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Laboratory of Combustion Processes, Lithuanian Energy Institute

Breslaujos 3, 44403 Kaunas, Lithuania

e-mail: robertas.navakas@lei.lt

Received: April 2014; accepted: December 2014

Abstract. We propose a normalized parameter for characterization of similarity/dissimilarity of two
sequences providing a smoothly varying measure for varying symmetry score. Such a parameter can
be used for analysis of experimental data and fitting to a theoretical model, mirror symmetry esti-
mation with respect to a selected or presumed symmetry axis, in particular, in symmetry detection
applications where the selected symmetry parameters must be evaluated multiple times. We com-
pare the proposed parameter, as well as several of the well-known distance and similarity measures,
on an ensemble of template functions morphing continuously from symmetric to antisymmetric
shape. This comparison allows to evaluate different similarity and symmetry measures in a more
controlled and systematic setting than a simple visual estimation in sample images.

Key words: distance measure, similarity measure, dissimilarity measure, symmetry, antisymmetry,
sequence similarity, symmetry quantification.

1. Introduction

Distance and similarity measures between data and patterns are the key elements in a vari-
ety of applications in different fields, including classification and clustering (Finch, 2005;
Stanujkic et al., 2013), signal analysis, image analysis and retrieval (Androutsos et al.,
1998; Baušys and Kriukovas, 2012; Berman and Shapiro, 1997), speech recognition (Ak-
ila and Chandra, 2013; Lileikytė and Telksnys, 2013), time series analysis (Vlachos et

al., 2003; Ding et al., 2008), probability density functions (Cha, 2007). Comprehensive
surveys of various distance measures are included in Eiter and Mannila (1997), Monev
(2004), Cha (2007, 2008), Seung-Seok et al. (2010). Certain applications, e.g., image re-
trieval from databases, require multiple calculations of distance measures. In these cases,
the distance measures that are not computationally expensive are desirable (Berman and
Shapiro, 1997). Selection of the proper distance measure is largely application dependent,
e.g., how sensitive should it be to small deviations from perfect similarity, should it be
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invariant under certain transformations of the considered sequences, like rotations of one
of the function pairs (Vlachos et al., 2004), etc.

Distance and similarity measures are closely related to evaluation and detection of
symmetries in patterns, objects and images. Symmetry is a distinct feature of many natural
and artificial objects that can be exploited for multiple applications: visual perception and
structure identification in both natural (Cohen and Zaidi, 2013; Treder, 2010; Machilsen
et al., 2009) and artificial vision (Wagemans, 1995; Gesu et al., 2010; Liu et al., 2010),
medical imaging and diagnostics (Stegmann et al., 2005; Mancas et al., 2005; Ruppert
et al., 2011), traffic analysis (Zielke et al., 1992), reconstruction of 3D shapes (Basri and
Moses, 1999; Shimshoni et al., 2000) and scenes (Köser et al., 2011) from a single image.

Optical tomography is an attractive tool for remote analysis in various fields (Haisch,
2012). The inverse problem of reconstruction of 3D structures from the 2D images ob-
tained by the imaging system might benefit from the symmetries of the object of interest;
in particular, for the axially symmetric objects, a single projection is sufficient for recon-
struction (Bracewell, 1956; Deans, 2000). The projection in this case exhibits the mirror
symmetry, therefore, the degree of symmetry of 2D images thus obtained must be esti-
mated before attempting reconstruction.

Formally, a symmetry means self-similarity under certain transformations, such as
translations, rotations and reflections. Detection of symmetry involves comparison be-
tween the area of interest and its counterpart under the respective transformation, there-
fore, the appropriate similarity or distance score must be defined.

Here, we analyze the notion of symmetry as applicable to 2D images. A large class
of symmetry analysis, such as analysis of 3D shapes (Kazhdan et al., 2004; Martinet et

al., 2006), might be reduced to analysis of 2D images in case of application of imaging
and optical sensing techniques. Many image processing and detection applications deal
exclusively with 2D images.

Given the importance of symmetry detection in image processing and analysis applica-
tions, in most reported cases, the methods of symmetry detection and thus the underlying
symmetry estimation criteria are tested using certain selected images (e.g., photographs),
and the detected symmetrical features are then evaluated visually. For more systematic
estimation, a specifically constructed function (equivalent to an abstract image) with pre-
determined symmetry properties might provide a formal template for comparison of sym-
metry scores. We propose a normalized similarity parameter, with values in the range
[−1,1], for a pair of sequences providing a symmetry score that varies smoothly with
continuously varying symmetry degree and compare it to a number of known similar-
ity/distance measures using a test function with continuously varying symmetry degree.

2. Similarity of 1D Functions

2.1. Distance and Similarity Measures

Distance or similarity measures considered here are defined for two sequences or vectors
g = {gi}, h = {hi} containing n elements, 1 6 i 6 n. These definitions apply as well for
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discrete or continuous functions gi = f (xi), g = f (x) respectively, where in the latter
case both functions g and h are defined in the same range x ∈ [x1, xn]. Symmetry appli-
cations considered here (estimation of mirror symmetry) are concerned with comparing
one part of a sequence, such as a row of pixels in an image, located on one side of the po-
tential symmetry axis, to its counterpart on another side of the symmetry axis, mirrored
over the symmetry axis. In the analysis below, we therefore treat the symmetry estima-
tion analogously to comparison of two sequences. Since evaluation of symmetry might
be reduced to comparison of similarity of the potentially symmetric counterparts of a 1D
function, a number of the standard distance measures can be considered. Most of these
measures have been applied in a variety of fields:

• Minimum ratio (Goshtasby, 2012):

mr = 1

n

∑

i

ri (1)

with ri = min
(

hi

gi
,

gi

hi

)

;
• Canberra distance:

dcanberra = 1

n

∑

i

|gi − hi |
|gi | + |hi |

; (2)

• Bray–Curtis distance:

dbc =
∑

i |gi − hi |
∑

i ||gi | + |hi ||
; (3)

• Pearson correlation:

r =
∑

i(gi − 〈g〉)(hi − 〈h〉)
√

[
∑

i(gi − 〈g〉)2
][

∑

i(hi − 〈h〉)2
]

, (4)

〈·〉 means averaging over the function range, i.e., either 〈v〉 = 1
n

∑n
i=1 vi or 〈vi〉 =

1
n

∑n
i=1 vi , depending on whether the expression inside the brackets operates on the

whole vector or element-wise;
• Pearson’s absolute value dissimilarity:

dp =
√

n

n − 1

[

dne(g,h)2 − q(g,h)2
]

, (5)

where dne(x, y) = 1√
n

∑

i(gi −hi)
2 is the normalized Euclidean distance, q(g,h) =

1
n

(
∑

i gi −
∑

i hi

)

;
• Extended Jaccard distance:

dej = g · h

‖g‖2 + ‖h‖2 − g · h
, (6)

here ‖v‖ =
√

∑

i v
2
i stands for the vector norm;
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• Cosine:

dcos = g · h

‖g‖ · ‖h‖ . (7)

For the purposes of the image analysis and symmetry estimation, a number of more spe-
cialized measures have been proposed.

Zielke et al. (1992) define the symmetry measure

S(xl,w) =
∫

En(x, xl,w)2 dx −
∫

O(x,xl,w)2 dx
∫

En(x, xl,w)2 dx +
∫

O(x,xl,w)2 dx
, (8)

with values S = 1 for ideal symmetry, S = 0 for asymmetry and S = −1 for ideal anti-
symmetry. This measure is based on decomposition of the considered function G(x) into
the even and odd components

E(x,xl,w) =
[

G(x − xl) + G(xl − x)
]

/2,

O(x, xl,w) =
[

G(x − xl) − G(xl − x)
]

/2 (9)

defined at the interval |x − xl | 6 w/2 (E = O = 0 for |x − xl| > w/2). The symmetry
is evaluated for the selected point of origin xl and the interval width w. Since the mean
value of the odd function is zero, and the even function has, in general, a nonzero value,
a normalized even function with the zero mean value is introduced:

En(x, xl,w) = E(x,xl,w) − 1

w

∫

E(x,xl,w) dx. (10)

For the case of discrete sequences, this parameter can be rewritten as

SZ =
∑

i E
2
n,i −

∑

i O
2
i

∑

i E
2
n,i +

∑

i O
2
i

(11)

with normalized even component of the function

En,i = Ei − 1

n

∑

i

Ei = Ei − 〈Ei〉. (12)

Zabrodsky et al. (1995) introduce a Symmetry Distance defined as the mean of the
squared displacements of each point of an original figure required to make this figure
symmetric:

SD = 1

n

n−1
∑

i=0

|Pi − P̂i |2. (13)
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Kiryati and Gofman (1998) introduce a symmetry measure based on decomposition
of an arbitrary function f (x) = fs(x) + fas(x), x ∈ [−L,L], into the symmetric and
asymmetric parts, respectively:

S{f } = |fs|2
|fs|2 + |fas|2

(14)

and the reflectional correlation coefficient

C
{

f (x)
}

=
∫ L

−L f (x)f (−x)dx
∫ L

−L
f 2(x)dx

= 2S
{

f (x)
}

− 1. (15)

Based on these parameters, a probabilistic genetic algorithm is implemented for symmetry
detection by global optimization.

Androutsos et al. (1998) investigate a few vector distance measures for image retrieval
from a database based on image color differences; among them, the Czekanowski coeffi-
cient

dCzekanowski = 1 − 2
∑

k min(gk, hk)
∑

k(gk + hk)
, (16)

where k denotes the vector component; the angular distance

θ = 1 − 2

π
cos−1

(

g · h

|g| · |h|

)

(17)

and a distance measure combining the angle between vectors and their magnitude differ-
ence:

dN = 1 − θ ·
[

1 − |g − h|√
3 · 2552

]

. (18)

This measure is constructed for RGB color vectors with 3 components and 255 levels. By
definition, these vectors can assume only positive values.

Kazhdan et al. (2004) introduce a reflective symmetry descriptor for an arbitrary 3D
voxel model with respect to all planes through the model’s center of mass, generalized
even for the planes that are not the symmetry planes. This parameter can describe the
general object shape and identify the symmetry planes or absence thereof.

Loy and Eklundh (2006) propose a symmetry detection method based on grouping
the feature points in the image into the symmetric constellations. Symmetry of the fea-
ture pairs is characterized based on their relative orientation, scale and distance; the cor-
responding symmetry measure is then constructed from appropriately weighted partial
parameters.

Milner et al. (2007) introduce a symmetry parameter specifically for characterization
of bifurcating shapes having a tree-like structure. This approach is applied for characteri-
zation of leaves of trees growing under different environmental conditions.
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Akila and Chandra (2013) introduce a slope finder distance between two vectors g

and h:

dSF =
∑

i

gi−1 − gi

hi−1 − hi

(19)

which is used in Dynamic Time Warping pattern-matching algorithm for speech recogni-
tion.

Medical diagnostics techniques, such as MRI or PET, yield 3D images. Symmetries
must be estimated with respect to the mid-sagittal planes. The symmetry measures applied
to 2D images can be generalized to 3D images; Ruppert et al. (2011) use the correlation-
based symmetry measure:

S =
∑w

i

∑h
j

∑d
k I l

ijkI
r
ijk

√

(
∑w

i

∑h
j

∑d
k I l

ijkI
l
ijk

)

·
(
∑w

i

∑h
j

∑d
k I r

ijkI
r
ijk

)

, (20)

where w, h, d are width, height and depth of the 3D image, I (l,r)
ijk is the binary value {0,1}

of a voxel at coordinate (i, j, k) of the half image to the left or right from the mid-sagittal
plane, respectively.

It can be noticed that the correlation-based symmetry measures are insensitive to scal-
ing and shifting of a half- function with respect to its symmetric counterpart. Invariance of
the distance/similarity measures with respect to certain transformations, such as scaling,
rotations etc., as well as insensitivity to noise and distortions, might be a desirable feature
for, e.g., image comparison, search and retrieval from databases etc. On the other hand,
symmetry estimation must take into account the transformations of a considered sequence
with respect to its potentially symmetric counterpart. We therefore consider here the mea-
sures that directly compare the analyzed sequences pointwise in their defined ranges.

We seek to introduce a similarity parameter for a pair of sequences; a “sequence”
might refer to a function vi = f (xi) defined over a certain range xmin 6 xi 6 xmax or a
vector v = {vi} having n elements, 1 6 i 6 n. Such parameter must be continuous with
the varying degree of similarity of the considered function and allows a fast calculation
for real-time applications, potentially, in embedded systems with limited computing re-
sources, or in symmetry detection applications requiring many evaluations of the symme-
try parameter. Estimation of symmetry in many cases involves estimation of similarity of
two functions, located on both sides of the potential symmetry axis. Therefore, the terms
“symmetry” and “similarity” are used somewhat interchangeably in the following study.
For performance considerations, it is desirable to avoid calculation of “slow” functions,
such as trigonometric functions or roots.

2.2. Value and Function Similarity

We start by defining the value difference sp,q for a pair of points p, q with respect to
a certain selected line (referred to as a “midline”), Fig. 1. The “points” refer here to the
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Fig. 1. Different cases of value similarity sp for points p (solid) and q (hollow) with respect to the midline (solid
line): A) p and q coincide, sp,q = 1; B) p and q are equidistant from the midline at different sides, sp,q = −1;
C) one of the points (q) is located on the midline, sp,q = 0; D) general case (p, q at different distances from
midline), −1 6 sp,q 6 0; E) general case, 0 6 sp,q 6 1, F) both p and q are located on the midline, sp,q = 1.

argument–value pairs of the considered functions, such as pi = f (xi). In the image anal-
ysis context, p, q would mean the values of the selected pixel pair, such as intensity or
RGB value, rather than their geometric positions in the image. By definition, for special
cases

sp,q =











1, p and q coincide,

0, either p or q is on the midline (but not both),

−1, p and q are on the opposite sides of the midline.

(21)

In the latter case, sp,q = −1 if the points are equidistant from the midline to the opposite
sides, i.e., one point is the mirror image of another one over the midline. Using these
conventions, the similarity parameter of two points p, q is defined as

sp,q =
{

1, p = q = 0,

sign(p) · sign(q) ·
[

1 − ||p|−|q||
|p|+|q|

]

, otherwise,
(22)

where sign(p) is the sign function:

sign(p) =







−1, p < 0,

0, p = 0,

1, p > 0.

(23)

Using the value difference parameter, two sequences gi = f1(xi), hi = f2(xi) can
be compared pointwise. Treating the sequences as 1D functions, the midline is naturally
parallel to the x axis. Having in mind the configuration shown in Fig. 1, in some cases it
is convenient to normalize the sequences in such a way that their midline is located on the
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x axis with f (x) = 0. This might be implemented by shifting the sequences

g′ = g −
(

〈g〉 + 〈h〉
)

/2,

h′ = h −
(

〈g〉 + 〈h〉
)

/2. (24)

The difference parameter for the sequences is now defined as the average of the value
differences:

Sg′,h′ = 1

n

∑

i

sg′
i ,h

′
i
, (25)

where sg′
i ,h

′
i

is given by Eq. (22). This expression can be applied to continuous functions
as well by replacing the sum with the integral.

By definition (25), any function is “antisimilar” to its counterpart obtained by rotating
the original function around the midline by the angle π , i.e., sgi ,hi = −1 for any respective
value pair gi , hi in such a function pair. This property is illustrated in Fig. 2: the zero-order
Bessel function f1(x) = j0(x) in the range 0 6 x 6 10 is taken as an original function
(this particular function is selected for illustration purposes only, and the approach can
be applied to any function in general), and two “antisimilar” functions are constructed:
f2,a(x) = −f1(−x), f2,b(x) = 2 ·max[f1(x)]−f1(x). In the latter case, the maximum is
calculated in the selected range; this produces reflection of the original function over the
axis y = max[f1(x)]. The function pairs f1, f2,a and f1, f2,b are then shifted according
to Eq. (24) and the resulting function pairs are shown in Figs. 2(a) and 2(b), respectively.
These two configurations might be treated as different types of “antisimilarity” of function
pairs.

Since the pair of functions to be compared are centered around the midline by expres-
sion (24), the similarity parameter defined in this way might be referred to as centered
value similarity. Other possibilities for normalization exist; here, we consider the follow-
ing two normalizations, in addition to (24): value similarity with

g′ = g,

h′ = h, (26)

and individually centered value similarity

g′ = g − 〈g〉,

h′ = h − 〈h〉. (27)

Function similarity is closely related to mirror symmetry, as the symmetry is estimated
by comparing the two halves of the considered function located on the opposite sides of
the symmetry line. The example of “antisimilar” functions in Fig. 2 can be recast into the
case of antisymmetric functions (Fig. 3). By reflecting the functions f2a , f2b , two types
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(b) “Type 2” antisimilarity

Fig. 2. Two types of “antisimilar” functions for which Sf1,f2
= −1.

of antisymmetry arise from the respective “antisimilar” functions. The parameter (25) is
therefore readily applicable for symmetry estimation.

The parameter based on definition (25) has analogy to the Canberra distance. Its values
are in the range [−1,1], similar to the case of correlation coefficient. The latter, however,
is not sensitive to scaling and shifting of the sequences being compared. There are distinct
value ranges for similarity and antisimilarity: Sg,h > 0 indicate a certain degree of simi-
larity (symmetry), while the values Sg,h < 0 indicate a degree of antisimilarity (antisym-
metry). An attractive feature of the parameter defined in Eq. (25) is the possibility of quick
calculation: it involves only the basic arithmetic operations, without the need for slower
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Fig. 3. Examples of antisymmetric functions for which Sf1,f2
= −1 corresponding to those in Fig. 2. Two

“types” of antisymmetry shown here correspond to the types of antisymmetry shown in Fig. 2.

calculation of functions such as square roots, therefore, it can be readily implemented on
a less capable hardware (embedded systems) for real-time operation, especially for appli-
cations requiring multiple evaluations of the similarity parameter. This parameter can be
extended and generalized by introducing, e.g., weighted averaging in (25), depending on
the specific application.

3. A Test Case: Comparison of Similarity Parameters in a Continuous Symmetry

Morphing

For image processing applications, outputs of the symmetry detection algorithms are usu-
ally estimated visually. For a more quantifiable estimation and comparison of the symme-
try parameters, let us analyze a case of continuous morphing from “type 1” antisymmet-
ric 1D function to “type 2” antisymmetric one, where the antisymmetry types are analo-
gous to those shown in Fig. 3, including the symmetric case in between. For this purpose,
we define an ensemble of test functions ft,i(x) in the range x ∈ [−Lx,Lx ]. Half of the
range, x ∈ [0,Lx ], is an expression that is the same for all the functions in the ensemble
and serves as a template against which the expression defined on the other half range,
x ∈ [−Lx,0], is compared. The expression in the range x ∈ [−Lx,0] varies in the ensem-
ble. The whole ensemble of test functions ft (x) is arranged along the y axis, making the
surface ft (x, y) each section of which at y = yi represents one of the 1D test functions
ft (x, yi) from the ensemble. They are sorted in such a way that the symmetry of the re-
spective functions vary continuously along the y axis, morphing from “type 1” to “type 2”
antisymmetry. For easy visualization, this ensemble of functions can be presented as a 2D
surface (Fig. 4), however, symmetry of each section ft (x, yi) is treated independently. For
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Fig. 4. The testing function with continuous similarity morphing.

each section, the corresponding symmetry parameter is calculated, yielding the variation
S(y) in the range [Y1, Y3] with the varying asymmetry of the test function section.

The domain of the test function ft (x, y) is stitched from 4 areas in the x, y plane by
combining the ranges x ∈ [0,Lx], x ∈ [−Lx,0], y ∈ [Y1, Y2], y ∈ [Y2, Y3]: [−Lx,0] ×
[Y1, Y2] ∪ [0,Lx] × [Y1, Y2] ∪ [−Lx,0] × [Y2, Y3] ∪ [0,Lx] × [Y2, Y3].

Let us define the function on the right-hand side of the area

g(x, y) = a · cos

(

πx

Lx

)

, x ∈ [0,Lx], y ∈ [Y1, Y3], (28)

which is constant along the y axis, but still denoted here as g(x, y) for consistency of no-
tations. The left hand side transfers linearly from the symmetric to antisymmetric coun-
terpart of the function g:

h1(x, y) =
y − 1

2
(Y1 + Y2)

(Y2 − Y1)
· g(x, y), x ∈ [−Lx,0], y ∈ [Y1, Y2], (29)

h′(x, y) = −
y − 1

2
(Y3 + Y2)

(Y3 − Y2)
· g(x, y), x ∈ [−Lx,0], y ∈ [Y2, Y3],

h2(x, y) = h′(x, y) + g(0, y) − h′(0, y), x ∈ [−Lx,0], y ∈ [Y2, Y3]. (30)

For brevity, the function comprising (28)–(30) will be denoted as

ft (x, y) =











g(x, y) + b, x ∈ [0,Lx] , y ∈ [Y1, Y3] ,

h1(x, y) + b, x ∈ [−Lx,0] , y ∈ [Y1, Y2] ,

h2(x, y) + b, x ∈ [−Lx,0] , y ∈ [Y2, Y3] .

(31)

The parameter values were selected as follows: the amplitude a = 1, the ranges Lx = 1,
Y1 = 0, Y2 = 0.5, Y3 = 1.0. An additional parameter b was added to explore the influence
of a possible shift along the z axis; for results presented below, b = 0.6 ·a. The surface plot
of the testing function ft is shown in Fig. 4 and its sections at several values of y in Fig. 5.
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Fig. 5. Profiles of the test function at different y sections.

The symmetry measures are calculated with respect to the x = 0 axis for the cross-sections
of the test function y = yi , y ∈ [y1, y3]. A number of the known symmetry parameters
were calculated for the shifted test functions in the ensemble (31). The expressions of the
respective parameters have been slightly modified as applicable, so that their values are in
the range [−1,1] to allow for comparison. For this reason, the respective expressions are
presented in Table 1; this table lists the standard distance measures in the left-hand column
and the modified expressions in the right-hand column. In addition to the parameters listed
in Table 1, we also calculate the parameter (11) used by Zielke et al. (1992). Its values are
in the range [−1,1], which allows for direct comparison with other parameters.

The resulting variation of the similarity parameters along the y axis are shown in
Figs. 6–8. As seen, the correlation does not differentiate between the different degrees
of (dis)similarity shown in Fig. 5 and assumes only the limit values −1 or 1, as expected
from its analytic expression. Both versions of the minimum ratio parameter (original and
modified) are nonmonotonous in the selected range and therefore do not allow for unam-
biguous estimation of the similarity/symmetry degree. Moreover, the parameters having
the values in the range [0,1] (those based on Pearson absolute dissimilarity, Canberra,
Bray–Curtis, extended Jaccard, cosine) do not allow to differentiate between the cases of
partial similarity/symmetry and partial antisimilarity/antisymmetry. For such differentia-
tion, the parameters having the values in the range [−1,1] ([−1,0] for antisimilarity and
[0,1] for similarity) provide a more sensible estimation. Fig. 8 presents the variation of
this type of parameters: Pearson correlation, centered and individually centered value sim-
ilarities, and the parameter (11) by Zielke et al. (1992). Note than in the range y ∈ [0,0.5],
the centered and individually centered value similarities coincide. Uncentered value sim-
ilarity parameter is shown for comparison to centered and individually centered value
similarity parameters. The behavior of the last three parameters is similar in the analyzed
setting. From the application point of view, the performance of their evaluation might be
taken into account.
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Table 1
Expressions of tested symmetry parameters used for characterization of symmetries in the test function (31).

The left-hand column lists the original expression upon which the calculated distance was based, and the
right-hand column presents the modified expression used to calculate the symmetries of the test function.

Basis parameter Expression, Sg,h = . . .

1 Pearson correlation (Eq. (4))
∑

i (gi−〈g〉)(hi−〈h〉)
√

[
∑

i (gi−〈g〉)2
][

∑

i (hi−〈h〉)2
]

2 Modified Pearson abs. dissim. (Eq. (5)) 1 −
√

n
n−1

[〈(g−h)2〉−〈g−h〉2]
√

〈g2〉+〈h2〉

3 Extended Jaccard (Eq. (6)) g·h
‖g‖2+‖h‖2−g·h

4 Cosine (Eq. (7)) g·h
‖g‖·‖h‖

5 Based on Canberra (Eq. (2)) 1 − 1
n

∑

i
|gi−hi |
|gi |+|hi |

6 Based on Bray–Curtis (Eq. (3)) 1 −
∑

i |gi−hi |
∑

i (|gi |+|hi |)

7 Minimum ratio (Eq. (1)) 1
n

∑

i min
(∣

∣

gi
hi

∣

∣,
∣

∣

hi
gi

∣

∣

)

8 Minimum ratio, modified (Eq. (1)) 1
n

∑

i

[

sign(gi) · sign(hi ) · min
(∣

∣

gi
hi

∣

∣,
∣

∣

hi
gi

∣

∣

)]

9 Zielke et al. (1992) (Eq. (11))

∑

i E2
n,i

−
∑

i O2
i

∑

i E2
n,i

+
∑

i O2
i

,

En,i = Ei − 1
n

∑

i Ei = Ei − 〈Ei 〉,
Ei = (gi + hi )/2, Oi = (gi − hi )/2

10 Value similarity (Eqs. (25), (26)) 1
n

∑

i sg′,h′ , sg′,h′ is given by Eq. (22)

g′ = g, h′ = h

11 Value similarity centered (Eqs. (25), (24)) 1
n

∑

i sg′,h′ , sg′,h′ is given by Eq. (22)

g′ = g − (〈g〉 + 〈h〉)/2,

h′ = h − (〈g〉 + 〈h〉)/2,

12 Value similarity ind. centered (Eqs. (25), (27)) 1
n

∑

i sg′,h′ , sg′,h′ is given by Eq. (22)

g′ = g − 〈g〉, h′ = h − 〈h〉

4. Computational Performance of Similarity/Distance Measures

Practical applications usually involve multiple evaluations of the appropriate similarity/
distance measures. For numerically-intensive applications, like image analysis, the per-
formance of evaluating the respective functions becomes important. We therefore com-
pared the speeds of computation of some of the measures presented here. The results are
presented here for illustration purposes only; they are largely dependent on particular im-
plementations and platforms, besides, as the vectors were assigned random numbers, the
calculation times varied slightly for different runs.

The functions calculating the distance measures were implemented in C and Fortran 95
using the GNU compilers gcc and gfortran, ver. 4.7.2, respectively. The implemen-
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Fig. 6. Variations of function similarity measures Sg,h: Pearson correlation, modified Pearson absolute dissim-
ilarity, extended Jaccard distance, cosine distance.
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Fig. 7. Variations of function similarity measures Sg,h: Pearson correlation, Canberra-based, Bray–Cur-
tis-based, minimum ratio and modified minimum ratio.

tations followed closely the definitions of the respective parameters as listed in Table 1,
without attempts to optimize, except for reasonable measures, e.g., using intrinsic vec-
tor operations, reusing the computed values, etc. The test program was compiled without
the compiler optimization switches (e.g., “-O2” or similar; optimizations would inline
the functions and prevent measuring the evaluation time). The parameters were evaluated
1000 times each for the vectors of length N = 106, filled with random numbers gener-
ated by a random number generator. Usually, the typical vectors encountered in image
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value sim. ind. centered
value similarity centered

value similarity
Zielke et al. symmetry distance

Pearson correlation
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Fig. 8. Variations of function similarity measures Sg,h: Pearson correlation, symmetry distance by Zielke et al.,
value similarity, value similarity centered and value similarity individually centered. In the range y ∈ [0,0.5],
the value similarity and the individually centered value similarity coincide.

Table 2
The CPU time spent for 1000 evaluations of the respective parameters tCPU for vector pairs of length N = 106

and times relative to evaluation of Pearson correlation parameter tCPU
tPearson
CPU

, for implementations in Fortran 95

and C.

Parameter Fortran 95 C

tCPU (s) tCPU
tPearson
CPU

tCPU (s) tCPU
tPearson
CPU

Pearson correlation 19.33 1.00 18.74 1.00
Modified Pearson abs. dissim. 14.15 0.73 22.31 1.19
Extended Jaccard 11.96 0.62 9.45 0.50
Cosine similarity 10.34 0.53 12.87 0.69
Canberra distance 9.83 0.51 13.12 0.70
Bray–Curtis distance 10.05 0.52 11.50 0.61
Minimum ratio 18.62 0.96 23.38 1.25
Minimum ratio modified 25.00 1.29 47.66 2.54
Zielke et al. 24.00 1.24 21.83 1.16
Value similarity 13.20 0.68 18.78 1.00
Value similarity centered 22.38 1.16 27.70 1.48
Value similarity ind. centered 22.63 1.17 27.77 1.48

processing applications are much shorter than that, however, long vectors in this perfor-
mance measuring case enable better distinction between different function calling times.

The function calling times were measured by the GNU profiler gprof. The test pro-
gram was run on an AMD Phenom II X4 945 CPU at 3 GHz under the Debian 7.0 OS
(kernel ver. 3.2.0). The resulting times are presented in Table 2, as well as the time rela-
tive to evaluation time of the Pearson correlation. The factors influencing the computation



256 A. Džiugys et al.

times are the performance of evaluation of arithmetic operations, i.e., division is usually
noticeably slower than other arithmetic operations, use of “slow” functions in the pa-
rameter definitions. In this case, such functions are square roots and calculating absolute
values, which is implemented as a sign transfer function in both Fortran 95 and C (sign
and copysign, respectively).

5. Conclusion

We have introduced a simple parameter for characterization of similarity/dissimilarity of
two sequences or vectors (that can be generalized for functions in a continuous case) de-
fined on a selected numeric range, which can be readily extended to characterization of
symmetry/asymmetry of two functions. This parameter has a clear and intuitively un-
derstandable geometric interpretation with respect to the above defined different types of
antisymmetry.

The proposed parameter, as well as a number of other well-known distance param-
eters, was tested for the case of continuous variation of dissimilarity of the specifically
constructed test function. This parameter varies monotonously and smoothly with the anti-
symmetry transferring from one type to another. In this respect, its characteristics are most
similar to the symmetry distance parameter of Zielke et al. of all the tested parameters.

The proposed parameter was shown to have certain attractive properties: normalization
in the range [−1,1], continuous variation with the continuously varying dissimilarity of
the sequence and reasonably fast evaluation.

Acknowledgements. This research is funded by the European Social Fund under the
project “Microsensors, microactuators and controllers for mechatronic systems (Go-
Smart)” (Agreement No. VP1-3.1-ŠMM-08-K-01-015).

References

Akila, A., Chandra, E. (2013). Slope finder – a distance measure for DTW based isolated word speech recogni-
tion. International Journal of Engineering and Computer Science, 2(12), 3411–3417.

Androutsos, D., Plataniotis, K.N., Venetsanopoulos, A.N. (1998). Distance measures for color image retrieval.
In: International Conference on Image Processing., Vol. 2, Chicago, IL, October 1998, pp. 770–774.

Basri, R., Moses, Y (1999). When is it possible to identify 3D objects from single images using class constraints.
International Journal of Computer Vision, 33(2), 95–116.

Baušys, R., Kriukovas, A. (2012). Pixel-wise tamper detection under generic blur/sharpen attacks. Informatica,
23(4), 507–520.

Berman, A.P., Shapiro, L.G. (1997). Efficient image retrieval with multiple distance measures. In: Storage and

Retrieval for Image and Video Database, Vol. 3022, pp. 12–21.
Bracewell, R.N. (1956). Strip integration in radio astronomy. Australian Journal of Physics, 9(2), 198–217.
Cha, S.-H. (2007). Comprehensive survey on distance/similarity measures between probability density func-

tions. International Journal of Mathematical Models and Methods in Applied Sciences, 1(4), 300–307.
Cha, S.-H. (2008). Taxonomy of nominal type histogram distance measures. In: Proceedings of the American

Conference on Applied Mathematics, World Scientific and Engineering Academy and Society (WSEAS),
pp. 325–330.



A Normalized Parameter for Similarity/Dissimilarity Characterization of Sequences 257

Cohen, E.H, Zaidi, Q. (2013). Symmetry in context: Salience of mirror symmetry in natural patterns. Journal

of Vision, 13(6), 1–9.
Deans, S.R. (2000). Radon and Abel transforms. In: Poularikas, A.D. (Ed.), The Transforms and Applications

Handbook, 2 ed. CRC Press, Boca Raton.
Ding, H, Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E. (2008). Querying and mining of time series data:

Experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment,
1(2), pp. 1542–1552.

Eiter, T., Mannila, H. (1997). Distance measures for point sets and their computation. Acta Informatica, 34(2),
109–133.

Finch, H. (2005). Comparison of distance measures in cluster analysis with dichotomous data. Journal of Data

Science, 3(1), 85–100.
Gesu, V.D., Tabacchi, M.E., Zavidovique, B. (2010). Symmetry as an intrinsically dynamic feature. Symmetry,

2, 554–581.
Goshtasby, A.A. (2012). Similarity and dissimilarity measures. In: Image Registration, Advances in Computer

Vision and Pattern Recognition. Springer, London, pp. 7–66.
Haisch, C. (2012). Optical tomography. Annual Review of Analytical Chemistry, 5, 57–77.
Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., Rusinkiewicz, S. (2004). A reflective symmetry de-

scriptor for 3D models. Algorithmica, 38, 201–255.
Kiryati, N., Gofman, Y. (1998). Detecting symmetry in grey level images: the global optimization approach.

International Journal of Computer Vision, 29(1), 29–45.
Köser, K., Zach, C., Pollefeys, M. (2011). Dense 3D reconstruction of symmetric scenes from a single image.

In: Pattern Recognition. Lecture Notes in Computer Science, Vol. 6835. Springer, bERLIN, pp. 266–275.
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Normalizuotas parametras sekų panašumo/skirtumo
charakterizavimui

Algis DŽIUGYS, Robertas NAVAKAS, Nerijus STRIŪGAS

Siūlomas normalizuotas parametras, charakterizuojantis dviejų sekų panašumą/skirtumą, kuris to-
lygiai kinta, kintant sekų simetrijos savybėms. Šis parametras gali būti naudojamas eksperimentinių
duomenų analizei ir aproksimavimui, naudojant teorinį modelį, veidrodinės simetrijos įvertinimui
pasirinktos arba numanomos simetrijos ašies atžvilgiu, tame tarpe simetrijos nustatymo uždaviniuo-
se, kai simetrijos parametrą reikia skaičiuoti daug kartų. Siūlomas parametras, taip pat keli gerai ži-
nomi atstumo ir panašumo parametrai, palyginami, naudojant šabloninių funkcijų ansamblį, kurios
tolygiai kinta nuo simetrinės iki antisimetrinės formos. Toks palyginimas leidžia įvertinti skirtin-
gas panašumo ir simetrijos metrikas labiau apibrėžtomis ir valdomomis sąlygomis, negu vertinant
bandomojo atvaizdo simetriškumą vizualiai.


