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Abstract. This paper shows a few novel calculations for wind speed estimation, which is focused
around soft computing. The inputs of to the estimators are picked as the wind turbine power coeffi-
cient, rotational rate and blade pitch angle. Polynomial and radial basis function (RBF) are applied
as the kernel function of Support Vector Regression (SVR) technique to estimate the wind speed
in this study. Instead of minimizing the observed training error, SVR_poly and SVR_rbf attempt to
minimize the generalization error bound so as to achieve generalized performance. The results are
compared with the adaptive neuro-fuzzy (ANFIS) results.
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1. Introduction

Because of natural issue and absence of force renewable energy has gotten much consider-
ation. Wind energy utilization created enormously all through the world in place of attain-
ing the perfect of a future with ecologically natural electrical era (Celik, 2003). Then again,
wind is one of the climate variables that are very difficult to measure and to predict (Tamu-
raa et al., 2001; Wachter et al., 2008). Estimation of wind speed is very important in force
frameworks because of the estimation the energy yield of wind speed (Kunz et al., 2010;
Ozgonenel and Thomas, 2012).

*Corresponding author.
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Different kinds of wind power systems used variable velocity power generation frame-
work (Song et al., 2000) as more noteworthy than others because of high power extrac-
tion and high power quality (Boukhezzar and Siguerdidjane, 2009; Tian et al., 2011).
By using wind different speeds one should keeping in mind the end goal to attain the
most extreme force of wind turbine, the turbine shaft rotational velocity ought to be
adjusted ideally regarding the variable wind speed (@stergaard et al., 2007). Turbine
rotor rate control needs to base on the ongoing data of wind pace (Hizi er al., 2008;
Usta and Kantar, 2012). Ordinarily, anemometers are committed for the wind speed mea-
surements. On the other hand, high cost of the anemometers limits the significant utiliza-
tion of this mechanical assembly. Case in point, the encompassed introduced anemometers
can’t give respectable and exact wind speed data for each wind turbine in wind ranches
(Leea et al., 2012). The mounted anemometer on the highest point of nacelle may be a
cause of wrong estimation of the wind speed (Sozzi ez al., 2001). In wind cultivates, a few
anemometers are regularly set at a few positions to gauge the normal wind speed (Pandey,
2002). The utilization of anemometers supports an issue of conformity and estimation ex-
actness, and also expanding the beginning expense of the wind era frameworks (Diniz et
al., 2004). Consequently, it is attractive to supplant the mechanical anemometers by the
computerized wind-speed estimator focused around the turbine trait (Kusiak and Li, 2010;
Abo-Khalil and Lee, 2008). As of late, the wind-speed estimation techniques have been
accounted for in the writing (Lopez et al., 2008; Qin ez al., 2011; Carro-Calvo et al., 2011;
Mohandes et al., 2011; An and Pandey, 2005; Lombardo, 2012).

The wind speed are nonlinear power source that need accurate on-line identifica-
tion for the optimal operating of the wind turbines (No et al., 2009; Rocha, 2011;
Meharrar et al., 2012). Since it is nonlinear function a soft computing techniques are
preferred for its estimation and prediction. Aiming at optimizing such systems to ensure
optimal functioning of the unit, many soft computing techniques are used today such as
the fuzzy logic (FL) (Qi and Meng, 2012; Bououden et al., 2012), artificial neural network
(ANN) (Wua et al., 2013; Yilmaz and Ozer, 2009), neuro-fuzzy (Mohandes et al., 2011;
Oguz and Guney, 2010; Meharrar et al., 2011; Ata et al., 2010) and support vector ma-
chines (SVM) (Lu et al., 2006; Leng et al., 2013; Adankon and Cheriet, 2011). The essen-
tial thought behind the soft computing approach is to gather data/yield information sets
and to take in the proposed system from these information.

Artificial neural networks (ANNGs) are in effect broadly connected to different zones to
beat the issue of nonlinear connections and expectations (Sedighizadeh and Rezazadeh,
2008; Petkovic et al., 2013a; Barlas and Kuik, 2005; Kassem, 2012; Li et al., 2005). Sup-
port Vector Machines (SVMs), as another type of soft computing methods, has picked up
criticalness in determining issues identified with environment (Ornella and Tapia, 2010;
Jain et al., 2009; Lieber et al., 2013; Qi et al., 2013). There are two main categories for
support vector machines: support vector classification (SVC) and support vector regres-
sion (SVR). SVM is a learning system using a high dimensional feature space (Anan-
thakrishnan et al., 2013; Ye et al., 2009; Balahura and Turchi, 2014; Chakraborty, 2011;
Zhao and Liu, 2007). The Support Vector Regression calculations (SVR) particularly cre-
ated for regression issues are engaging calculations for an expansive assortment of re-
gression issues, since they don’t just consider the error approximation to the information,
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additionally the speculation of the model, i.e., their capacity to enhance the forecast of
the model when new information are assessed by it (Rajasekaran et al., 2011; Yang et al.,
2009; Liu et al., 2013; Ortiz-Garcia et al., 2010; Jiang and He, 2012; Yan et al., 2011;
Tang et al., 2009). SVR is focused around statistical learning theory and a structural
risk minimization, which has been effectively utilized for nonlinear framework display-
ing (Wei et al., 2013; Zhang et al., 2013; Wu et al., 2004; Bermolen and Rossi, 2009;
Basak et al., 2007). The exactness of a SVM model is to a great extent subject to the
choice of the model parameters. Be that as it may, organized systems for selecting param-
eters are needing. Hence, a model parameter alignment ought to be made.

Two SVR schemes for the sensorless determination of wind speed were investi-
gated in this article. The first SVR scheme is radial basis function (SVR_rbf) and the
next is polynomial function (SVR_poly). These are kernel functions which are used to
form function for SVM. Adaptive neuro-fuzzy inference system (ANFIS) (Jang, 1993;
Petkovi¢ and Pavlovié¢, 2013; Petkovi¢ et al., 2012a, 2012b; Petkovi¢ and Cojbaéié, 2012;
Petkovi€ et al., 2013b, 2013c, 2013d) was also investigated. The chief goal of this arti-
cle is to establish the soft computing techniques for sensorless estimation of wind speed.
Those systems should be able to forecast the wind speed in regards to the main turbine
parameters without active sensors.

2. Wind Speed Model

The essential parts of a regular wind transformation framework are wind turbine, a gen-
erator, interconnection gadgets, and control framework. Along these lines, the outline of
a wind energy change framework is intricate. The most critical piece of a wind energy
change framework is the wind turbine transforming the wind dynamic energy into me-
chanical or electric vitality. The framework essentially contains a blade, a mechanical
part and an electric motor coupled to one another. The kinetic energy of wind is the ca-
pacity of wind speed, the particular mass of air, the territory of air space where the wind
is caught and the stature at which the rotor is set. The force accessible in a uniform wind
field can as communicated as
1 3
Py = spAv 1)
2
where Py, is the power [W] of the wind with air density p [kg/rn3 ] and wind pace v [m/s]
is passing through the swept area A [m?] of a rotor disk that is orthogonal to the wind
stream. The wind turbine can just catch a share of the force accessible from the wind. The
proportion of caught force to accessible force is alluded to as the force coeflicient

Cp(B, Ve, 2, R) )

which is a function of the blade pitch angle 8, wind pace V., rotor speed €2, and rotor
radius R. The value of C, can be calculated as:
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The main aim in this article is to define wind pace V, inrelation to the three parameters:
blade pitch angle B, rotor speed €2, and power coeflicient C), for rotor radius R =75 m:

Ve(cpa IBaQr)- (4)

SVR methods were used to make this correlation. According to the three parameters
the SVR should determine wind speed.

3. Support Vector Regression Application

The main principle of support vector machines (SVMs) is to do the non-linear data map-
ping and feature space. If a way of computing the inner product in a feature space is avail-
able directly as a function to the original input points, it is possible to build a non-linear
learning machine, which is known as a direct computation method of a kernel function,
denoted by K.

The flexible nature of the SVM is attributed to the kernel functions that implicitly chart
the data to a higher-dimensional feature space. A linear solution in the higher-dimensional
feature space corresponds to a non-linear solution in the original, lower-dimensional input
space. There are some available methods that employ non-linear kernels in their strategy
for regression problems and that simultaneously apply SVMs. One kernel function is the
radial basis function. The main benefit of the radial basis function is that it is computation-
ally more efficient than the customary SVM method, since radial basis function training
needs only the solution of a set of linear equations instead of the lengthy and compu-
tationally demanding quadratic programming problem that is entailed in standard SVM.
Compared with other probable kernel features, the radial basis function is a more com-
pressed, supported kernel, which makes it very suitable for restricting the computational
training process and improving the generalization efficiency of the radial basis function —
an attribute of great value in model design. Therefore, the radial basis function with pa-
rameter o is adopted in this study. The non-linear radial basis kernel function is defined as:

1
K(x,xz')=e><p<—;||x—xz'||2> (&)

where x and x; are vectors in the input space, i.e. vectors of features computed from
training or test samples.
In this study the following polynomial kernel function was also used:

Kx,y)=(x"y+0o) (©6)



Sensorless Estimation of Wind Speed by Soft Computing Methodologies 497

Table 1
Statistical properties of the training data for SVR
Wind turbine
Input parameters Average value Maximum value Minimum value
X (*max) (*min)
Rotor speed (rpm) 7.988345 13.3733 1.03275
Blade pitch angle (deg) 20.57143 45 0
Power coefficient (Cp) 0.206539 0.480012 0.069299

where x and y are vectors of features computed from training or test samples, and c is a
constant making a tradeoff for the influence of higher-order versus lower-order terms in
the polynomial.

As an issue driven model, the capacity of the SVR to make sensible estimations is
generally subject to include parameter choice. Sufficient attention of the components con-
trolling the framework mulled over is accordingly critical to creating a dependable system.
As indicated by the tests (Petkovic et al., 2013a), the inputs parameters (rotor speed, blade
angle and power coefficient) are gathered in wind turbine and characterized as data for the
learning system. The information are gathered by National Instruments DAQ card. For the
analyses, 70% of the information was utilized to prepare tests and the resulting 30% served
to test examples. A synopsis of the measurable properties of the wind turbine database is
given in Table 1.

4. Proposed Support Vector Regression for Prediction

The three SVR models were created, namely SVR_1, SVR_2 and SVR_3. SVR_1 has
two inputs: blade pitch angle and power coefficient; SVR_2 hast three inputs: blade pitch
angle, rotor speed and power coefficient; SVR_3 has two inputs: blade pitch angle, rotor
speed. The flowchart for the SVR model can be described as follow:

Data acquisition.

Creating an SVR prediction.
Prediction of wind speed.
Detection precision.

The estimation process by a the SVR models is shown in Fig. 1.

5. ANFIS Model

In this area, the advancement of the estimator procedure for estimation of the wind pace is
displayed utilizing the ideas of ANFIS plan. The fuzzy rationale gives a calculation, which
changes over the phonetic estimation, in view of master information, into a programmed
estimation system. Phonetic variables, characterized as variables whose qualities are sen-
tences in a characteristic dialect, (for example, huge or little), may be spoken to by the
fuzzy sets. A fuzzy set is an augmentation of a “crisp” set where a component can just
have a place with a set (full enrollment) or not have a place whatsoever (no participation).
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Fig. 1. The process of prediction by SVM agents.
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Fig. 2. ANFIS structure.

Fuzzy sets permit fractional enrollment, which implies that a component might in part fit
in with more than one set.

Figure 2 shows an ANFIS structure with two inputs. According to training input/output
data, the ANFIS network could estimate wind speed.
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In this work, the first-order Sugeno model with two inputs and fuzzy IF-THEN controls
of Takagi and Sugeno’s sort is utilized:

ifxis A then f| = pix +1¢. 7

The main layer comprises of information membership functions (Mfs). This layer sim-
ply supplies the data qualities to the following layer. The information is compelling wind
speed. In the first layer each hub is a versatile hub with a hub capacity

O =ux,y,2),

where u(x, y, z); are MFs.
In this study, bell-shaped function Mfs (8) with greatest equivalent to 1 and least equiv-
alent to O is picked

fiab,o)= T @®)

where the bell-shaped function hinges on upon three parameters a, b and c. The parameter
b is typically positive.

The second layer (participation layer) checks for the weights of every Mfs. It accepts
the info values from the first layer and goes about as Mfs to speak to the fuzzy sets of the
individual information variables. Each hub in the second layer is non-adjustable and this
layer duplicates the approaching indicators and sends the item out like

wi = (x); * @(x)it1. 9

Every hub yield speaks to the terminating quality of a guideline or weight.

The third layer is known as the tenet layer. Every hub (every neuron) in this layer per-
forms the precondition matching of the fuzzy guidelines, i.e. they process the enactment
level of each one run, the amount of layers being equivalent to the amount of fuzzy tenets.
Every hub of these layers ascertains the weights which are standardized. The third layer is
additionally non-versatile and each hub computes the proportion of the tenet’s terminating
quality to the whole of all principles’ terminating qualities like
wi=— =12 (10)

w1 + w2
The yields of this layer are called standardized terminating strengths or standardized
weights.

The fourth layer is known as the defuzzification layer and it gives the yield qualities
coming about because of the deduction of standards. Each hub in the fourth layer is a
versatile hub with hub capacity

O} =wixf = w(pix +qiy +ri) (11)
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where {p;, g;, r} is the parameter situated and in this layer is alluded to as ensuing param-
eters.

The fifth layer is known as the yield layer which wholes up all the inputs hailing from
the fourth layer and changes the fuzzy grouping outcomes into a crisp (binary). The yield
speaks to evaluated tweak exchange capacity of the optical framework. The single hub in
the fifth layer is not versatile and this hub figures the by and large yield as the summation
of all approaching signs

Of:Zw;“xf=ZZiw;f. (12)

The hybrid algorithm were connected to distinguish the parameters in the ANFIS archi-
tectures. In the forward pass of the cross hybrid algorithm, practical signs go ahead until
Layer 4 and the resulting parameters are identified by the minimum squares gauge. In the
regressive pass, the slip rates spread regressively and the reason parameters are upgraded
by the gradient secent.

6. Models Performance Evaluation

To assess the success of the SVR models and ANFIS technique, some statistical indicators
were examined as follows:
(1) root-mean-square error (RMSE)
Yol (P — 0)?

RMSE =, | ==~ | (13)
n

(2) coefficient of determination (R?)

2 _ [ ,r'l:l(Oi — Oz) (P — ﬁi)]Z
S (0i—0p)- Y0 (P — P))

(14)

where P; and O; are known as the experimental and forecast values, respectively,
and 7 is the total number of test data.

7. Results and Discussion

The three parameters associated with SVR kernel are C, e and r. SVM model accuracy
is dependent on model parameter selection. In our scheme, a default value of e = 0.1 was
used. To select user-defined parameters (i.e. C, d and g), a large number of trials were
carried out with different combinations of C and d for polynomial kernels and C and
g for radial basis function kernels. Table 2 provides the optimal values of user-defined
parameters for this dataset with polynomial and RBF kernel SVR.
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Table 2
User-defined parameters for SVR.

SVR_1 SVR_2 SVR_3
SVR_rbf SVR_poly SVR_rbf SVR_poly SVR_rbf SVR_poly
C vy e C d e C vy e C d e C vy e C d e
3 0.01 0.001 10 19 0.01 3 0.01 0001 10 1 0.01 3 0.01 0.001 10 1.9 0.01
Train Data
ANFIS: rmse=0.94 , SVR_rbf: rmse=0.59 , SVR_poly: rmse= 5.1
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o ;
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Fig. 3. Performance of SVR_rbf, SVR_poly and ANFIS on the SVR_1 case in (a) training phase and in (b) test-
ing phase.
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Fig. 4. Performance of SVR_rbf, SVR_poly and ANFIS on the SVR_2 case in (a) training phase and in (b) test-
ing phase.

The initial data was used to establish the polynomial and RBF kernel SVR. The data
was predicted using RBF and polynomial. The results of R2 and RMSE of the SVR_1,
SVR_2 and SVR_3 models are presented in Figs. 3, 4 and 5 in terms of training and testing.
The SVR_rbf and SVR_poly models in the SVR_1 had very small RMSE (ranging from
0.59 to 5.1) during training and RMSE (ranging from 3.5 to 5.1). The models showed
consistently good correlation throughout training and testing.

Figures 3(a), 4(a) and 5(a) illustrate the results with the performance indices between
predicted and observed data in the training phase, while Figs. 3(b), 4(b) and 5(b) indicate
the results for the testing phase, respectively. Although the performance of SVR_rbf and
SVR_poly on the SVR_1 case in the testing phase is not on a par with other sides, due to the
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Fig. 5. Performance of SVR_rbf, SVR_poly and ANFIS on the SVR_3 case in (a) training phase and in (b) test-
ing phase.

small number of samples (training data), the optimal kernel function type of SVR is RBF
in the SVR_1 case dataset. It can be seen that SVR_rbf performed well in predicting wind
speed. Comparing SVR_rbf results with SVR_ poly reveals that SVR_rbf outperforms the
RBF model in terms of prediction accuracy and ANFIS as well.

8. Performances of the Models

The root mean squared error (RMSE) and coeflicient of determination (R?) were used
to evaluate the differences between the expected and actual values for both SVRs with
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Table 3
Performances of the analyzed models.
Experiments Method Training Testing
Error Coefficient of Error Coefficient of
(RMSE) determination (RZ) (RMSE) determination (RZ)
SVR_1 SVR_rbf 0.59 0.422 35 0.441
SVR_poly 5.1 0.75 5.1 0.758
SVR_ 2 SVR_rbf 1.2 0.696 1.9 0.721
SVR_poly 52 0.687 52 0.698
SVR_3 SVR_rbf 2 0.982 43 1.001
SVR_poly 8.4 0.802 8.4 0.836
ANFIS_1 0.94 0.612 3.8 0.989
ANFIS_2 22 0.986 2.6 0.924
ANFIS_3 22 0.986 53 0.658

ANFIS. Table 3 compares the SVR_rbf, SVR_poly models with the ANFIS. The results
in Table 3 indicate that the SVR_rbf has the most significant effect on wind speed estima-
tions. For instance, RMSE = 0.59 in the training phase for SVR_rbf in (SVR_1) is less
than RMSE = 5.1 for SVR_poly in the same situation.

9. Conclusion

In this paper, novel algorithms for wind speed estimation in wind power generation sys-
tems were proposed, which is based on the soft computing techniques. The inputs are wind
turbine power coeflicient, rotational speed and blade pitch angle.

Wind energy is a rapid growing industry, and this growth has led to a large demand for
better modeling and prediction of wind turbine output energy. The uncertainties and dif-
ficulties in measuring the wind inflow to wind turbines makes the prediction difficult, and
more advanced modeling via system identification techniques and a number of advanced
prediction approaches should be explored to reduce the cost of wind energy. A systematic
approach to achieving the wind speed by means of support vector machine (SVR) strategy
and ANFIS methodology was investigated.

This paper presents a support vector regression (SVR) technique for the wind speed
estimations. Two SVRs were investigated: radial basis function (SVR_rbf) and polynomial
function (SVR_poly). The result showed that the SVR_rbf is better than SVR_poly in
prediction of the wind speed. The performance of the SVRs models were compared against
the ANFIS results. The SBR-rbg was better than ANFIS in terms of root mean square error
and coeflicient error. SVR model with three inputs (SVR_2): blade pitch angle, rotor speed
and power coeflicient has the best prediction results for the wind speed in testing phase.
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Véjo greicio jvertinimas nenaudojant jutikliy pagal lanksciosios
kompiuterikos metodologijas: lyginamoji analizé

Dalibor PETKOVIC, Muhammad ARIF, Shahaboddin SHAMSHIRBAND,
Ehab Hussein BANI-HANI, Davood KIAKOJOORI

Siame straipsnyje aptariami keli nauji véjo grei¢io jvertinimo biidai, pagrjsti lanks&iosios kompiute-
rikos metodais. Jvertinimy jvesties duomenys yra véjo turbinos galios koeficientas, sukimosi greitis
ir mentés pasvirimo kampas. Siekiant jvertinti véjo greitj naudojamas atraminiy vektoriy regresijos
metodas, o jame branduolio funkcijos — polinominé ir radialiné bazinés funkcijos. Vietoj stebimos
mokymo paklaidos minimizavimo, minimizuojamos bendros paklaidos ribos, taip gaunamas api-
bendrintas jvertinimas. Gauti rezultatai palyginami su adaptyvaus neuro-fuzzy (ANFIS) metodo
rezultatais.



