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Abstract. In a multi-decrypter encryption (MDE) scheme, a message encrypted under the public

keys of multiple receivers can be recovered only when all the receivers designated by the sender are

available (e.g. in a national security setting where a “Top Secret” document can only be decrypted

and recovered when all the designated “keyholders” present the respective keys). Despite its ef-

fectiveness (i.e. without heavy computational overheads) in ensuring a message can only be read

when all the designated parties are available, this is an under-researched topic (there are only two

published MDE schemes in the literature, to the best of our knowledge). In this paper, we propose

an efficient MDE scheme and prove its CCA2 security in the standard model under the decisional

bilinear Diffie–Hellman assumption.

Key words: multi-user cryptography, multi-decrypter encryption, bilinear pairing, chosen ciphertext

security, decisional bilinear Diffie–Hellman assumption, standard model.

1. Introduction

In a multi-decrypter encryption (MDE) scheme, the message is encrypted under the public

keys of n decrypters designated by the sender and the plaintext can only be recovered by

combining all the n decryption shares. As one of the multi-user cryptographic schemes

(Bellare et al., 2000, 2003; Kurosawa, 2002; Smart, 2004; Hwang and Lee, 2007; Qin et

al., 2008; Selvi et al., 2009), MDE can be very useful in scenarios where a confidential

message should only be opened when all the decrypters designated by the encrypter are

available. One example application is in public electronic bidding, where a bidder only

wants his digital bid document to be read by a group of qualified bid inviters.
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Chai et al. (2007) introduced the first concept of MDE and proposed two concrete

MDE schemes. It was claimed that any encryption scheme could be trivially converted

to an MDE scheme by splitting the plaintext into n shadows, before applying n times

the standard encryption scheme to encrypt each piece of shadows. However, this results in

higher computation costs and the size of the ciphertext expands with the number of the de-

crypters. To achieve the same goal, we can use threshold decryption schemes (Shoup and

Gennaro, 2007; Baek and Zheng, 2004) or encrypting the message n rounds (the output

of the first round is fed as input to the second round and so on) with each round under the

public key of the respective decrypter. However, both methods are impractical (Chai et al.,

2007). In the former setting, one has to register a new public-private key pair for the group

which is formed by all the n decrypters, prior to distributing the group private key shares

among these decrypters by applying an (n,n) secret sharing scheme. This is impractical in

some dynamic environments (e.g. mobile/vehicle ad hoc networks: Papadimitratos, 2005;

Bresson et al., 2002; Dötzer, 2005), where nodes join and leave the network freely. Mean-

while, in addition to their own public-private pairs, nodes have to store additional group

private key shares in their precious key-storage spaces (e.g. smart card) (Chai et al., 2007).

The challenge is compounded when a node is involved in r ≫ 1 different groups (in this

case it needs to store r shares). Another deficiency of the former setting is that it enables

a dealer, who is responsible to combine the n group private key shares, to recover all ci-

phertexts in the future as long as the ciphertexts are generated for the same n receivers.

The latter setting requires the decryption to be performed sequentially, i.e., the decrypters

have to decipher the message one by one, and the last decrypter in the last round recov-

ers the message. One could easily see that the MDE scheme is an elegant solution to the

problems mentioned in the preceding sentences: the number of pairing, multiplication and

exponentiation computations are significantly reduced; the size of ciphertexts is constant

no matter how many decrypters are involved; and all the decrypters perform the decryption

in parallel.

Despite the potential of MDE in providing an efficient way of ensuring a message is

only read by the designated parties, there are relatively few published MDE schemes. To

the best of our knowledge, Chai et al.’s schemes (2007) are the only two MDE schemes

published in the literature and both schemes are proven secure in the random oracle model.

It is a known fact that a cryptographic scheme proven secure in the random oracle model

may be insecure in the real world with any instantiation of the random oracle (Canetti et

al., 1998). Not surprisingly in recent years, cryptographic protocol(s) and schemes are

generally proven secure in the standard model (e.g. Wang et al., 2012; Ren et al., 2010;

Sakalauskas and Mihalkovich, 2014; Tsai et al., 2012, 2014) rather than in the random

oracle model (e.g. Choo, 2007; Tang and Choo, 2007; Wang et al., 2009).

Our contribution: In this paper, we construct a new MDE scheme which is seman-

tically secure against adaptive chosen-ciphertext attacks (CCA2-secure) under the deci-

sional bilinear Diffie–Hellman assumption in the standard model. Our scheme is as effi-

cient as Chai et al.’s (2007) in terms of computation cost and ciphertext size, yet achieves

a higher security level.

The rest of this paper is organized as follows. In Section 2, we introduce the defini-

tions and preliminaries necessary for understanding the remainder of this paper. We also
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present the formal definition of MDE and the security model we work in. In Section 3,

we present our proposed MDE scheme and its security, as well as a brief discussion of its

performance. Section 4 concludes this paper.

2. Preliminaries

2.1. Bilinear Map

Definition 1. Let G1 and GT be two multiplicative groups of the same prime order q ,

and g be a generator of G1. Assume that the discrete logarithm problems in both G1 and

GT are intractable. We say that e: G1×G1→GT is a bilinear map or pairing if it satisfies

the following properties:

1. Bilinear: For all a, b ∈ Zq , e(ga, gb)= e(g, g)ab .

2. Non-degenerate: e(g, g) 6= 1GT
, i.e., e(g, g) generates GT .

3. Computable: The map e is efficiently computable.

We denote BSetup as an algorithm that, on input the security parameter 1k , outputs

the parameters for a bilinear map as (q, g,G1,GT , e), where q ∈2(2k).

2.2. Decisional Bilinear Diffie–Hellman (DBDH) Problem

Definition 2. Let (q, g,G1,GT , e) be the parameters for a bilinear mapping. The DBDH

problem in 〈G1,GT , e〉 is to decide, given a tuple of values (g, ga, gb, gc, T ) ∈G4
1×GT

(where a, b, c ∈R Z∗q ), whether T = e(g, g)abc holds.

Let k be a security parameter of sufficient size. Formally, we say that the DBDH as-

sumption holds in 〈G1,GT , e〉 if for all probabilistic polynomial time (PPT) algorithmsA,

the following condition is true:

∣

∣

∣

∣

∣

Pr[a, b, c←R Z∗q;1←A(g, ga , gb, gc, e(g, g)abc)]

−Pr[a, b, c←R Z∗q ;T ←R GT ;1←A(g, ga , gb, gc, T )]

∣

∣

∣

∣

∣

6 v(k),

where v(·) is defined as a negligible function, i.e., for all polynomial functionsp(·), v(k) <

1/p(k).

2.3. Multi-Decrypter Encryption (MDE)

Definition 3. Let 1k be a security parameter and par be the system’s public parameters

generated on input k. An MDE scheme is defined to comprise the following four algo-

rithms:

– KeyGen(par)→ (pk, sk): A probabilistic algorithm that on input the system’s pub-

lic parameters par, generates a public-private key pair (pk, sk).
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– Enc(par,pk1, . . . ,pkn,m)→C: A probabilistic algorithm that on input par, n de-

crypters’ public keys pk1, . . . ,pkn, and a plaintext m from the message space M,

outputs a ciphertext C.

– Dec(par, ski ,C)→ (δi,⊥): A deterministic algorithm that on input par, a private

key ski , 1 6 i 6 n, and a ciphertext C from ciphertext space C , outputs a decryption

share δi or ⊥ (a symbol indicating an invalid ciphertext).

– Combin(par, δ1, . . . , δn,C)→ (m,⊥): A deterministic algorithm that on input

par, n decryption shares δi , 1 6 i 6 n, and a ciphertext C ∈ C , outputs a plaintext m

or ⊥.

Consistency. We say that an MDE scheme E = (KeyGen,Enc,Dec,Combin) is consis-

tent if for any valid n public-private key pairs (pki , ski ), 1 6 i 6 n, generated by KeyGen,

and any plaintext m ∈M, the following equation holds:

m= Combin
(

par, δ1, . . . , δn,Enc(par,pk1, . . . ,pkn,m)
)

,

where δi = Dec(par, ski,Enc(par,pk1, . . . ,pkn,m)) for any 1 6 i 6 n.

2.4. Security Model

Definition 4 (CCA2-MDE Game). Let E = (KeyGen,Enc,Dec,Combin) be

an MDE scheme defined as above. We consider the following game, denoted by

GameCCA2-MDE
E,A

, in which a PPT adversary A is involved.

The challenger generates the system’s public parameters par and simulates the game

with A as follows:

1. SELECT. The challenger chooses b←R {0,1}.

2. PHASE 1. A makes the following queries adaptively:

(a) Public key generation oracle Opk : On input an index i ,2 the challenger re-

sponds by running algorithm KeyGen(par) to generate a key pair (pki , ski).

Then, the challenger returns pki to A, and records (pki, ski ) in the table Tpk .

(b) Private key generation oracle Osk : On input a public key pk by A, where pk

is from Opk , the challenger searches pk in the table Tpk . Finally, the challenger

returns sk to A, and records pk in the table Tsk .

(c) Decryption oracle Odec: On input (pki ,C) by A, where pki is from Opk , the

challenger runs algorithm Dec to decrypt the ciphertext C using the private

key ski , where ski is the private key corresponding to pki . The challenger re-

turns the resulting decryption share δi to A.

3. CHOICE AND CHALLENGE. Once A decides that the PHASE 1 is over,

he presents his choice (pk∗1, . . . ,pk∗n,m0,m1), where m0 and m1 are two plain-

text with identical length from message space, and pk∗1, . . . ,pk∗n are n target

2This index is only used to distinguish the different public keys.
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entities on which it wishes to be challenged.3 The challenger computes C∗ =

Enc(par,pk∗1, . . . ,pk∗n,mb), and gives C∗ to A as the challenge ciphertext.

4. PHASE 2. A continues to make queries as in PHASE 1 with the following restric-

tions:

(a) A is not permitted to launch all private key queries on the n entities

pk∗1, . . . ,pk∗n.

(b) There is at least one entity pk∗i , 1 6 i 6 n, that A is allowed to make neither an

Odec(pk∗i ,C
∗) nor an Osk(pk∗i ).

5. GUESS. At the end of PHASE 2, A outputs his guess bit b′ ∈ {0,1}. If b′ = b, then

A wins the game.

Let (O′pk,O
′
sk,O

′
dec) be the corresponding public key generation oracle, private key

generation oracle, and decryption oracle modified in PHASE 2. With respect to the sys-

tem’s security parameter k, A’s advantage, denoted by AdvCCA2-MDE
E,A

(k), is defined as:

∣

∣
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∣

∣

∣

∣

∣
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b′ = b

b←R {0,1};

(pk∗1, . . . ,pk∗n,m0,m1)

←AOpk ,Osk ,Odec(1k);

C∗ = Enc(par,pk∗1, . . . ,pk∗n,mb);

b′←A
O′pk ,O

′
sk,O

′
dec(C∗)
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













−
1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (1)

We say that E is CCA2-secure if for all PPT algorithms A, AdvCCA2-MDE
E,A

(k) is negli-

gible with respect to k.

3. Our Construction

In this section, we construct a new MDE scheme which is CCA2-secure in the standard

model assuming that the DBDH assumption holds.

3.1. Scheme Description

Let 1k be the security parameter, (q, g,G1,GT , e)← BSetup(1k), and H : {0,1}∗→

Z∗q be a one-way, collision-resistant cryptographic hash function. The system’s public

parameters are

par = (q, g,G1,GT , e, g1, g2, h1, h2, h3,H),

where g1, g2, h1, h2, and h3 are random elements in G1 \ {g}.

The four algorithmsKeyGen, Enc, Dec, and Combin in our proposed MDE scheme

are as follows:

3Here we request that there is at least one entity that A has not made a private key query among these n

entities, pk∗
1
, . . . ,pk∗n , in PHASE 1.
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– KeyGen(par)→ (pk, sk): On input par, select x ∈R Z∗q and set (pk, sk)= (gx , x).

– Enc(par,pk1, . . . ,pkn,m)→C: To encrypt a message m ∈GT with pk1, . . . ,pkn,

do the following:

1. Select r, r ′←R Z∗q .

2. Compute



























C1 = gr ,

C2 =

(

n
∏

i=1

pki

)r

gr ′

1 gr
2,

C3 =m · e(g1, g1)
r ′ · e(g1, g2)

r ,

C4 =
(

h
H(C1)
1 h

H(C1‖C2‖C3)
2 h3

)r
,

and output the ciphertext

C = (C1,C2,C3,C4).

– Dec(par, ski ,C)→{δi,⊥}: To compute the decryption share δi of the ciphertext C

using its private key ski , the receiver pki :

1. Parses C as (C1,C2,C3,C4).

2. Verifies that

e(g,C4)= e
(

C1, h
H(C1)
1 h

H(C1‖C2‖C3)
2 h3

)

.

If not, returns⊥. Otherwise, computes

δi← e
(

C1, g
ski

1

)

.

– Combin(par, δ1, . . . , δn,C): To recover the plaintext m with all the n decryption

shares δi ∈GT , i = 1, . . . , n, a dealer (maybe one of the receivers) computes:

m= C3

(

n
∏

i=1

δi

)

/

e(g1,C2). (2)

m is returned.

Consistency.

1. For a decryption share δi , we have

δi = e
(

C1, g
ski

1

)

= e
(

gr , g
xi

1

)

= e(g, g1)
rxi . (3)

2. In the Combin algorithm, we have

C3

(

n
∏

i=1

δi

)

/

e(g1,C2) =
m · e(g1, g1)

r ′ · e(g1, g2)
r
∏n

i=1 e(g, g1)
rxi

e(g1, (
∏n

i=1 pki)
rgr ′

1 gr
2)
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=
m · e(g1, g1)

r ′ · e(g1, g2)
r
∏n

i=1 e(gxi , g1)
r

e(g1,
∏n

i=1 gxi )r · e(g1, g1)r
′
· e(g1, g2)r

= m. (4)

Equations (3) and (4) illustrate that the decryption is consistent.

3.2. Security Proof

Theorem 1. If there exists a PPT adversary A that can break our MDE scheme in the

sense of CCA2-MDE Game with non-negligible advantage ǫ, then there exists a PPT al-

gorithm B that can solve the DBDH problem with the advantage

ǫ′ >
ǫ

qsk

(

1−
1

qsk + 1

)qsk+1

,

where qsk is the number of private key generation query Osk requested by A. For large

qsk , ǫ′ > ǫ/exp(1)qsk .

Proof. Assume that (q, g,G1,GT , e) are the parameters for a bilinear mapping obtained

by running algorithm BSetup and the algorithm B accepts as input a properly-distributed

tuple (g, ga, gb, gc, T ) ∈G4
1×GT . With the help of A, as shown below, B can solve the

DBDH problem (i.e., output 1 if T = e(g, g)abc and 0 otherwise) with the advantage more

than ǫ.

B first maintains two initially empty tables Tpk and Tsk , and generates the MDE

scheme’s system parameters par as follows:

(i) chooses a one-way, collision-resistant cryptographic hash function H : {0,1}∗→

Z∗q ;

(ii) sets

g1 = ga, g2 = gb;

(iii) selects s1, s2, s3 ∈R Z∗q and sets

h1 = (ga)s1, h2 = gs2, h3 = gs3 · (ga)−s1H(gc).

The system parameters are

par = (q, g,G1,GT , e, g1, g2, h1, h2, h3,H).

B sends par to A and interacts with A as follows.

1. SELECT. B chooses b′←R {0,1}.

2. PHASE 1. B responds A’s queries as below:
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– Opk : On input an index i ,B selects xi←R Z∗q . Using the techniques of Coron (2008),

B flips a biased coin αi ∈ {0,1} that αi = 1 with probability γ and 0 otherwise,

where γ is a fixed probability to be determined later. If αi = 1, B sets pki = gxi

which means that the private key of the this user is xi . Otherwise, if αi = 0, B sets

pki = (gb)xi which means that the private key of this user is bxi (in this case the

private key is unknown to B too). At last,B records the tuple (pki, xi, αi ) in table Tpk ,

and responds A with pki . Note that pki is correctly distributed.

We assume that A has made the appropriate Opk queries before making one of

the following queries.

– Osk : On input pki , B obtains the corresponding value of αi by accessing table Tpk . If

αi = 0,B reports failure and aborts the simulation. Otherwise,B respondsAwith xi ,

and records pki in table Tsk .

– Odec: On input (pki,C), B first parses C as (C1,C2,C3,C4) and checks whether

e(g,C4)= e
(

C1, h
H(C1)
1 h

H(C1‖C2‖C3)
2 h3

)

.

If not, B returns ⊥ to A. Otherwise, B obtains the corresponding value of pki and

computes the decryption share δi as below:

(a) If αi = 1, B computes

δi = e(C1, g1)
xi ;

(b) Otherwise αi = 0 (and in this case the private key is ski = bxi), B computes

δi =

[

e(g2,C4)

e(g2,C
s2H(C1‖C2‖C3)+s3

1 )

]

xi
s1(H(C1)−H(gc))

. (5)

At last, δi is returned to A. Note by Eq. (5), we have

δi =

[

e(g2,C4)

e(g2,C
s2H(C1‖C2‖C3)+s3

1 )

]

xi
s1(H(C1)−H(gc))

=

[

e(g,C4)

e(g,C
s2H(C1‖C2‖C3)+s3

1 )

]

bxi
s1(H(C1)−H(gc))

=

[

e(C1, h
H(C1)
1 h

H(C1‖C2‖C3)
2 h3)

e(g,C
s2H(C1‖C2‖C3)+s3

1 )

]

bxi
s1(H(C1)−H(gc))

= e(C1, g)
as1(H(C1)−H(gc))

bxi
s1(H(C1)−H(gc))

= e(C1, g1)
bxi .

That is, B can respond A with the correct decryption query for both the cases αi = 1

and αi = 0.
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3. CHOICE AND CHALLENGE. At the end of the PHASE 1, A submits

(pk∗1, . . . ,pk∗n,m0,m1) toB with the restrictions: (i) At least one pk∗i did not appear in Tsk ,

i = 1, . . . , n; (ii) m0,m1 ∈ GT are of the same length. Then B generates the challenge

ciphertext as follows:

(a) B obtains the corresponding value of pk∗i by accessing Tpk , i.e., (pk∗i , α
∗
i , x∗i ), i =

1, . . . , n.

(b) If α∗i = 1 for any 1 6 i 6 n, then B aborts the simulation. Otherwise, B selects

r∗←R Z∗q and computes



























C∗1 = gc,

C∗2 =
(

gc
)

∑

α∗
i
=1 x∗i

(

ga
)r∗

,

C∗3 =mb′ · T
−
∑

α∗
i
=0 x∗i · e

(

ga, ga
)r∗

,

C∗4 =
(

gc
)s2H(C∗1‖C

∗
2‖C

∗
3 )+s3 .

(c) B gives C∗ = (C∗1 ,C∗2 ,C∗3 ,C∗4 ) to A as the challenge ciphertext.

4. PHASE 2. In this phase, the adversaryA is allowed to make queries as in PHASE 1

with the two restrictions: (i) A is not permitted to query the private keys of the n enti-

ties pk∗1, . . . ,pk∗n; (ii) There is at least one entity pk∗i that A is not allowed to make an

Odec(pk∗i ,C
∗) query or an Osk(pk∗i ) query.

5. GUESS. At last, A outputs a guess b′′ ∈ {0,1}. If b′′ = b′, then B returns 1 meaning

that T = e(g, g)abc. Otherwise, B returns 0 which means that T is a random element

from GT .

It is easy to check that for the above ciphertext C∗ = (C∗1 ,C∗2 ,C∗3 ,C∗4 ), we have

e(g,C∗4 ) = e
(

g,
(

gc
)s2H(C∗

1
‖C∗

2
‖C∗

3
)+s3

)

= e
(

gc, gs2H(C∗1‖C
∗
2‖C

∗
3 )+s3

)

= e
(

C∗1 , h
H(C∗1 )

1 h
H(C∗1‖C

∗
2‖C

∗
3 )

2 h3

)

,

and thus

δi =

{

e(g, g)acx∗i , α∗i = 1;

e(g, g)abcx∗i , α∗i = 0.

If T = e(g, g)abc, then

C∗3

(

n
∏

i=1

δi

)

/

e
(

g1,C
∗
2

)

=
mb′ · T

−
∑

α∗
i
=0 x∗i · e(ga, ga)r

∗
(
∏n

i=1 δi)

e(g1, (gc)

∑

α∗
i
=1 x∗i (ga)r

∗
)

=
mb′ · e(g, g)

−abc
∑

α∗
i
=0 x∗i · (

∏

α∗i =1 δi)(
∏

α∗i =0 δi)

e(g, g)
ac
∑

α∗
i
=1 x∗i

= mb′ .
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Table 1

Performance comparison.

MDECh1 MDECh2 Our scheme

Paring number n+ 2 5n+ 2 3n+ 3

Ciphertext size 2|G1| + |GT | 3|G1| + |GT | 3|G1| + |GT |

Security level CPA CCA2 CCA2

Using random oracle model? Yes Yes No (in standard model)

That is, C∗ = (C∗1 ,C∗2 ,C∗3 ,C∗4 ) is the correct encryption of mb′ under pk∗i , i = 1, . . . , n,

if T = e(g, g)abc. Otherwise, C∗ is the encryption of a random element (we have required

that there exists at least one element α∗i with α∗i = 0). It is obvious that all elements given

to A have the correct distribution and the view of A in the simulation is identical to the

view in the real attack if B does not abort.

The left thing is to compute the probability that B does not abort. Denote by qsk the

number of private key generation query Osk requested by A. Then the probability that B

does not abort during the query Osk is γ qsk . On the other hand, the probability that B does

not abort during the phase of CHOICE AND CHALLENGE is at least 1− γ . So with

the probability at least f (γ ) := γ qsk (1− γ ), B solve the DBDH problem. The function

f (γ ) has a maximal value

1

qsk

(

1−
1

qsk + 1

)qsk+1

when γ = 1− 1/(qsk + 1). Consequently, we get

ǫ′ >
ǫ

qsk

(

1−
1

qsk + 1

)qsk+1

and for large qsk , ǫ′ > ǫ/exp(1)qsk . This concludes our proof for Theorem 1. �

3.3. Performance Analysis

In Chai et al. (2007) compared their two MDE schemes, denoted by MDECh1 and

MDECh2, with the split-then-encrypt encryption schemes and showed their MDE schemes

are more efficient both in computation cost and ciphertext size. In this section, we com-

pare our proposed MDE scheme with MDECh1 and MDECh2 based on computation cost,

ciphertext size and the level of security – see Table 1, where |G1| and |GT | denote the

bit length of elements in groups G1 and GT respectively, and n denotes the number of

decrypters.

As illustrated in Table 1, when the number of the decrypters increases, the number

of pairing computations in MDECh2 is higher than in our scheme. This is mainly due

to the Decrypt algorithm where four pairing operations for each decrypter are required

to verify the validation of the ciphertext in MDECh2, whilst our scheme only requires

two pairing operations. More importantly, our proposed scheme achieves a higher level of

security as shown in Table 1.
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4. Conclusion

Multi-decrypter encryption (MDE) is one multi-user cryptographic scheme that provides

an efficient way of ensuring a message can only be read by n designated parties. In this

paper, we proposed an efficient MDE scheme in which the ciphertext contains only four

bilinear group elements regardless of the number of receivers involved. Our scheme is

not only efficient both in terms of computation cost and ciphertext size, but also achieves

CCA2-secure level under the decisional bilinear Diffie–Hellman assumption in the stan-

dard model. To the best of our knowledge, this is the most efficient and secure MDE

scheme in the literature.
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CCA2 saugos lygio daugelio vartotojų šifravimo schema nenaudojanti
„juodosios dėžės” (Random Oracles) modelio

Shengbao WANG, Peng ZENG, Kim-Kwang Raymond CHOO, Hongbing WANG

Daugelio vartotojų šifravimo schemoje (MDE) siuntėjas užšifruoja pranešimą naudodamas n ga-

vėjų viešuosius raktus, o šifrograma gali būti iššifruota tik derinant visų n gavėjų iššifravimo rak-

tus. Straipsnyje pasiūlyta efektyvi skaičiavimų sudėtingumo ir šifrogramos dydžio prasmėmis MDE

schema bei įrodyta jos CCA2 lygio sauga tuo atveju, kai galioja bitiesinė Diffi–Hellman’o prielaida.


