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Abstract. An efficient supervised orthogonal nonlinear dimensionality reduction algorithm, namely

orthogonal margin maximization projection (OMMP), is presented for gait recognition in this paper.

Taking the local neighborhood geometry structure and class information into account, the proposed

algorithm aims to find a projecting matrix by maximizing the local neighborhood margin between

the different classes and preserving the local geometry structure of the data. After projecting, the

data points in the same class are pulled as close as possible, while the data points in different classes

are pushed as far as possible. The highlights of OMMP include (1) takes both of the local infor-

mation and class information of the data into account; (2) considers the effect of the noisy points

and outliers; (3) it is supervised and orthogonal; and (4) its physical meaning is very clear. The

experimental results on a public gait database show the effectiveness of the proposed method.

Key words: biometric, gait recognition, nonlinear dimensionality reduction, orthogonal margin

maximization projection (OMMP).

1. Introduction

Biometric systems for automated personal identification and verification have received ex-

tensive attention in the last years. These systems utilize distinct behavioral or physiologi-

cal characteristics in order to determine or verify the identity of an individual (Ramirez-

Cortes et al., 2011; Ribaric et al., 2008). The biometric characters include fingerprint, iris,

palmprint, face, gait, vice, handwriting, etc. Fingerprint, iris, palmprint and face recog-

nitions are regarded as four reliable and accurate biometric identification technologies,

but they often require user’s cooperation. Face and vice recognition suffer from the dis-

guise. So those methods are not suitable for important public areas where surveillance of

security needs to be done at a distance. Gait recognition, as a newly emerging biomet-

ric identification, is used to identify individuals by the image sequences of their walking

(BenAbdelkader et al., 2004; Delac and Grgic, 2004), which has attracted growing atten-

tion because of its great potential uses to identify humans at a distance. Different from
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fingerprint, iris and face, gait has many unique advantages, such as remoteness, lower re-

quirement of video quality and difficulty to disguise. Gait recognition is a challenging task

in realistic surveillance scenarios in which people walking along arbitrary directions are

viewed by a single camera. The earliest work on human motion perception was performed

by Johansson (1973). He used moving light display fixed on the subjects to produce gait

image sequences, and proved that people can identify others according to the perceptive

motion type. So far, many gait recognition algorithms have been proposed. Lee and Grim-

son (2002) divided the walking silhouette into seven regions to extract both the gait av-

erage appearance feature vector and the gait spectral component feature vector for human

recognition. BenAbdelkader et al. (2002) applied principal component analysis (PCA) to

classify an unknown person with the computed self-similarity plot. Lam and Lee (2006)

proposed a gait recognition algorithm that fuses motion and static spatio-temporal tem-

plates. Wang et al. (2003) converted 2D silhouette sequence to 1D data that is composed

of distances to shape centroid and classified the walkers after having reduced the dimen-

sionality of the feature by PCA. Hong et al. (2007)proposed a gait recognition method

by the sequences of temporally ordered mass vector and used the dynamic time warping

approach for matching measurement. Johnson and Bobick (2001) presented a gait recogni-

tion technique based on static body parameters recovered during the walking action across

two different side-views in depth with a single camera. Huang and Boulgouris (2008) in-

vestigated the contribution of each view direction to the recognition performance using

the CMU MoBo database. Kusakunniran et al. (2012) proposed a sparse regression-based

view transformation model (VTM) for gait recognition under various views, in which

regression processes are used to formulate and model the correlated motions among the

gaits under different views. To achieve a reliable regression, the region of interesting (ROI)

selection is a key process to filter source gait feature and remain with only relevant infor-

mation to predict corresponding information in target gait feature. The refined ROI can be

used to generate more stable and non-overfitting regression fitted model in VTM construc-

tion. Based on a 3-D linear model and Bayesian rule, Zhang and Troje (2005) introduced

a view-independent person identification from human gait. The 3-D linear model is con-

structed using PCA from a set of Fourier represented examples. The coefficient sets are

used as signature to describe the gait data, which are derived from projecting the 2-D gait

sequences under the different views onto a 3-D model by means of a maximum of posterior

estimate. Liu and Tan (2010) proposed a view invariant gait recognition method, which

learns LDA-subspaces to extract discriminative information from gait features under each

viewing angle in the training dataset. In testing phase, each gait feature is projected to the

subspace separately. Then, final gait distance is a weighted sum of matching results from

each subspace. However, the high-dimensional gait data often show the characteristics of

non-linear, adaptive and multi-faceted nature. The traditional linear dimensionality reduc-

tion methods, such as PCA and LDA, can not deal with the nonlinear gait data processing

problems and maintain the non-linear structure in gait data. In fact, many proposed gait

recognition methods are effective under the ideal conditions and assume that only one

person is in visual field. As we know, the physical environment of human walking is more
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complex than the assumptions. The goal of the research is to apply gait recognition to

real condition. But all above gait recognition algorithms cannot meet the needs of the

surveillance and security systems at a distance. So far, gait recognition technology is still

in its developing stage, and has not been deployed in airports, border crossings and other

important public access areas, since gait recognition rates are influenced by a lot of co-

variate factors, such as walking surface and speed change, wearing a coat, carrying bag,

footwear and clothing, carrying conditions, lightning, viewpoint and time of execution,

etc. In gait recognition, dimensionality reduction is a key step. Since the gait data are of

high-dimensionality, nonlinear, complex and changing, the gait classifying features are

not robust enough to the variations of the above factors, extracted by the existing im-

age processing technology, statistic methods and linear dimensional reduction methods.

In fact, the interaction between gait variables is a complex non-linear fashion because of

the intrinsic non-linear dynamics of human movement. Recently, manifold learning, as a

relatively advanced powerful tool for non-linear dimensionality reduction, has been suc-

cessfully applied to pattern recognition such as face recognition (Roweis and Saul, 2008;

Hui and Chen, 2007). Its basic idea is to discover the intrinsic structure of the data with

low-dimensionality preserving geometric structure of the underlying manifold in the high

dimensional data, based on the assumption that the data with significant feature resides

in the neighborhood of a low-dimensional manifold. In actual gait recognition, one can

regard the significant gait features as the low-dimensional manifold embedded in the high

dimensional gait features space.

In this paper, we apply the manifold learning algorithm for the quantitative analysis of

gait data to obtain the “true” nonlinear gait features from the high-dimensionality input

space, thus providing a significant amount of information for gait classification. Average

neighborhood margin maximization (ANMM) is an effective supervised nonlinear dimen-

sionality reduction method (Wang and Zhang, 2007). For each data point, ANMM aims

at pulling the neighboring points with the same class label towards it as close as possible,

while simultaneously pushing the neighboring points with different labels away from it as

far as possible. As for gait recognition, based on ANMM, we present a new robust non-

linear dimensionality reduction algorithm, named orthogonal margin maximization pro-

jection (OMMP). Similar to ANMM, OMMP also aims to learn a projection matrix such

that the data in the low-dimensionality projected space have high within-class similarity

and between-class separability. By the projection matrix, the original data can be con-

veniently transformed into a low-dimensional discriminant subspace in which it is more

suitable for classification tasks. It can overcome the out-of-sample and small-sample-size

(SSS) problem. The advantages of OMMP have been verified in the experiments on one

public standard gait database, in which our method achieved a straight best recognition

rates on both databases.

The rest of this paper is organized as follows: Section 2 describes the OMMP algorithm

for the classification task. Experimental results on one public gait dataset are presented

in Section 3. Finally, some concluding remarks and possible future research direction are

provided in Section 4.



360 S. Zhang, C. Zhang

2. Orthogonal Margin Maximization Projection (OMMP)

Similar to other supervised manifold learning based methods, OMMP aims to find a linear

projection matrix A, with which the data points are mapped into a low-dimensionality

subspace where the nearby points with the same label are close to each other, while the

nearby points with different labels are far apart.

Let X = [x1, x2, . . . , xn] be a set of n data points in a D-dimensional space, i.e. xi ∈

RD , and assume that each data point belongs to one of C classes C1,C2, . . . ,Cc, then

the dimensional reduction algorithm tries to find a corresponding output set of patterns

Y = [y1, y2, . . . , yn] such that yi ∈ Rd , yi = AT xi , where A is a linear projection matrix,

d ≪ D and Y provides the optimal representation of X in the lower dimensional space. In

the graph embedding framework, a graph regularly characterizes the local neighborhood

relationships among the training data. Let G = (X,W) be an undirected weighted graph

with vertex set X. For each data point xi , its k nearest neighborhood set N(xi) can be split

into two subsets, within-class neighbor Nw(xi) and between-class neighbor Nb(xi). The

similarity matrix W between xi and its k nearest neighborhood xj is expressed as follows

y(x) =

{

exp
(−‖xi−xj ‖2

β

)

, xj ∈ N(xi) or xi ∈ N(xj ),

0, otherwise,
(1)

where β is a parameter, which is used as a regulator when the distance of xi and xj is

larger.

From Eq. (1), it is obvious that among all the neighbors of xi , the smaller between the

point xj and xi is, the more similar it is to xi . If there are noisy points or outliers in the

neighborhood set, the similarity measure is not reliable. For example, the relative distance

between the clean data point xi and the outlier xj is typically much larger than the other

neighbors. Therefore, we define the reliability of xi as follows

Ri =
Dii

∑

i Dii

, (2)

where Dii =
∑

j Wij .

The larger Ri of xi is, the more compact its neighborhood distribution is on the global

manifold structure. This is to say, xi and its neighbors are much more similar to each other.

On the contrary, if Ri of xi is much smaller than the other points, xi is likely to be a noisy

point or outlier. Hence, Ri can be applied to the objective function to further reduce the

influence of the noisy point and outliers on the projecting and preserve the global structure

to some extent.

For classification task, based on ANMM, two optimal objective functions are defined

as follows,

max
A

n
∑

i=1

∑

xj∈Nb(xi)

Ri

‖Nb(xi)‖
(yi − yj )

2, (3)
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min
A

n
∑

i=1

∑

xj ∈Nw(xi)

Ri

‖Nw(xi)‖
(yi − yj )

2, (4)

where ‖ ‖ is the size of the set.

Eq. (3) aims at pushing the neighboring points with different labels away from it as far

as possible, while Eq. (4) aims at pulling the neighboring points with the same class label

towards it as close as possible. Combining Eqs. (3) and (4) to map the points in the within-

class samples as close as possible and simultaneously map the points in the between-class

samples as far as possible, we define an optimal objective function,

max
A

[

n
∑

i=1

∑

xj ∈Nb(xi)

Ri

‖Nb(xi)‖
(yi − yj )

2 −

n
∑

i=1

∑

xj∈Nw(xi)

Ri

‖Nw(xi)‖
(yi − yj )

2

]

. (5)

By simple algebra transforms, the first part and the second part of Eq. (5) are respectively

reduced as

n
∑

i=1

∑

xj ∈Nb(xi)

Ri

‖Nb(xi)‖
(yi − yj )

2

=

n
∑

i=1

∑

xj∈Nb(xi)

Ri

‖Nb(xi)‖

(

AT xi − AT xj

)2

= AT

[

n
∑

i=1

∑

xj ∈Nb(xi)

Ri

‖Nb(xi)‖
(xi − xj )

2

]

A

= tr
(

AT BA
)

, (6)

n
∑

i=1

∑

xj ∈Nw(xi)

Ri

‖Nw(xi)‖
(yi − yj )

2

=

n
∑

i=1

∑

xj∈Nw(xi)

Ri

‖Nw(xi)‖

(

AT xi − AT xj

)2

= AT

[

n
∑

i=1

∑

xj ∈Nb(xi)

Ri

‖Nw(xi)‖
(xi − xj )

2

]

A

= tr
(

AT CA
)

, (7)

where B =
∑n

i=1

∑

xj∈Nb(xi)
Ri

‖Nb(xi)‖
(xi − xj )

2, C =
∑n

i=1

∑

xj∈Nw(xi)
Ri

‖Nw(xi)‖
(xi −

xj )
2.

Then Eq. (5) is rewritten as

max
A

tr
[

AT (B − C)A
]

. (8)
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Using the Lagrangian method, it can be easily found that the optimal projection ma-

trix A is composed of d eigenvectors a1, a2, . . . , ad corresponding to the largest d eigen-

values of B − C.

To eliminate the freedom and weaken the noise, we add the orthogonal constraint to

Eq. (8). There is a simple method to get the orthogonal projection matrix P from the

matrix A.

Set p1 = a1 and assume that m − 1 orthogonal basis vectors p1,p2, . . . , pm−1 have

been obtained. The m-th orthogonal vector pm can be computed by Eq. (9),

pm = am −

m−1
∑

i=1

pT
i am

pT
i pi

pi . (9)

From linear algebra, it is easy to know that the vectors p1,p2, . . . , pd are orthogonal

to each other. Once P = [p1,p2, . . . , pd ] has been learned, any new test point xnew is

mapped into the low-dimensionality subspace by

xnew → ynew = P T xnew, (10)

where P ∈ Rn×d , xnew ∈ RD , ynew ∈ Rd , d ≪ D.

In summary, the main procedure of the proposed algorithm for the classification task

can be described as follows:

(1) Project the original data into the PCA subspace, and throw away the small principal

components to overcome the small-sample-size (SSS) problem.

(2) For each point x − i , find the sets: k nearest neighborhood set N(xi), within-class

neighborhood set Nb(xi) and between-class neighborhood set Nw(xi).

(3) Compute the reliability of xi by Eq. (2).

(4) Compute B and C by Eqs. (6) and (7).

(5) Construct the generalized eigenvector problem Eq. (8) and compute the corre-

sponding eigenvectors and eigenvalues.

(6) Orthogonalize the eigenvectors by Eq. (9) and obtain the orthogonal projecting

matrix P .

(7) Project any new test point xnew by Eq. (10) to low-dimensionality ynew.

(8) Use K nearest neighbor (K-NN) classifier to decide the class labels of ynew.

3. Experimental Results

In this section, we conduct a set of experiments on a public gait sequences database

CASIA-A (http://www.cbsr.ia.ac.cn) to verify the effectiveness of the proposed method,

and compare it with three representative dimensional reduction methods PCA + RT (Ali

et al., 2011), manifold learning (ML) (Wu, 2012) and statistical shape analysis (SSA)

(Wang et al., 2003) and three representative dimensionality reduction methods, such as

ANMM (Wang and Zhang, 2007), discriminant projection embedding (DPE) (Yan and
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Zhang, 2008) and orthogonal discriminant projection (ODP) (Li et al., 2009). ANMM,

DPE and ODP are three recently proposed supervised manifold learning methods. The

database CASIA-A (http://www.cbsr.ia.ac.cn/) consists of 20 different persons. All per-

sons walk on a straight line under normal conditions. Every subject is captured in three

different view angles i.e., frontally (90◦), laterally (0◦) and obliquely (45◦), respectively

(Roweis and Saul, 2008). Each person has 4 sequences per-view. The database thus in-

cludes a total of 240 (2043) sequences. The length of each collected sequence varies with

the pace of the walker, but the average is about 90 frames (Wang and Zhang, 2007). The

original gait images need to be preprocessed to segment, crop, align and resize the gait sil-

houettes before constructing templates and dimensionality reduction, because the closer

the walking person gets to the camera, the bigger the gait silhouette image will be. Here,

we assume that silhouettes have been extracted from original human walking sequences,

and denote the binary gait silhouette by:

s(i, j) =

{

1, belongs to the foreground,

0, otherwise.
(11)

The gait area center (ci, cj ) of each silhouette can be computed by

ci =
1

N

∑

i,j

i.s(i, j), cj =
1

N

∑

i,j

j.s(i, j), (12)

where N is the number of foreground pixels, given by N =
∑

s(i, j). We resize gait

silhouettes so that all silhouettes have the same height, and then centralize each silhouette

image according to the horizontal center. All the images in database are removed the outer

parts of an image to improve framing, and are set to be the size of 80 × 40, denoted

x1, x − 2, . . . , xn. We use the function ‘rgb2gray’ of Matlab to transform the RGB gait

images to gray images. The brightness of each gait image is normalized as xi = xi/‖xi‖.

After normalization, the mean pixel value for the full image set is M =
∑n

i=1 xi/n. Then

every image deducts the mean as follows: x1 − M,x2 − M, . . . , xn − M . Figure 1 shows

representative gait silhouette image after processing.

Fig. 1. Gait silhouette after preprocessing.
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Finally, the gait data need to be transformed as vector by follows

Xi =













xi
1,1 . . . xi

1,64

xi
2,1 . . . xi

2,64

...
. . .

...

xi
64,1 . . . xi

64,64













→
[

xi
1,1 . . . xi

1,64, . . . , xi
64,1 . . . xi

64,64

]

. (13)

We use the function ‘reshape’ of Matlab to transform the gray images to vector images, ex-

pressed as xi (i = 1,2, . . . , n). In each experiment, the image set from CASIA-A database

is partitioned into the training set and test set. The training set is used to learn a gait sub-

space and obtain the projecting matrix. We randomly select half of gait images from each

individual as training set and the rest as test set, and repeat the experiment 50 times under

each condition. K-nearest-neighbor (KNN) classifier is employed for classification. Sup-

posed the number of the training samples per class is known, denoted as l, the number

of nearest neighbor k can be set to k = l − 1. The justification for this choice is that each

sample should connect with the remaining l − 1 samples of the same class.

When the distance of xi and xj is much larger, the value of exp(−‖xi − xj‖
2) may be

very small or even negligible. The parameter β aims to reduce the impact on the cluster-

ing ability of the reduction algorithm. But, β is commonly acquired manually. Manually

choosing β is not only complex in computation, but also unstable. Li et al. (2009) con-

cluded that the parameter β shows its impact on the error rate when is small, when β

equals to or is larger than 300, the error rates almost keep unchanged. We set β to be
√

‖Xi‖.‖Xj‖ (Zhang et al., 2008).

In general, the gait recognition rates vary with the dimensionality of the gait subspace,

so we record the highest recognition rate of each experiment. Table 1 shows the maximal

average recognition rates across 50 runs of each method under simply K-NN classifier

(K = 1) and their corresponding standard deviations (std).

The results in Table 1 show that OMMP is superior to other methods and the reason

is that OMMP considers not only the local neighborhood geometry structure and class

labels, but also the reliability of the data and the orthogonal constraint. Therefore, OMMP

is more effective for gait recognition.

Table 1

The recognition rate on CASIA-A database.

Algorithms Rec. rate at 0◦ Rec. rate at 45◦ Rec. rate at 90◦

PCA + RT 93.30 ± 5.92 92.37 ± 4.27 92.76 ± 4.19

ML 95.51 ± 5.01 94.56 ± 4.27 93.76 ± 4.19

SSA 95.84 ± 5.10 95.42 ± 4.62 94.95 ± 4.78

ANMM 96.80 ± 5.53 95.07 ± 4.74 94.43 ± 4.20

DPE 95.08 ± 3.94 95.52 ± 4.25 95.14 ± 4.46

ODP 95.52 ± 3.88 95.84 ± 3.66 94.48 ± 4.60

OMMP 98.03 ± 5.93 98.13 ± 4.95 97.52 ± 5.08
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4. Conclusions

Gait recognition is an interesting biometric which does not undergo the limitations of

other standard biometric methods such as iris or face recognition, as it can be applied at

a distance to non-cooperative users. However, its potential practical use is heavily limited

by the presence of multiple covariate factors which make identification problematic in

actual scenarios. In this paper, we proposed an effective nonlinear dimensional reduction

algorithm named OMMP for gait recognition, in which the local neighborhood geometry

structure, class labels, the reliability of the data and the orthogonal constraint are consid-

ered. Experimental results have demonstrated the effectiveness of the proposed algorithm

on CASIA-A database. There are two aspects that should be highlighted. Firstly, the reli-

ability of each data point is defined and is introduced to the objective function. Secondly,

the orthogonal projecting matrix is easily obtained by Gram-Schmidt orthogonalization

method. Although we have achieved encouraging results on CASIA-A database, more ex-

periments on some realistic gait databases are still required before the proposed method

is applied to human identification system in real world environment. Natural extensions

of the proposed methodology are the representation of gait sequences or cycles as 3D ten-

sors instead of stacked vectors, and the application of second order of nonnegative tensor

factorization to gait data, in order to make identity recognition robust to the covariate fac-

tors present. This will encourage more extensive adoption of gait identification with other

classical biometrics. Further work is to validate the suitability of the proposed algorithm

in actual application.
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Ortogonalias paraštes maksimizuojanti projekcija eisenos

atpažinimui

Shanwen ZHANG, Chuanlei ZHANG

Straipsnyje yra pristatomas netiesinis matmenų skaičiaus sumažinimo su mokytoju metodas – or-

togonalias paraštes maksimizuojanti projekcija. Metodo pritaikymo demonstracijai pasirinktas bio-

metrinis asmens atpažinimo iš eisenos uždavinys. Eksperimentams panaudota CASIA-A duomenų

bazė, kurioje yra 20 žmonių video įrašai, nufilmuoti iš 3 skirtingų kampų.

Eisenos atpažinimo uždavinys dėl skirtingų sąlygų, tokių kaip apšvietimas, apranga, filmavimo

kampas, yra sudėtingas, požymiai jautrūs sąlygoms ir daugiamačiai, o ryšiai tarp požymių netie-

siniai. Su tikslu, išgauti kuo atsparesnius požymius, paprastai yra naudojamas matmenų skaičiaus

sumažinimas. Autorių pasiūlytas matmenų skaičiaus sumažinimo algoritmas yra artimas vidutines

kaimynystės paraštes maksimizuojančiai projekcijai, kuri stengiasi rasti tokią požymių transforma-

ciją, kad suprojektuoti duomenys mažesnio matmenų skaičiaus erdvėje būtų kuo arčiau vienas kito,

jei priklauso tai pačiai klasei, ir kuo toliau vienas nuo kito, jei yra iš skirtingų klasių. Klasę nagri-

nėjamo uždavinio atveju atitinka asmuo.

Esminės pasiūlytos projekcijos savybės: 1) išnaudojama lokali duomenų informacija apie kai-

mynus kartu su priklausymu klasei; 2) atspari triukšmui ir išskirtims duomenyse; 3) metodas yra

mokymo su mokytoju tipo ir maksimizavime išnaudoja ortogonalumo apribojimą; 4) turi aiškią

fizinę interpretaciją.


