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Abstract. This paper presents a novel approach to the adaptation of multidimensional data models to
user-specific needs. The multidimensional data models used in contemporary business-intelligence
systems are inherently complex. In order to reduce the complexity of these models, we propose
using a qualitative multiple-criteria decision modelling method that is based on using a hierarchical
tree of the criteria to decompose the larger problem into a group of smaller problems. The final
value is derived by aggregating the criteria values using simple “if-then” rules, which form the
knowledge-based expert rules in the hierarchical criteria tree that reflect users’ preferences. The
multiple-criteria analysis of the multidimensional model structure results in a multidimensional
model that exhibits a reduced complexity and is adapted to users’ needs. The model was validated
using sales data from a medium-size enterprise. The qualitative (through questionnaires) and the
quantitative (through usage mining) evaluation of the proposed methodology both showed that the
proposed approach increases the ease-of-use of business intelligence systems and also contributes
to a higher user satisfaction.

Key words: data warehousing, multidimensional data model, automatic construction, user profile
oriented, multiple-criteria decision analysis.

1. Introduction

Although business intelligence (BI) products provide a wide spectrum of functionality,
they are not “one-size-fits-all” solutions. Moss and Shaku (2003) estimated that 60% of
BI projects either fail or are abandoned. According to Gartner (2008), 10–20% of business
users used their BI tools proactively in 2008. According to another study (DecisionPath,
2012), only 10% of organisations did not have BI projects, but only 20% of organisations
stated that BI was adopted throughout the entire organisation. One of the reasons for this
low utilisation of BI projects is the fact that BI systems are considered to be highly tech-
nical. However, users of BI tools demand products that are easy-to-use and flexible and
are accessible through handheld devices; such tools should incorporate one-third of the
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BI functionality (Gartner, 2012). BI systems should become more human-centric by con-
sidering the impact of information systems on humans and the integration of information
systems and human work (El Sawy, 2003).

Even though not often referenced in the literature, practice shows that BI users rarely
take full advantage of BI systems. Johnson (2002) estimated that 64% of BI system
functionalities are never or rarely used. Korelič and Škedelj (2008) showed that 80% of
searches in BI systems are performed on 20% of the data. Those studies have shown that
BI systems need to be context- or user-aware; that is, provide the same services in different
ways in accordance with the usage context. The present paper focuses on the adaptation
of the multidimensional data models (MDMs) of BI systems to the needs of the user.

We use an example to present the need for this adaptation. At the reporting level,
a typical BI system contains a predefined set of MDMs that are grouped according to
the business segment they serve (such as sales, production, and finances). With the aim
of covering all of the information related to a business segment, one of the following ap-
proaches is used: (1) a small number of MDMs with a large number of dimensions and
measures (approximately 30 dimensions and 20 measures) is created for each segment;
(2) a larger number of MDMs with a small number of dimensions and measures (approx-
imately five dimensions and three measures) is created for each segment; or (3) a combi-
nation of (1) and (2).

Although all business data is integrated by this system, users must exert effort to
find the information they need. This is especially true for busy business users who,
unlike power users, do not have deep knowledge of the underlying structure of the
MDMs or do not have experience with BI systems. Several author (Pendse, 2006;
Korelič and Škedelj, 2008; Finucae et al., 2010) have shown that business users perceive
such BI systems as complex and therefore do not adopt them. Although not referenced in
the literature, our practical experience shows that BI users can be separated into a small
number of groups according to their needs. In sales-oriented companies, for example, BI
users can be divided in the following three groups: (1) operative sellers, (2) regional sales
supervisors, and (3) strategists. Each group typically uses a subset of MDMs, which rep-
resent data with a subset of dimensions and measures at a concrete level of detail. By
presenting users with only a subset of MDMs, which have customised dimensions and
measures in accordance with their needs, it is possible to obtain high-quality information
in a straightforward manner.

Figure 1 presents the MDM set of a typical BI system before (MDin) and after the
adaptation to user needs (MDout-opt-ut) proposed in the paper. The MDM set denoted
as MDin contains a large number of MDMs from all business segments. The number of
dimensions and measures per MDM varies from small (6 5, 6 3 in most cases) to large
(> 30, > 20 in some cases). The MDM set denoted as MDopt-out-ut presents a BI system
that has been adapted to the needs of regional sales supervisors. The system contains five
pivot tables, each of which has up to three dimensions and two or three measures per view
(with aggregates).

In this study, we present a novel methodology denoted Multidimensional Data Model
Profile Adaptation (MDM-PAD), which was designed to adapt multidimensional data
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Fig. 1. Typical BI system covering all business segments and presenting all of the business data, before and after
adaptation.

models to user needs; that is, to create the adapted set MDout-opt-ut from MDin. First,
the user types are determined, each of which is represented by a user profile. The user
profile contains the typical information needs of a particular user type. The set of MDMs
adapted to the information needs of the users in each user type (MDout-opt-ut) is then deter-
mined through qualitative multiple-criteria decision analysis. This is followed by evalua-
tion of the system performance. The user feedback, both qualitative using questionnaires
and quantitative through an analysis of the view click rate and the dwell time, is used to
better understand the users’ needs and provide an improved adaptation. The test results
show that MDM-PAD increases the ease-of-use of BI systems and contributes to higher
user satisfaction.

The paper is organised as follows. Section 2 summarises previous work in this field,
before Section 3 presents the proposed methodology. Section 4 evaluates MDM-PAD, and
Section 5 discusses the findings and open questions that need to be addressed in future
work.

2. Related Work

BI systems must be context-aware; that is, provide the same services, in different ways, in
accordance with the usage context. This problem has been addressed by several authors.
Golfarelli et al. (2011), and Bellatreche et al. (2005) customised the presentation of on-
line analytical processing (OLAP) query results by sorting them according to the user
preferences, which are expressed qualitatively; that is, as binary relations on the space of
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tuples. Sarawagi (2000) also addressed the customisation of the presentation of OLAP
query results and developed a tool for the enhanced exploration of OLAP data that is
adaptive to the user’s prior knowledge of the data. Duan et al. (2011) developed a method
for ranking query results according to the history of the user’s actions in a sequential
decision-making domain.

In addition to adapting BI systems to the usage context, the literature has also dis-
cussed various approaches to assisting users during OLAP analysis sessions by recom-
mending executable queries. Jerbi et al. (2009) generated query recommendations based
on user preferences. Giacometti et al. (2008) analysed executed sessions on an OLAP
server. Sarawagi (1999) presented an automatic explanation of value changes (decreases
or increases) of an aggregated measure.

MDM-PAD also adapts OLAP query results (MDMs) to a particular user. It also fil-
ters the set of available MDMs based on what the specific user type typically analyses. In
contrast to the previously described approaches, which help users who are familiar with
the multidimensional data model and OLAP analysis, our methodology is primarily bene-
ficial for new users with little or no experience with the underlying BI system technology.
For experienced users, the benefit of our method is shown in cases when new cubes are
introduced to the system or significant changes to existing cubes are introduced to the BI
system.

2.1. User Profiles

The techniques for automatic user profile extraction can be divided into three groups:
content-based filtering (Basilico and Hofmann, 2004), collaborative filtering (Wang and
Lin, 2002), and usage mining (Deshpande and Karypis, 2004). Depending on how the user
profiles are used to provide customised content, two approaches can be distinguished: user
segmentation and personalisation. In MDM-PAD, the content customisation is based on
user segmentation in order to provide content that is customised to specific user features.
The low number of users in the average analytical BI system means that standard user
profiling methods are not suitable for this domain. We present a method for user profile
extraction that is appropriate for the analytical domain of BI systems.

2.2. Multiple-Criteria Decision Methods

Multiple-criteria decision methods (MCDM) play an important role in decision support
systems (DSS). In this paper, we have used a qualitative method called DEX (Bohanec and
Rajkovič, 1990), which was upgraded to DEXi (Bohanec, 2008). DEX has been applied
to real-life decision problems in various fields, including transportation (Cundrič et al.,
2008), agriculture (Pavlovič et al., 2011; Rozman and Pažek, 2005), ecological modelling
(Žnidaršič et al., 2006), industrial applications (Bohanec and Rajkovič, 1999), environ-
ment (Kontič et al., 2006), and food processing (Rozman et al., 2006).

As is the case with our approach, there are implementations of MCDM that utilise
MCDM in combination with other methodologies. An example of this type of implemen-
tation was presented by Barfod et al. (2010), who combined MCDM with cost-benefit
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analysis to evaluate partial results from both methods before obtaining the final decision.
The study conducted by Bouyssou et al. (2006) exhibits some similarity to the approach
in the present paper because it combines different methodologies with MCDM. Hung
et al. (2011) used MCDM in the domain of knowledge management for SMEs. MCDM
combined with data integration and data mining has been used for incident information
management (Peng et al., 2011). Turskis and Zavadskas (2010) developed the ARAS-G
method for resolving grey areas for criteria evaluation. Zavadskas et al. (2009) conducted
similar research applying the COPRAS-G method, while Stanujkic et al. (2013) used a
ranking procedure to determine performance rating of alternatives.

The MCDM methodology was also used for resolving classification problems (Chen,
2006) as a method that simplifies complex models using ranging, weighting and grouping
technologies to create homogeneous groups (Chen, 2006; Roberts and Goodwin, 2002;
Žnidaršič and Bohanec, 2007). Our method uses more models but fewer nodes and at-
tributes (rules).

2.3. Methods for Optimising or Enhancing Multidimensional Data Models

Some authors have introduced innovative methods for optimising or enhancing multidi-
mensional data models (MDM). Espil and Vaisman (2002) introduced Intensional Redef-
inition of Aggregation Hierarchies (IRAH), which concentrates on methods that redefine
single dimensions, but differs from our method in that it does not take user profile param-
eters into consideration. Mansmann and Scholl (2007) proposed methods for enhancing
MDMs by improving the navigational hierarchy, homogeneity, an unbalanced and irreg-
ular hierarchy, and summarisability problems. Although these enhanced methods have
resulted in an increased capacity of the OLAP technology, they have not addressed the
differences between different user types.

Malinowski and Zimanyi (2006) proposed the adoption of the conceptual perspective
and used ER-like graphical notations to design multidimensional models. Other authors
proposed UML-like approaches (Lujan et al., 2006; Prat et al., 2006) or special text and
graphical notations (Dori et al., 2008; Pardillo et al., 2010) to express the semantics of the
multidimensional model. In addition, some researchers have developed fully automated
methods for generating MDMs (Romero and Abelló, 2010). Some researchers (Dzemyda
and Sakalauskas, 2011) have used heuristic methods in areas of large data for predictive
learning. Although these approaches improve MDM design to make it faster and better
defined, these methods require special domain knowledge that only data warehouse and
professional IT personnel have. Therefore, these approaches differ from ours in that they
cannot be automated or adapted to all user types.

Other researchers have proposed enhancements of relative multidimensional scaling
method, for visualisation of multidimensional data in order to lower the difficulty of
understanding the multidimensional data, such as different techniques for exploratory
analysis of multidimensional data (Žilinskas, 2008), dimensionality reduction methods
(Karbauskaite and Dzemyda, 2009), multimodal evolutionary algorithm (Redondo et

al., 2012) and advanced modification of the base method (Bernatavičienė et al., 2007;
Žilinskas and Podlipskyte, 2003).
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Fig. 2. Multidimensional Data Model Profile Adaptation (MDM-PAD).

3. Multidimensional Data Model Profile Adaptation (MDM-PAD)

This section presents the MDM-PAD methodology for adapting multidimensional data
models to user-specific needs using the multiple-criteria decision modelling methodol-
ogy DEX. The methodology (Fig. 2) can be divided into three parts: (I) user segmen-
tation, (II) multidimensional data model optimisation, and (III) evaluation of the system
performance. Part I determines the types of system users, and the categorisation is based
on analyses of the users’ interest and the users’ observed action sequences. Each user
type is represented by a user profile. Part II determines the optimal data presentation for
each user type through multiple-criteria decision modelling and MDM operations. Three
optimisations steps are performed for each user type using separate multiple-criteria deci-
sion models: (1) McdMD – MDM selection model, (2) McdD – dimensions optimisation
model, and (3) McdM – measures optimisation model. Part III closes the loop that en-
ables iterative improvement of the alignment of the MDMs in the BI system to different
user types. Direct (through questionnaires) and indirect (through usage mining) user feed-
back provides a measure of the relevance of the optimised MDMs for each particular user.
This feedback makes it possible to refine the user segmentation part of the method, which
helps improved MDM optimisation. Because the main goal of the evaluation part is to
collect additional system usage data, thereby improving MDM-PAD’s input information,
this section focuses on the user segmentation part (Section 3.1) and the multidimensional
data model optimisation part (Section 3.2).
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Fig. 3. MDM-PAD user segmentation for determining user types.

3.1. User Segmentation

The procedure for providing customised content to users in accordance to their information
needs and preferences is based on user segmentation. Figure 3 presents the approach used
to determine the user types.

The first step is the automatic extraction of the information needs and preferences of
the system users encoded in user profiles.

Definition 1. A user profile is a vector of attributes Pu = (attr1,attr2, . . . ,attrN ), which
represent the degree of interest of the user in a specific piece of information.

For example, the attributes in the user profile vector may represent the level of detail
at which the user analyses the data, the time period that the user typically utilises when
examining the data, and the data type (for example, sales per items, sales per customers).
The level of interest that a user has in the specific pieces of information encompassed by
the user-profile attributes is determined using the following aspects:

• Click frequency – the frequency of clicks on MDMs that provide a specific piece of
information (expressed as a percentage of all of the clicks).

• Dwell time – the time that a user spends viewing MDMs that provide a specific piece
of information (expressed as a percentage of all of the system’s usage time).

The degree of interest is a value in the range [0,1], where higher values indicate higher de-
grees of interest. With users’ information needs and preferences encoded in user profiles,
we apply clustering (Witten and Frank, 2011) to obtain the user types. User segmentation
in MDM-PAD uses the k-means clustering algorithm, which outputs a set N of clusters,
each of which represents one type of N BI-system users UT = {ut1,ut2, . . . ,utN }, where
N is the number of user types. The cluster centroids represent the typical information
needs and preferences of the users that belong to each user type. A symbolic descrip-
tion of each user type is assigned by a domain expert based on cluster centroid analy-
sis.
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3.2. Multidimensional Data Model Optimisation

The next step in our method is the optimisation of the MDMs. The optimal MDMs for
each user type are determined using the multiple-criteria decision modelling methodology
DEX. The purpose of this step is to adjust the MDMs to the user type in order to ultimately
optimise the BI system usage (for example, fewer clicks and less time to obtain the answer).
Section 3.2.1 introduces MDMs and then Section 3.2.2 presents DEX. We then describe
the MDM optimisation method (Section 3.2.3).

3.2.1. The Multidimensional Data Model

The format of historical business-data snapshots is defined using MDMs (generalised,
conceptual data models). We use an extension of the Thomas and Datta MDM model
(Thomas and Datta, 2001), which can handle uncertain and incomplete measures, as pro-
posed by Moole (2003), and uncertainty in dimensional hierarchies using fuzzy logic (Del-
gadom et al., 2004).

Definition 2. A multidimensional data model MDi is a seven-tuple MDi = 〈C,A,f, d,

O,L,H 〉, where:

• C is a set of m characteristics that includes all of the concepts needed for analysis;
that is, all of the dimensions and measures;

• A is a set of t elements (attributes) encompassing all of the values on all of the levels
of abstraction that may be assigned to a characteristic;

• f is a one-to-one mapping, f : C → 2
A, which defines the set of attributes that may

be assigned to each specific characteristic in C;
• d is a Boolean-valued function, d(C) : C → 2

C , that partitions C into a set of di-
mensions DS and a set of measures MS, where measures are designated with the
value TRUE and dimensions with the value FALSE;

• O is a set of hierarchies, one for each characteristic. It specifies how the elements
of each characteristic, specified by A, are organised into levels with respect to their
generality with the use of fuzzy hierarchical relations. Fuzzy hierarchical relations
are used as proposed by Delgadom et al. (2004);

• L is a set of cube cells, each having the structure 〈address, (content,probability
stamp)〉, represented by 〈L.AC, (L.CC,L.PS)〉 as proposed by Moole (2003);

• H an element of type history of the form

H =

{

�

(A,f,O,V,G,H ′),

where � is a recursive closure, A is a set of attributes, f specifies which attributes
are related to each characteristic, O is a set of characteristic hierarchies, V specifies
how the cell values are obtained, G is an aggregation operator and H ′ is an element
of type history.



Optimisation of Multidimensional Data Models 291

Depending on the outcome of the utility functions, the following multidimensional
data model operations were used in MDM optimisation: roll-up (increasing the level of
aggregation along one or more dimension hierarchies), slice (selecting dimensions to be
shown in the hypercube), and dice (restricting the values of one or more dimensions based
on conditions specified in the form of predicates).

3.2.2. DEX

We used DEX to define the optimisation parameters for cube optimisation (Bohanec and
Rajkovič, 1990). DEX has the following characteristics (Bohanec, 2003): (a) the model
consists of hierarchically structured variables called attributes, (b) all of these attributes
are qualitative rather than numerical, (c) the attributes can take only a finite (and usually
a small) number of discrete symbolic values, and (d) the aggregation of values in the
model is defined by rules. The distinguishing characteristic of DEX is its ability to utilise
qualitative variables instead of numerical variables, which typically constitute traditional
quantitative MCDM models. In the DEX method, the utility functions are represented by
decision rules, which are typically formulatedby decision makers or domain experts. DEX
models are hierarchically structured into a tree of attributes and all MDM_PAD models are
also trees. A tree represents the structure of a decision problem. Leaves of the decision tree
represent basic attributes, while internal nodes are used to represent aggregate attributes.
The models are built using two steps. In the first step, the domain expert develops the
structure of the particular MCDM model using the DEX decision tree editor. The second
step involves defining simple if-then decision rules for each internal node of the decision
tree. DEX provides a number of utility functions to support the creation, verification and
analysis of decision trees and decision rules.

Definition 3. A DEX multiple-criteria decision model is a qualitative decision-tree
model that decomposes the decision problem to a set of smaller, less-complex sub-
problems, such that each decision sub-problem is resolved by a set of if-then rules.

3.2.3. MDM Optimisation Method

The aim of the MDM optimisation method is to determine the most suitable data
representation for each user type identified in the first part of MDM-PAD (user seg-
mentation). As input, the optimisation method uses a set of M predefined MDMs
MDin = {MDin

1
, MDin

2
, MDin

3
, . . . , MDin

M} that cover all of the information related to
the business segment of interest (for example, sales and marketing), where MDin

i =

〈Cin,Ain, f, d,O in,L,H 〉.
The method then outputs a set of N adapted MDM sets

MDopt-out =
{

MDopt-out−1,MDopt-out−2, . . . ,MDopt-out−N
}

,

where N is the number of extracted user types and MDopt-out-ut is the set of adapted
MDMs for the user type ut. MDopt-out-ut contains an optimised subset of the MDMs from



292 I. Korelič et al.

Fig. 4. MDM optimisation – global view.

the input set MDin with MDM characteristics Cout and attributes Aout adapted to the needs
and preferences of the users of user type ut; namely,

MD
opt-out-ut
i =

〈

Cout-ut,Aout-ut, f, d,Oout-ut,L,H
〉

.

The following is the formal definition of MDM-PAD’s MDM optimisation function.
Let S be the result set of the utility function of MCDM model

S = {“hide”, “keep”, “highlight”}.

The mapping function is then defined as fCU : MDin → S; by applying fCU to each of the
MDM from MDin, we get

MDout-ut =
{

k
∣

∣ k ∈ MDin; fCU (k) = “keep” ∨ fCU (k) = “highlight”
}

.

Let F be a function with the property

∣

∣F
(

MDout-ut
)∣

∣ 6
∣

∣MDout-ut
∣

∣.

Let MP = 2
MDout-ut

be the power set of the MDM set MDout-ut ; therefore, Mopt-out-ut ⊆

MP. We also define the following functions:
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• fDS : K → {‘drop’, ‘simplify’, ‘keep’};
• ∀k ∈ K , fDS: k 7→ {‘drop’, ‘simplify’, ‘keep’};
• fMS : K → {‘drop’, ‘simplify’, ‘keep’};
• ∀k ∈ K, fMS: k 7→ {‘drop’, ‘simplify’, ‘keep’}, where k is a cube from a set K;
• G1 : MP → MP

G1(k) =











slice(d); fDS(k) = ‘drop’,

dice(d); fDS(k) = ‘simplify’,

k; fDS(k) = ‘keep’,

where d is a dimension in DS;
• G2 : MP → MP

G2(k) =











hide(m); fMS(k) = ‘drop’,

roll_up(m); fMS(k) = ‘simplify’,

k; fMS(k) = ‘keep’,

where m is a measure in MS. Therefore, the previously defined function F can be rewritten
as:

F : MP → MP,

F (k) = (G1 ◦ G2)(k).

We can see that the final optimised set of MDMs is

MDopt-out-ut =
⋃

k∈MDout-ut

(G1 ◦ G2)(k) =
⋃

k∈MDout-ut

F(k)

and, moreover,

∣

∣F
(

MDout-ut
)∣

∣ 6
∣

∣MDout-ut
∣

∣.

The MDM optimisation method consists of the following four steps: (1) MDM selection,
(2) dimension optimisation, (3) measurement optimisation, and (4) optimisation imple-
mentation. It is applied to each user type identified in the first part of MDM-PAD (user
segmentation) separately. The first three steps are performed using DEX. Three multiple-
criteria decision models are created for this purpose:

1. The McdMD – this DEX model makes it possible to select the MDMs of the input
set MDin that are relevant for a particular user type ut. The DEX decision tree structure of
McdMD is represented in Fig. 5. Input to McdMD are six MDM characteristics: suitability
of the MDM’s content for user type ut (Ca1), the MDM’s detail level (Ca2), its refresh
time (Ca3), the time frame of the data in the MDM (Ca4), its number of dimensions (Ca5)
and number of measures (Ca6). McdMD contains two aggregate attributes: importance
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Fig. 5. DEX decision attribute tree for McdMD – MDM selection.

and complexity. MDM’s importance for user type ut is assessed from the MDM’s detail
level (Ca2), and refresh time (Ca3). MDM’s complexity for user type ut is assessed from
the time frame of the captured data (Ca4), its number of dimensions (Ca5), and measures
(Ca6). McdMD’s output (that is, MDM selection) depends on the suitability of the MDM’s
content (Ca1), the MDM’s importance, and the MDM’s complexity for user type ut. While
the DEX decision tree structure is domain-independent, the aggregation rules in the DEX
model need to be specified for each domain separately. The utility function output of the
McdMD model is “hide”, “keep”, or “highlight”.

2. The McdD – this DEX model optimises the set of MDM dimensions DSi =

{d1,d2, . . . , dNdim} and their attribute set, where Ndim is the number of dimensions for
a particular MDM from MDout-ut set. The DEX decision tree structure used in this step
is presented in Fig. 6. Input to McdD are five dimension characteristics: the dimension
size (Da1), the dimension relation dependency (Da2), its data type (Da3), the characteris-
tics of its hierarchy (Da4), and its logical meaning (Da5). McdD contains two aggregate
attributes: dimension metrics and dimension kind. The suitability of the dimension’s met-
rics for user type ut is assessed from the dimension size (Da1), and the dimension relation
dependency (Da2). The suitability of the dimension’s kind for user type ut is assessed
from the dimension’s data type (Da3), its hierarchy characteristics (Da4), and its logical
meaning (Da5). McdD’s output (i.e. dimension adjustment) depends on the suitability of
the dimension’s metrics and kind for user type ut. Similarly to McdMD, McdD’s DEX de-
cision tree structure is domain-independent,while the aggregation rules in the DEX model
need to be specified for each domain separately. The output of the DEX utility function for
model McdD is defined as “drop”, “simplify”, or “keep” and is used to create the output
dimension set.

The McdM – this DEX model optimises the set of measures MSi = {m1,m2,m3, . . . ,

mNmes} and their attribute set, where Nmes is the number of measures for a particular
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Fig. 6. DEX attribute tree for MCDM models McdD and McdM.

MDM in MDout-ut . The DEX decision tree structure used in this step is presented in Fig. 6.
Input to McdM are five measure characteristics: the sorting of the measure values (Ma1),
the clustering (ranging) of the measure (Ma2), its formatting (Ma3), its aggregate type
(Ma4), and its visual type (Ma5). McdM contains two aggregate attributes: complexity
and visual style. The suitability of the measure’s complexity for user type ut is assessed
from the clustering (ranging) of the measure (Ma2) and its aggregate type (Ma4). The
suitability of the measure’s visual style for user type ut is assessed from the sorting of
the measure values (Ma1), its visual type (Ma5), and its formatting (Ma3). McdM’s out-
put (that is, measure adjustment) depends on the suitability of the measure’s complexity
and visual style for user type ut. McdM’s DEX decision tree structure is also domain-
independent, while the aggregation rules in the DEX model need to be specified for each
domain separately. The output of the DEX utility function for model McdM is defined as
“drop”, “simplify”, or “keep” and is used to create the output measures set MS

opt
i .

All of the MDMs in MDin are processed by McdMD. The model outputs “hide” for
those MDMs that are not relevant to user type ut, “keep” for the MDMs that are relevant
to user type ut, and “highlight” for the MDMs that are the most relevant to user type ut.
The MDM selection (McdMD) is executed once for each user type and provides MDout-ut ,
which is the set of all MDMs that are relevant to a specific user type ut. The characteristics
of all the MDMs in the set MDout-ut are then processed by either the McdD and the McdM
model, which output the operations that need to be performed on these characteristics in
order to make them suitable for a particular user type ut and obtain Cout-ut and Aout-ut .

The fourth step (optimisation implementation) concerns the application of the MDM
operations that were found to be necessary by the outputs of the McdMD, McdD
and McdM models. The optimal set of MDMs in the optimal format for user type ut

(MDopt-out-ut) is obtained, which contains a subset of the MDMs in MDin. The input at-
tributes and the decision-tree structure of the three MCDM models are the same for each
user type identified in the first part of MDM-PAD (user segmentation). However, each
MCDM model contains separate utility functions for each user type; that is, N utility
functions are associated to each MCDM model.
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MDM-PAD optimisation was performed using the following algorithm:

Data: MDin,UT

Result: MDopt-out

for each user type ut in set of user types UT do

for each MDM k in MDM set MDin do

if fCU(k) = ‘keep’ then

copy(k) to MDout-ut

end

if fCU(k) = ‘highlight’ then

copy(k) to MDout-ut

end

if fCU(k) = ‘hide’ then

continue;
end

end

for each MDM k in MDM set MDout-ut do

for each dimension d in dimension set DSin do

if fDS(K) = ’drop’ then

slice(d);
end

if fDS(k) = ‘simplify’ then

dice(d);
end

if fDS(k) = ‘keep’ then

continue;
end

end

for each measure m in MSin do

if fMS(k) = ‘drop’ then

hide(m);
end

if fMS(k) = ‘simplify’ then

roll_up(m);
end

if fMS(k) = ‘keep’ then

continue;
end

end

end

end

The characteristics (Cin) in MDout-ut are processed by either McdD (when d(Ci) =

FALSE; that is, the characteristic is a dimension) or McdM (when d(Ci) = TRUE; that is,
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the characteristic is a measure), which output “drop” for characteristics that are irrelevant
to user type ut, “simplify” for relevant characteristics that need to be simplified (that is,
the range of values needs to be simplified), and “keep” for relevant characteristics that are
in the correct format for user type ut. The “drop” output of McdD and McdM is performed
using the MDM operation slice. The MDM MDout-ut

i , the characteristic to be dropped Ci ,
and the predefined aggregation operator G of characteristic Ci are the inputs to the slice
operator, which outputs a reduced MDM. The “simplify” output is performed using roll-
up and dice. We use two approaches to simplify a characteristic in the MDM. The first
approach presents the user a predefined number K of attribute values of the characteristic
(say, 10) to be simplified. The attribute values are selected so that they provide a uniform
distribution of data instances per attribute value or a uniform distribution of the measure
values per attribute value. They also define the level of abstraction lr of characteristic Ci

that is most suitable for user type ut. This operation is performedusing the roll-up operator.
The MDM MDout-ut

i , the characteristic Ci (which has an abstraction level that needs to be
increased), the abstraction level lr , and the predefined aggregation operator G of charac-
teristic Ci are used as the input to the roll-up operator, which outputs a simplified MDM.
The second approach presents the user with the best-ranked attributes of a characteristic
according to a predefined ranking function. The attribute values of the characteristic to be
simplified are sorted according to their rank values. The top M (e.g., 10) attribute values
are kept, whereas the other attribute values are aggregated to a single group that is denoted
as “other” and presented by a single measure value. This operation is performed using the
dice operator. The MDM MDout-ut

i , the characteristic to be simplified Ci , a predicate P

that specifies the simplification heuristic, and the predefined aggregation operator G of
characteristic Ci are used as the input to the dice operator, which outputs a simplified
MDM.

The size of MDopt-out-ut ranges from 0 to the size of MDin. When the number of MDMs
in MDopt-out-ut is close to 0 (or equal to 0), the following two situations are possible:
(a) none of the MDMs in the input set MDin are relevant to the user type and/or (b) none of
the MDMs present in the optimised set MDout-ut satisfies the criteria of the MCDM models
for dimension and measure optimisation. If the number of MDMs in MDout-ut approaches
the size of MDin, the optimisation can be considered useful if an MDM operation, such
as roll-up, slice or dice, has been applied to the MDMs in MDout-ut to make them more
appropriate for a specific user type. Otherwise, the MCDM models need to be refined or
an additional set of MDM attributes needs to be added.

4. Empirical Verification

MDM-PAD has been applied to real-world data in sales-oriented decision-making, which
uses the “BIView” business intelligence tool to capture the interaction of employees of a
medium-size enterprise (Result, 2011). In this specific application, users were given ac-
cess to 48 cubes that contained between three and 34 dimensions and 7–10 measures.
There were an average of 30 dimensions per cube, and an average of eight measures



298 I. Korelič et al.

per cube. The number of dimension members varied from 17 to 123 756. The maxi-
mum time frame was five years and the user interaction with BIView was recorded for
a period of approximately two years. The user interaction records are expressed in the
form R = (user,action, cube, time), where user represents the user that interacted with
the BIView application, action represents the action that the user performed, cube repre-
sents the cube on which the action was performed, and time represents the time when the
action was performed. This data was recorded for 16 users.

4.1. User Segmentation

To determine the user types in the sales-oriented decision-making dataset, the user profile
was defined as

Pu = (cbAllGroup, cbComp, cbGr, cbSample, cbEntry, tmCurrent, tmLast2Y ,

rtWeekly, rtMonthly,objItems,objCustomers,objSales),

where:

• cbAllGroup, cbComp, cbGr, and cbSample represent the degree of user’s interest in
information at several levels of detail; that is, the company as a whole, its individual
offices, its office groups, or user-selected set of offices, respectively, mapped to input
attribute Ca2, which is the Detail level from the DEX McdMD model used in the
optimisation in step 1.

• tmCurrent and tmLast2Y represent the degree of interest in information from differ-
ent time frames, mapped to the input attribute Ca4, which is Time frame from the
DEX McdMD model used in the optimisation in step 1.

• rtWeekly and rtMonthly represent the degree of interest in information that is aggre-
gated over different time periods; that is, weekly and monthly aggregations, respec-
tively, which are partially used to define input attributes Ca3 and Ca4 from the DEX
McdMD model.

• objItems, objCustomers, and objSales represent the degree of interest in information
belonging to different cube categories, mapped to the input attribute Ca1, which is
the Content-profile fit from the DEX McdMD model used in the optimisation in
step 1.

The degrees of a user’s interest in the specific pieces of information encompassed by the
user profile attributes were determined using: (a) click frequency, (b) dwell time and (c)
both click frequency and dwell time.

Having the user profiles, we applied K-means clustering to determine the user types.
Figure 7 visualises the obtained clusters – that is, the user types for each of the three cases
(a, b and c) – using the Radviz technique (Hoffman et al., 1997) in Orange (Demšar et al.,
2013). Each of the three large circles represents a user-profile space. The attributes in the
user-profile vector Pu are represented as points on the circle boundary. Each object inside
a circle corresponds to a user-profile instance. The position of a user-profile instance is
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Fig. 7. User types when the degree of interest is calculated using (a) click frequency, (b) dwell time and (c) both
click frequency and dwell time.

determined by a metaphor from physics – the spring equilibrium. Imagine an object that
represents a user-profile instance and a set of |Pu| springs, each of which connects an
attribute point with the user-profile point. Imagine that the springs’ stiffness corresponds
to the attribute values in the user-profile instance. The user-profile object is located at the
place where the spring forces are in equilibrium.

Figure 7 shows that, in all three cases (a, b and c), the user profile space can be divided
into three disjoint subspaces. The analysis of the cluster centroids revealed the following
types of users and their respective information of interest:

1. Operative seller (C2 – square in Fig. 7) – addresses business on an operational level
with an owned set of business partners and a subset of the organisation articles. This
user type is characterised by ut1 = (0.16,0.42,0.00,0.09,0.00,0.03,0.00,0.00,

0.00,0.46,0.08,0.00).
2. Regional sales supervisor (C3 – triangle in Fig. 7) – supervises the sales of strategi-

cally important articles with the aim of determining potential deviations from busi-
ness plans. This user type is characterised by ut2 = (0.29,0.18,0.14,0.06,0.14,

0.02,0.27,0.01,0.99,0.17,0.15,0.00).
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Fig. 8. Multidimensional model selection process – using DEX multi-attribute decision model McdMD.

3. Strategist (C1 – circle in Fig. 7) – regulates the products’ life cycles; characterised
by ut3 = (0.70,0.22,0.00,0.00,0.00,0.00,0.25,0.90,0.10,0.50,0.03, 0.12).

4.2. MDM Optimisation in Sales-Oriented Decision-Making Systems

This section illustrates the process of MDM optimisation for regional sales supervisor user
type. The McdMD, McdD, and McdM utility functions for this user type and a description
of their respective input attribute values are presented in detail.

Step 1. MDM selection. This step determines MDout-ut , which is the set of relevant
MDMs in MDin for the profile of a specific user type (regional sales supervisor in this
case), based on the McdMD model and optimisation process shown in Fig. 8. Most of the
attributes are obtained automatically from the definition of the MDM or MDM running
attributes or statistics, while others are defined by domain experts.

The McdMD attribute qualitative value scales in this specific case are defined as fol-
lows.

Ca1 – Content-profile fit: (Fit, No fit, or Undefined); obtained as an MDM attribute,
defined manually or extracted automatically from the MDM name, definition, and the de-
scription. This obtained value is used for comparing to the list of business names assigned
to each user type ut. The value Fit is assigned whenever the observed user type business
area name, such as Sales, Purchases, and Finance, is found in the name, definition or de-
scription of the MDM. The value No fit is assigned whenever the MDM business area
cannot be matched to any of existing user types. Undefined is assigned where no match or
multiple match of business area names was found.

Ca2 – Detail Level: (Low, Mid, and High); defines the level of detail of the data that
are represented in the MDM, depending on the number of dimension members. The value
Low is assigned when the number of dimension members is <= 25; value High is as-
signed whenever the number of dimension members is over 250; otherwise, value Mid is
assigned.

Ca3 – Refresh time: (Yearly, Monthly, Weekly, Daily, and Hourly); the time-frame that
the data in the MDM was (or should be) refreshed.
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Table 1
High-level decision rules for McdMD DEX model - adaptation of an MDM to a specific user profile.

Complexity Importance Ca1 – content-profile fit MDM optimisation

1 High >= mid Fit Highlight

2 * high Fit Highlight

3 Mid low Fit Highlight

4 Low low >= undefined Highlight

5 Low >= mid Fit Highlight

6 Mid mid Fit Keep
7 >= Mid high >= undefined Keep
8 Low low Fit Keep
9 Low >= mid undefined Keep

10 High low * Hide

11 High * >= undefined Hide

12 <= Mid <= mid >= undefined Hide

13 * mid No fit Hide

Ca4 – Time frame: (Multi-Year, 2-Year, 1-Year, Month, Week, and Day); the range of
the largest time dimension in the MDM is grouped in ranges.

Ca5 – # of dimensions: (1–5, 5–10, 10–20, and > 20); the number of dimensions in an
MDM defined in ranges.

Ca6 – # of measures: (1, 2, 3–5, and > 5); the number of measures (and aggregates)
in a specific MDM (in ranges).

Table 1 represents high-level decision rules in the McdMD model (Fig. 5) for the re-
gional sales supervisor user type. These rules are used to compute the root attribute MDM
utility value. Each row in the table represents one rule, each of which is indexed with
the number presented in the first column. Each rule contains three conditions, one for
each MDM optimisation descendent in the McdMD attribute tree. The second and third
columns represent rule conditions concerning aggregate attributes Complexity and Im-
portance. The fourth column represents the conditions concerning the attribute Content-

profile fit (Ca1). The last column on the table represents rules’ consequents; that is, the
value assigned to the utility value of the McdMD model.

The symbol ‘*’ in rule tables denotes ‘any value’, ‘>=’ represents ‘better or equal’,
‘<=’ indicates ‘worse or equal’, and ‘value1:value2’ denotes the interval between and
including the two values. Rules that correspond to a single aggregate attribute are grouped
together. To improve readability, in all decision tables, the highest and the lowest values
of each attribute are emphasised using bold italic and bold type-face, respectively. For
example, rule in row 1 in Table 1 states that: if Complexity is ‘High’ and Importance is
better than or equal to ‘mid’ and Content-profile fit (Ca1) is ‘Fit’ then MDM optimisation
utility output value is ‘Highlight’.

This model contains two aggregate attributes – Complexity and Importance – which
represent the intermediate results of the assessment depending on previously defined ba-
sic attributes. For each aggregate attribute, a set of if-then-else rules was composed to
define corresponding utility function depending on the values of its descendant attributes.
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Table 2
Decision rules corresponding to the Complexity attribute.

Ca6 – # measures Ca5 – # of dimensions Ca4 – time frame Complexity

1 * >= 10-=20 Day High

2 >= 2 * >= Week High

3 >= 3–5 * >= Month High

4 >= 3–5 >= 5–10 >= 1-Year High

5 > 5 * >= 1-Year High

6 > 5 > 20 * High

7 1 <= 5–10 >= Month Mid
8 1 * Month: Week Mid
9 <= 2 * Month Mid

10 1 5–10 >= 1-Year Mid
11 1 >= 5–10 1-Year: Week Mid
12 <= 2 5–10 1-Year: Month Mid
13 1 >= 10–20 2-Years: Week Mid
14 <= 2 > 20 2-Years: Month Mid
15 <= 3–5 > 20 2-Years Mid
16 2 5–10 2-Years: Month Mid
17 >= 2 5–10 2-Years Mid
18 3–5 1–5 2-Years: 1-Year Mid
19 3–5 * 2-Years Mid
20 >= 3–5 <= 10–20 2-Years Mid
21 3–5 >= 5–10 <= 2-Years Mid
22 >= 3–5 5–10: 10–20 <= 2-Years Mid
23 > 5 <= 10–20 <= 2-Years Mid

24 1 <= 5–10 <= 2-Years Low

25 <= 2 1–5 <= 1-Year Low

26 <= 2 * Multi-Year Low

27 <= 3–5 1–5 Multi-Year Low

28 2 10–20 <= 1-Year Low

Table 3
Decision rules corresponding to the Complexity attribute.

Ca2 – detail level Ca3 – refresh time Importance

1 High >= Monthly Low

2 <= Mid >= Daily Low

3 * Hourly Low

4 High Yearly Mid
5 Mid Monthly: Weekly Mid
6 Low Daily Mid

7 >= Mid Yearly High

8 Low <= Weekly High

Table 2 shows the corresponding decision rules for the Complexity and Table 3 shows the
corresponding rules table for Importance.

Table 4 presents sample alternatives (MDM cubes from MDin) with values for each
input attribute. All of the 48 alternatives were described in this manner. The final results
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Table 4
Sample criteria for cubes Cu1 and Cu10 through Cu12 .

MDM – cube name Ca1 Ca2 Ca3 Ca4 Ca5 Ca6 Result

Cu1 – Yearly sales Fit Mid Daily Multi-year > 20 > 5 Highlight
Cu10 – Monthly sales Fit Low Monthly 1-Year > 20 > 5 Highlight
Cu11 – Weekly sales Fit High Weekly 1-Year > 20 > 5 Keep
Cu12 – Purchases by customers No Fit Mid Monthly Multi-year 10–20 > 5 Hide

Table 5
Top-level aggregation rules for dimension optimisation model.

Dimension metrics Dimension kind Dimension adjustment

1 Useless 6 Fair Drop
2 6 Tie Low Drop
3 Useless High Simplify
4 Tie Fair Simplify
5 Usable Low Simplify
6 > Tie High Keep
7 Usable > Fair Keep

show that 16 cubes should be hidden, nine cubes should be left intact, and 23 should be
highlighted for operative seller user type ut1; that is, 48% of the cubes are of interest to
this specific user type.

Step 2. Dimension optimisation. This step determines which dimensions of the
MDMs in MDout-ut are relevant to a specific user type DS

opt

i based on McdD model.
The McdD model attribute tree is presented in Fig. 6, and the top-level aggregation rules
for this model are presented in Table 5. The decision rules for the Dimension metrics and
Dimension kind aggregate functions are defined using decision rules similar to those de-
scribed for model McdMD. Twenty-five rules were defined for Dimension metrics, provid-
ing Useless, Tie, and Usable intermediate results, and 100 rules were defined for Dimen-

sion kind, giving intermediate results of Low, Fair, and High. In the process of defining
basic decision rules, DEX supports the indirect definition of weights in the process of
defining non-entered function values.

The McdD attribute values in this particular case are as follows:

Da1 – Dimension size: (1–10, 10–100, 100–1000, and > 1000); number of elements in
the dimension in ranges.

Da2 – Dimension relation dependency: (None, One, Two, More-than-Two, and Unknown);
inherits the dependency from the original underlining table(s).

Da3 – Dimension type: (Undefined, Text, Numeric-and-text, Numeric, Date, and Date-

time); this attribute represents a logical dimension value type that can be partially
mapped to a general dimension source data type.

Da4 – Hierarchy: (None, Simple, Two-level, and More-than-two-level).
Da5 – Dimension category: (Real, Location, and Data); describes the logical meaning of

the dimension value.
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Table 6
Sample criteria for dimensions.

Dimension Da1 Da2 Da3 Da4 Da5 Result

D1 – Customer name > 1000 One Numeric-and-text Simple Real Keep
D2 – Country 1–10 2 Text Two-level Location Drop
D3 – Item description < 1000 None Numeric-and-text None Real Keep
D4 – Posting date 10–100 None Date-time More-than two-level Real Drop
D5 – Invoice reference > 1000 > 2 Numeric Simple Data Simplify

Table 7
Decision rules for measure analysis.

Complexity Visual style Measure adjustment

1 > Mid Overloaded Drop
2 High > Generic Drop
3 Low Overloaded Simplify
4 Mid 6 Generic Simplify
5 > Mid Clean Simplify
6 Low 6 Generic Keep

All of the dimension attribute values were determined automatically, except for “Da2 –
Dimension relation dependency”, which must be set by the BI expert. Table 6 presents the
values of the input attributes for a sample of alternatives (dimensions) of one particular
cube (CU10), which was selected in the first optimisation step.

For operative sellers, the dimensions “D1 – Customer Name” and “D3 – Item Descrip-
tion” should be kept, “D2 – Country” and “D4 – Posting Date” should be dropped, and
“D5 – Invoice Reference” should be used only if it can be simplified (for example, by
grouping or ranking the elements of the dimension). The cube operations that can be used
to simplify a dimension are roll-up and slice.

Step 3. Measure optimisation. This step determines which measures of the MDMs
in MDout-ut are relevant to a specific user type MS

opt
i based on the McdM model. The

McdM model attribute tree is presented in Fig. 6, and the top-level aggregation rules for
this model are presented in Table 7.

The McdM attribute values in this case are as follows:

Ma1 – Sorted: (Ascending, Descending, and None); describes the display order.
Ma2 – Ranged: (None, Equal-Density, Equal-Range-Size, and Custom); defines the clus-

tering(ranging) of the measure. Equal-Range and Equal-Density assume that the
measures were transformed into ranges by internal algorithms, whereas Custom de-
notes non-normal distributions of the values into ranges.

Ma3 – Number format: (Simple, Detailed, and Percentage); Simple indicates integer num-
bers with no decimals; Detailed indicates that values are shown in a full format with
rich formatting; and Percentage indicates that the values shown are percentages.

Ma4 – Aggregate Type: (Computed, Sum, Index, and Ratio). Sum indicates generic mea-
sure behaviour with no internal aggregation. Computed indicates that the displayed
measure value is computed from any combination of measures in the MDM. Index
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Table 8
Sample criteria for measures.

Ma1 Ma2 Ma3 Ma4 Ma5 Result

M1 – Quantity of item None None Simple Sum None Keep
M2 – Net value Ascending Equal-density Detailed Computed None Keep
M3 – Gross value None None Detailed Sum Max Keep
M4 – Discount value None None Percentage Ratio Range Simplify
M5 – Super rebate value None None Percentage Ratio Range Simplify
M6 – Extended rebate value Ascending None Percentage Ratio Range Simplify
M7 – Bonus rebate value Ascending None Percentage Ratio Range Simplify

Fig. 9. Creation of derived reduced MDM with optimised set of dimensions and measures.

indicates that the value is a variant of the computed value and that there is a relation-
ship between two measures of the same dimension (for example, Month Index and
Year Index).

Ma5 – Coloured: (None, Min, Max, and Range). The visual style of the measures in the
user interface; the colour of the values depends on the values.

Aggregate rule Complexity contains 16 discrete if-then-else decision rules; while ag-
gregate function Visual style contains a total of 36 decision rules.

Table 8 presents the values of the input attributes for a sample of alternatives (mea-
sures) of one particular cube (CU10), which was selected in the first optimisation step.

For operative sellers, the “M1 – Quantity of Item”, “M2 – Net Value”, and “M3 –
Gross value” measures of cube CU1 should be kept, whereas the measures “M4 – Dis-
count Value”, “M5 – Super Rebate Value”, “M6 – Extended Rebate value”, and “M7 –
Bonus Rebate value” must be simplified. For simplification, the drill-down and slice cube
operations can be used.

Step 4. Optimisation implementation. The final step (Fig. 9) of the optimisation
process is the implementation of the optimisation. The optimised set of dimensions and
measures is obtained using the output of the McdMD, McdD, and McdM.
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4.3. Case Study

To evaluate the benefit of MDM-PAD, we compared the ease-of-use and user satisfaction
of three user interfaces (UI):

1. Typical UI – typical BI user interface that covers all of the relevant business infor-
mation and contains a large number of views with a smaller number of dimensions
and measures.

2. MDM-PAD UI – BI user interface optimised using the proposed MDM-PAD
method. It presents only a subset of the MDMs with customised dimensions and
measures in accordance with the needs of regional sales supervisors.

3. Topsis UI – BI user interface optimised using the multiple-criteria decision analysis
method Topsis (Hung et al., 2011; Peng et al., 2011), which has been successfully
applied in studies similar to ours. We used Topsis for MDM optimisation (part II in
MDM-PAD), while keeping the user segmentation part (part I in MDM-PAD) the
same. Because Topsis does not allow hierarchical decision models and qualitative
criteria, we adjusted the decision models used for MDM optimisation with the help
of the Topsis Solver. In particular, we flattened the decision models and performed
the procedures for criteria-weight estimation as proposed in Topsis.

The ease-of-use and user satisfaction of these UIs was estimated in two ways:

1. Quantitative: Users were given problems to solve with the typical, the MDM-PAD,
and the Topsis UI. Each user chose the UI and the problem order. The ease-of-
use of each UI was estimated by the percentage of correctly answered problems,
the average time, and the average number of clicks that users needed to obtain an
answer.

2. Qualitative: Each user completed a questionnaire through which we evaluated the
user satisfaction of the typical, the MDM-PAD and the Topsis UI.

The problems were defined in a form of tasks and questions, some examples of which
are provided below:

1. Find a list of salespersons needed to be invited to the next presentation of products
in the product group “LL Touring cycles” – up to five persons.

2. Compile a list of customers with the sales contract due day less than or equal 15
within the active contracts in year 2011. Use only customers with annual gross
amount over 100K EUR and average past due days greater than 15 days.

The tests were performed by 25 users: 16 were beginners (group A), seven had occa-
sionally used the BI applications previously (group B), and two were BI experts (group C).

The quantitative analysis revealed the following:

• The difference in the expertise of users of different user types was apparent. Group
A (beginners) had the lowest percentage of correctly answered problems. Group B
(occasional BI users) had a higher percentage of correctly answered problems than
group A, while group C had the highest percentage of correctly answered problems.
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Table 9
Percentage of correct answers, and time and number of clicks used to obtain an answer using the typical UI,

the MDM-PAD UI and the Topsis UI. The cells represent the average value in each case.

User interface % correct Average time # of clicks

Group A Typical UI 15 6.8 44
MDM-PAD UI 44 3.6 25
Topsis UI 19 3.6 29

Group B Typical UI 38 5.9 40
MDM-PAD UI 62 4.3 22
Topsis UI 10 5.6 30

Group C Typical UI 83 3.3 11
MDM-PAD UI 100 2.9 11
Topsis UI 33 7.2 33

All users Typical UI 27 6 38
MDM-PAD UI 53 3.8 23
Topsis UI 17 4.5 30

• The MDM-PAD UI had the highest number of correct answers. Overall, 53% of the
problems were correctly answered with the MDM-PAD UI, compared to 27% for
the typical UI and 17% for the Topsis UI. MDM-PAD UI outperformed the typical
UI and the Topsis UI on four out of 10 problems, while Topsis UI had the best per-
formance on one problem. A best-performing UI could not be identified on five of
the problems.

• The MDM-PAD UI required the lowest time and number of clicks to obtain an an-
swer (correct or partially correct). On average, 3.8 minutes and 23 clicks were re-
quired to obtain an answer with the MDM-PAD UI, compared to 6 minutes and 38
clicks for the typical UI, and 4.5 minutes and 30 clicks for the Topsis UI.

The qualitative analysis revealed the following results:

• MDM-PAD UI contains the most suitable subset of MDMs: 63% of the users found
the MDM subset in MDM-PAD UI suitable, compared to 25% and 46% for the
typical UI and the Topsis UI, respectively.

• The clarity of the dimension and measure layout of the MDM-PAD UI is the highest:
63% of the users found the dimension and measure layout of the MDM-PAD UI clear,
compared to 33% and 35% for the typical UI and the Topsis UI, respectively.

• The MDM-PAD UI is the simplest to use: 50% of the users found the MDM-PAD
UI simple to use, compared to 25% and 23% for the typical UI and the Topsis UI,
respectively.

In summary, MDM-PAD contributed to the highest number of correct answers. Accord-
ing to user feedback, it was also the most convenient UI. Although this result was also
found for expert BI users, the best results were obtained for regular and occasional BI
users. However, the results also showed that by using MDM-PAD, not all of the MDMs
were properly adapted to the particular user type, which resulted in a high percentage of
unanswered or partially answered questions for one of the 10 problems.
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5. Conclusions

The main contribution of this paper is the development of a novel methodology called
Multidimensional Data Model Profile Adaptation (MDM-PAD) for the adaptation of the
MDMs of BI systems to the specific needs of its users. Using near-automatic user profile
attribute definitions combined with the advantages of DEX MCDM qualitative attribute
possibilities, makes it possible to overcome many obstacles for the faster implementation
and modification of BI systems. To meet the expectations of the growing number of infor-
mation consumers, BI systems must deliver functionality and content that is customised
to the needs of each specific system user. In existing systems, this need is achieved by seg-
menting users based on their analytical habits and requirements and delivering pre-defined
customised functionality and content for each user group.

MDM-PAD performs the adaptation of MDMs in two steps. First, the types of sys-
tem users are determined based on their respective needs and preferences. This step is
performed using clustering methods to analyse historical data of user interactions with
the system. Second, for each user type, MCDM models are defined by determining the
best-fit visualisation MDM for each specific user type. Using a number of small MCDM
models instead of one large MCDM model, our method achieves a large degree of us-
ability and flexibility after being implemented in real BI systems. This method does not
limit the number of MCDM models used or the degree of user segmentation. Different
degrees of user segmentation can be used for different business or non-business areas,
and a higher number of user types results in the definition of simpler MCDM models con-
taining fewer, but more accurate, decision rules. The results of the MCDM models are
directly used for the adaptation of the MDMs without any transformation, which enables
the end-user OLAP BI tools to be automatically customised. This method assumes that
users have been properly clustered based on the activity records of the BI system. Proper
clustering requires a larger number of activity records, but the fact that the BI system is
not a transactional system means that the activity record collection process can be timely.
To overcome this problem, the user activity should be monitored at the level of whole
desktop (or web) systems, which would provide additional input data for clustering.

The evaluation showed that users find the MDM-PAD-customised MDMs more con-
venient than the typical MDMs that are provided by default in the current BI systems, and
more convenient than the MDMs customised using the Topsis approach. In the tests, the
customisation of the MDMs to the user type with the MDM-PAD approach contributed
to the highest percentage of correctly solved problems and the lowest average answering
time and the lowest average number of clicks required to answer each question. Because
the tests were performed on a limited number of test subjects, future tests should verify
these observed improvements. Moreover, additional tests need to be performed on ad-
ditional domains. Despite these limitations, the chosen problems represented typical BI
tasks, and the improvements were consistent, which indicates that the developed method
is indeed beneficial.

As future work, we are considering three main method enhancements. First, through
self-rule adoption, end users can eventually change their role in the business environment.
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Because this type of event can occur frequently, the user must be able to select his/her
business role dynamically, and the MDM adaptation should be performed “on-the-fly”
depending on the current user type. This functionality can be applied after implementing
the fully automated discovery of all of the MDM/dimension/measure attributes needed as
input for the MCDM. Second, the addition of more measurement points in the BI tool will
provide more detailed description of the user behaviour, which will increase the accuracy
of the self-segmentation. Third, this methodology can be extended to optimise graphs (not
only MDMs). This extension will require the addition of many new measurements in the
audit process of the BI tool.
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Daugiakriteris būdas daugiamačiams duomenų modeliams
optimizuoti

Igor KORELIČ, Violeta MIRCHEVSKA, Vladislav RAJKOVIČ,
Mirjana KLJAJIĆ BORŠTNAR, Matjaž GAMS

Šiame straipsnyje siūlomas naujas būdas daugiamačių duomenų modelių adaptavimui naudotojų
poreikiams. Daugiamačių duomenų modeliai, naudojami šiuolaikinėse verslo analizės sistemose,
iš prigimties yra sudėtingi. Siekiant sumažinti šių modelių sudėtingumą, straipsnyje pasiūlyta nau-
doti kokybišką daugiakriterių sprendimų modeliavimo metodą, pagrįstą hierarchinio medžio krite-
rijų naudojimu, išskaidant didesnį uždavinį į mažesnius. Galutinė reikšmė, gaunama agreguojant
kriterijų reikšmes, naudojant paprastas „jei...tai“ taisykles, kurios hierarchiniame kriterijų medyje
sudaro žiniomis grįstas ekspertines taisykles, atspindinčias naudotojų pageidavimus. Modelis yra
patikrintas, naudojant vidutinio dydžio įmonės pardavimų duomenis. Ir kokybinis (iš apklausų), ir
kiekybinis (naudojant duomenų tyrybą) pasiūlytos metodologijos vertinimas parodė, kad pasiūlytas
būdas palengvina naudojimąsi verslo analizės sistemomis ir padeda užtikrinti aukštesnį naudotojų
pasitenkinimą.


