve objectives.
Some benefits of multi-agents are the ability to solve complex problems, their intercon-
nection and inter-operation with multiple systems and are capable to handle distributed
areas (Wooldridge and Dunne, 2005).

The SSAS model inherits also agent properties: autonomy, reactivity, learning
(Pchelkin, 2003), mobility and pro-activeness (Iantovics and Enachescu, 2009). They
are able to cooperate, to exchange information, to learn and are capable to communicate
through an agent communication language (ACL). Sensitivity is considered a plus for the
agents; with this new feature, stronger artificial pheromone trails are preferred and the
most promising paths receive a greater pheromone trail after some time. Within the SSAS

model each agent is characterized by a pheromone sensitivity level PSL (Section 3.3).
Based on SACS, two sets of sensitive stigmergic agents are performing in SSAS: with

small and high sensitivity PSL values. The role of sensitive ants from SACS is taken now,
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more generally, by sensitive-explorer agents, with small PSL–sPSL agents and sensitive
exploiter agents with high PSL–hPSL agents. The sPSL agents discover new promising
regions of the solution space in an autonomous way, sustaining search diversification. The
hPSL agents exploit the promising search regions already identified by the sPSL agents.
Each PSL agent deposit pheromone on the followed path. Evaporation takes place each
cycle preventing unbounded intensity trail increasing.

Algorithm 5 illustrates the Sensitive Stigmergic Agent System for GTSP. A spe-
cific initialization procedure is shown in Algorithm 5.1: Initialization procedure for

agents. Algorithm 5.2: Construction of a tour for agents. describes the main mecha-
nism of the current model. There is also employed the Reinforced global update proce-

dure with the update from Section 3.2. A run of the algorithm returns the shortest tour
found.

Algorithm 5.1: Initialization procedure for agents

1: forall edges (i, j) do τij (0) = τ0 end for

2: Activate a set of agents with various PSL
3: for k = 1 to m do

4: Place randomly an agent in a node from a random cluster.
5: end for

6: Initialize knowledge base.
7: Build an initial tour T using a Greedy algorithm.

Algorithm 5.2: Construction of a tour for agents.

1: repeat

2: Move to a new node each hPSL-agent (1), (2)
3: An agent send an ACL message about latter edge formed
4: until all hPSL-agents have built a complete solution
5: repeat

6: Each sPSL-agent receive and use the information
send by hPSL-agents or the information
available in the knowledge base

7: Apply a local pheromone update rule (5)
8: until all sPSL-agents have built a complete solution

Algorithm 5: Sensitive stigmergic agent system for GTSP

1: Algorithm 5.1: Initialization procedure for agents
2: repeat

3: Algorithm 5.2: Construction of a tour for agents
4: Compute a solution (3.1)
5: Reinforced global update procedures (4), (6)
6: until end condition
7: return the shortest tour and its length
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4. Discussions and Analysis of Agent-Based Algorithms for E-Generalized

Traveling Salesman Problem

The benefits of the reinforced, sensitive and stigmergic agent-based algorithms for
E-GTSP discussed in the following are based on the many experimental results from pre-
vious works (Pintea et al., 2006; Chira et al., 2007a, 2007b; Pintea, 2010, 2014). At first
something about the parameters involved in the compared algorithms. It was noted that a
larger number of ants does not improve the performance of the algorithms. The particular
sensitivity parameter s0 was considered 0.5, the hPSL sensitivity level of ants was consid-
ered to be distributed between s0 and 1, while the ants with small sensitivity pheromone
level in the interval (0, s0); for the virtual robots of SRM the sensitive stigmergic level is
considered random in [0,1] at each trial. For using SSAS with good results, in Chira et

al. (2007b) were tested several sensitive parameters values; the best results for considered
instances were obtained by assigning low pheromone sensitive level 0.01 values for most
of the agents.

Ant Colony System shows once again the stability of the model introduced by Dorigo
(2011) and developed for GTSP in Pintea et al. (2006), Pintea (2010). Reinforced ACS

performs well on the small instances, obtaining for several instances the optimal solution.
Sensitivity involved in ant-based models have the ability to identify good solutions with
SACS for medium and large size instances. The autonomous stigmergic robots from SRM

seems to have good results overall. SSAS reports the best solutions when compared to the
other models suggesting the benefits of the model heterogeneity in the search process, but
the execution time should be improved. The time could be reduce with better parameter
settings, highest hardware performanceand/or better local search heuristics. The presented
agent-based algorithms could be improved using hybrid models or parallel algorithms.

The studied techniques for solving GTSP could be also involved with success for solv-
ing other real-life problem based on large-scale graph representation, complex network or
for example on improving classification techniques (Parpinelli et al., 2002; Stoean et al.,
2009), on large graphs representations (Jancauskas et al., 2012). They are already used for
vehicle routing problem (Pintea et al., 2011; Pop et al., 2009), the Generalized Covering

Salesman Problem and compared with other existing techniques (Cacchiani et al., 2011;
Karapetyan and Gutin, 2012).

5. Conclusions

The purpose of the current survey paper is to describe several agent-based algorithms
involved for solving a NP-hard problem, the Equality-Generalized Traveling Salesman

Problem. The properties of agents as sensitivity, cooperation, learning capacities along
with virtual robots autonomy and artificial ants stigmergic features are strongly implied
in the process of finding good solutions for the specified problem. The multiple parameters
used for the algorithms and the running time are not in the favor of the studied algorithms.
Based on these models could be hopefully developed hybrid techniques for solving com-
plex real-life problems.
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Agentais grindžiamų metodų lygybinio apibendrinto keliaujančio
pirklio uždaviniui spręsti apžvalga

Camelia-M. PINTEA

Apibendrintas keliaujančio pirklio uždavinys yra vienas iš gerai žinomų sudėtingų kombinatori-
nio optimizavimo uždavinių. Vienas jų atvejų yra vadinamasis lygybinis apibendrintas keliaujančio
pirklio uždavinys. Jo pagrindinis tikslas – rasti minimalias kelionės išlaidas aplankant tik vieną
tašką iš kiekvieno didelės apimties nekryptinio grafo klasterio. Šiuo metu sprendžiant praktinius
sudėtingus uždavinius dažnai sėkmingai taikomi daugelio agentų metodai. Šio straipsnio tikslas –
apžvelgti algoritmus lygybiniam apibendrintam keliaujančio pirklio uždaviniui spręsti, įskaitant tam
tikrus skruzdėlėmis grįstus modelius bei virtualius robotus-agentus, turinčius specifinių savybių.


