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Abstract. In this paper we consider optimal congestion control and routing schemes for multipath
networks with non-congestion related packet losses which can be caused by, for example, errors
on links on the routes, and develop a relaxed multipath network utility maximization problem. In
order to obtain the optimum, we present a primal algorithm which is shown to be globally stable
in the absence of round-trip delays. When round-trip delays are considered, decentralized sufficient
conditions for local stability of the algorithm are proposed, in both continuous-time and discrete-
time forms. Finally, a window-flow control mechanism is presented which can approximate the
optimum of the multipath network utility maximization model.
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1. Introduction

Since the publication of the seminal paper (Kelly et al., 1998), the single path congestion
control and routing schemes which can be formulated as network utility maximization
problems have been extensively studied in the past years, mainly in the context of Internet
congestion control and flow control (e.g., Low and Lapsley, 1999; Kelly, 2003; Low, 2003;
Chiang et al., 2007).

Recently, there has been much interest in multipath congestion control and routing
schemes (Li et al., 2011a, 2011b, 2014b; Xu et al., 2011; Lilienthal and Mandjes, 2011;
Szymanski, 2013), where each source-destination pair can have several different routes
along which data packet can be transmitted (e.g., Wu and Wang, 2012). In multipath
schemes, maximizing aggregated user utility over the network with multipath routing
under the constraint of link capacity is the objective of the multipath network utility

maximization problems. They can be viewed as an example of cross-layer optimization
(Chiang et al., 2007), where additional benefits are obtained by jointly optimizing at
the routing (network layer) and congestion control (transport layer). However, the opti-
mization problems to solve in multipath cases are usually concave but not strictly con-
cave, resulting in non-unique optimums of the primal problems and discontinuous mul-
tipath dual problems. Thus, most of researchers have to relax the multipath network
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utility maximization problems so as to make them strict concave (Han et al., 2006;
Voice, 2007), which means that the optimums of the network utility maximization prob-
lems are unique.

In order to solve the multipath utility maximization problems and the relaxation
versions, roughly speaking, multipath congestion control and routing schemes can be
classed into three categories: primal algorithms (Han et al., 2003; Kelly and Voice, 2005;
Peng et al., 2013), dual algorithms (Wang et al., 2003; Voice, 2007), and primal-dual al-
gorithms (Lin and Shroff, 2006; Han et al., 2006; Jin et al., 2009; Li et al., 2014a). The
primal algorithms have a dynamical law for adjusting user rate and a static law for generat-
ing link price, and conversely, the dual algorithms have a dynamical law for adjusting link
price and a static law for generating user rate. Then, the primal-dual algorithms have dy-
namical laws for adjusting both user rate and link price. The primal algorithms are based
on a penalty function approach, i.e., they replace the capacity constraints by a penalty
function in the optimization objective. They always tend to produce biased approximates
of the optimal operating points, due to the fact that penalties are only incurred when the
capacity constraints are violated. In contrast, the optimal operating point is defined to be
one that satisfies the capacity constraints. As for the dual algorithms, the advantage is that
they are designed to compute the exact optimal operating point when the stepsizes are
driven to zero in an appropriate fashion.

It is known that packets may be lost because of congestion in networks, however, just
as mentioned in communication networks with multipath routing (Lin and Shroff, 2006),
some random errors can occur when links estimate the amount of consumed resources,
such that packets may also be lost due to the link errors. We regard these non-congestion
related packet losses as random losses, which can be caused by, for example, hardware fail-
ures in a wired network, or more frequently, errors on wireless links on the routes in a wire-
less network. Typically, they are modeled as random phenomena which are independent
across routes or paths. They have been investigated widely in single-path congestion con-
trol and rate control schemes, and some new algorithms are proposed accordingly such that
the algorithms can achieve effective network control even when there are noises (Bolot,
1993; Lakshman and Madhow, 1997; Kunniyur and Srikant, 2003; Chen et al., 2005;
Altman et al., 2005; Sun et al., 2008), however, as far as the authors’ knowledge, little
attention has been paid to the case in multipath scenarios.

This paper assumes that users have access to two or more different routes. This means
that, for example, a user is able to choose between different Internet service providers, or
initial wireless links. We consider the multipath network utility maximization problem,
incorporate random losses in the utility optimization problem and present an optimal con-
gestion control and routing scheme for multipath networks with random losses. The main
contributions of this paper are summarized as follows:

(1) We present an analytical framework to study joint congestion control and routing
schemes for multipath networks with random losses in terms of optimizing network utility.

(2) We propose a rate-based congestion control algorithm, which can achieve the op-
timum of utility maximization problem, and obtain the global stability of the algorithm in
the absence of round-trip delays.
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(3) We investigate the local stability of the algorithm in the presence of round-trip
delays and obtain some decentralized sufficient conditions for the local stability, in both
continuous-time and discrete-time forms.

(4) We present a window-flow control mechanism that approximates optimum of the
multipath network utility maximization model but is more convenient to implement than
the rate-based flow control mechanism.

The rest of this paper is organized as follows: in Section 2, we present the framework
of joint congestion control and routing scheme for multipath networks with random losses
and give a rate-based congestion control algorithm; then we analyze the local stability of
the proposed algorithm with round-trip delays, and obtain decentralized sufficient con-
ditions in Section 3; in Section 4 we present the window-based flow control scheme; in
Section 5 we discuss the ECN marking scheme in the algorithm; in Section 6 we give sim-
ulation results to confirm the convergence of the proposed algorithm; finally, we conclude
the paper in Section 7.

2. Multipath Congestion Control and Routing with Random Losses

In this section, we shall introduce the relaxed utility maximization problem for multipath
networks with random losses, and present a primal algorithm to achieve the optimum
of the optimization problem. The algorithm is globally stable in the absence of round-
trip delays. In the next section, we shall give decentralized sufficient conditions for local
stability in the presence of round-trip delays.

2.1. Utility Optimization Framework

Consider a network consisting of a set of links L, a set of routes R and a set of users N .
Each link l ∈ L has capacity Cl . Each user n ∈ N identifies a unique source-destination
pair. There are multiple routes or paths between each source-destination pair. Associated
with each user n ∈N is a set of routes R(n) where each route r ∈ R(n) is a collection of
links. Obviously, associated with a route r ∈ R(n) is a set of routes R(n) all associated
with the same user, and with identical source and destination. In following analysis, if a
user n transmits along a route r , then we write r ∈ n; if a route r uses a link l, then we
write l ∈ r .

In this paper we make no assumptions on whether the routes r ∈ n are disjointed or
not. Obviously the ability to generate link-disjointed routes can assist in the constructionof
highly robust end-to-end communication for the source-destination pair which is labeled
by user n, but the model also covers the case where some or all of the routes r ∈ n share
some common path segments.

For user n, assume the transmitted rate on route r ∈ n is xr(t), then the total flow
rate of user n is yn(t)=

∑
r :r∈n xr(t), meanwhile the aggregated rate on link l is zl(t)=∑

r :l∈r xr(t). Denote the received rate in the absence of non-congestion related packet
losses on route r by xr (t). The received rate could be equal to or less than the transmit-
ted rate due to congestion in the network. Denote the price associated with the link l by
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pl(zl(t)), which is a function of zl(t). The price functions are assumed to be strictly in-
creasing functions with pl(0)= 0. For example, the loss probability can be chosen as one
type of price function. Then similar to that in single-path case (Kunniyur and Srikant,
2003), the loss rate for user n on a link l ∈ r is xr(t)pl(zl(t)).

Let qr (t)=
∑
l:l∈r pl(zl(t)), which is the sum of the link price along the route and can

be considered to be the total price associated with the route. Then the total loss rate due
to congestion for user n on route r is

xr (t)− xr(t)=
∑

l:l∈r

xr(t)pl
(
zl(t)

)
= xr(t)qr (t). (1)

Just as mentioned and investigated in the single-path end-to-end congestion control
schemes (Kunniyur and Srikant, 2003; Chen et al., 2005; Altman et al., 2005), some ran-
dom errors may occur when links estimate the amount of consumed resources, thus the
rate at which data packets are received at the destination on the route is not only a function
of congestion, but also a function of non-congestion related random losses. For example,
in single-path networks (Kunniyur and Srikant, 2003) random losses due to hardware fail-
ure in wired networks or errors on wireless links in wireless networks are considered, and
two congestion control schemes with random losses are presented. And in wireless net-
works (Chen et al., 2005), physical channel errors related packet losses are considered in
wireless networks, and two new congestion control schemes are proposed for wireless net-
works such that the equilibrium points of the new, extended utility maximization system
can still be obtained.

Let the received rate on route r be x̂r (t)= εrxr (t) in the presence of random losses,
where 1 − εr is the fraction of packets loss due to non-congestion related reasons. Thus,
the total loss rate xr(t)− x̂r(t) on route r can be given by

xr (t)− x̂r(t) = εr
(
xr(t)− xr (t)

)
+ (1 − εr )xr(t)

= εrxr (t)qr(t)+ (1 − εr )xr(t). (2)

Each user has a utility function Un(·), which is a continuously differentiable, strictly
concave, increasing function in its interval. We are interested in the following utility func-
tions,

Un
(
yn(t)

)
=

{
wn logyn(t), if αn = 1,

wn
yn(t)

1−αn

1−αn
, if αn 6= 1,

(3)

where wn is the willingness to pay of this user; αn is the fairness parameter which can
be used to achieve the known α-fair resource allocation. This family of utility functions
are known to characterize a large class of fairness concepts and have been investigated
extensively (Kelly, 2003; Chiang et al., 2007; Li et al., 2014b). In particular, if we set
αn = 0, the optimization problem reduces to throughput maximization. If αn = 1, pro-
portional fairness among competing sources is achieved; if αn = 2, then harmonic mean
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fairness; and if αn = ∞, then max-min fairness. Recently this kind of α-fairness has also
been investigated through relational optimization (Köppen, 2013).

We consider the following total network utility problem, i.e., one where all users jointly
optimize a single network performance objective

U =
∑

n:n∈N

(
Un

( ∑

r :r∈n

xr(t)

)
− η

∑

r :r∈n

1 − εr

εr
xr(t)

)

− η
∑

l:l∈L

∫ ∑
r:l∈r xr (t)

0

pl(σ )dσ . (4)

Here, the parameter η attempts to trade off between maximizing user utility and minimiz-
ing link price. The second term in the first part of (4) can be regarded as the total loss
of user utility due to non-congestion related random losses. The objective function (4)
is concave but not strictly concave with respect to the variables xr(t), resulting in that
the equilibrium points are not unique, however, the total flow rate yn of each user n on
its available routes and the aggregated flow rate zl on each link l are unique because of
the strict concavity of the aggregated utility function (the first part of (4)) and the strict
convexity of the aggregated cost function (the second part of (4)).

In the absence of random losses (εr = 1, ∀r), the objective to be maximized above can
reduce to the following one

U =
∑

n:n∈N

Un

( ∑

r :r∈n

xr(t)

)
− η

∑

l:l∈L

∫ ∑
r:l∈r xr (t)

0

pl(σ )dσ . (5)

Moreover, if η = 1, the objective (5) has been considered (Kelly and Voice, 2005;
Han et al., 2006), and fluid-flow primal algorithms of joint rate control and routing are
presented accordingly. If we choose η = ∞ and pl(zl(t))= (zl(t)−Cl)

+/zl(t) (“packet
loss rate” for the price function), the network utility objective is equivalent to the following
multipath network utility maximization problem

max
∑

n

Un

( ∑

r :r∈n

xr (t)

)

subject to
∑

r :l∈r

xr(t)6 Cl

over xr(t)> 0.

(6)

This network utility maximization problem has been investigated (Lin and Shroff, 2006;
Voice, 2007). The objective function in (6) is not strictly concave in the primal variables
xr (t) even if the utility functions U(·) are strictly concave, and hence the dual of (6) may
not be differentiable at every point. In order to make it strictly concave, several methods
are presented to relax the network utility maximization problem (6), such as adding a
quadratic term onto the objective function (Lin and Shroff, 2006).
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2.2. Primal Algorithm

We present the following primal algorithm, which is a natural generalization of the single-
path primal algorithm (Kunniyur and Srikant, 2003), to achieve the optimum of utility
maximization problem (4)

dxr(t)

dt
= κrxr(t)

(
εr −

η

U ′
n(

∑
r :r∈n xr (t))

xr(t)− x̂r(t)

xr (t)

)+

xr (t)

, (7)

where a = (b)+c means a = b if c > 0 and a = max{0, b} if c= 0.
Substituting (2) into (7), we obtain the following rate control algorithm

dxr(t)

dt
= κrxr(t)

(
εr − η

εr
∑
l:l∈r pl(t)+ (1 − εr)

U ′
n(

∑
r :r∈n xr (t))

)+

xr (t)

. (8)

We motivate the proposed algorithm (7) or (8) as follows. It is a rate-based control
algorithm for the flow on route r that comprises two parts: a steady increase at rate propor-
tional to κrεrxr (t); and a steady decrease at a rate depending upon both the price signals
arriving back from route r , the fraction of packets lost due to congestion on route r , and
the total rate of acknowledgements yn(t)=

∑
r :r∈n xr (t) received by user n.

The functionU is strictly increasing with time t , unless x(t)= x , the equilibrium point
maximizing U . Thus, the following theorem can be obtained.

Theorem 1. Dynamic system (8) is globally asymptotically stable with the Lyapunov func-

tion (4). All trajectories along system (8) converge to the equilibrium point that maxi-

mizes U .

Proof. For proof please see Appendix A. �

Obviously, at the equilibrium of algorithm (7) or (8), the following equation holds

U ′
n

( ∑

r :r∈n

xr

)
= η

( ∑

l:l∈r

pl +
1 − εr

εr

)
= η

(
qr +

1 − εr

εr

)
, (9)

thus, the optimal flow rate of user n is

yn =
∑

r :r∈n

xr = U ′
n
−1

(
ηqr + η

1 − εr

εr

)
. (10)

In the absence of random losses (εr = 1, ∀r), the optimal total flow rate of user n is
yn = U ′

n
−1
(ηqr ), r ∈ n. Moreover, if η = 1, then yn = U ′

n
−1
(qr), r ∈ n, which is similar

to that of the case that each user has a single route (Low and Lapsley, 1999).
Obviously, we can obtain the following theorem from (9).
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Theorem 2. At the optimum of network utility problem (4), the total prices associated

with routes of one user, i.e., qr , r ∈ n, are all equal in the absence of random losses, i.e.,

qr =U ′
n(yn)/η, r ∈ n.

Considering the utility functions (3), then the primal algorithm (8) reduces to

dxr(t)

dt
=
κrxr(t)

wr

(
εrwr − η

( ∑

r :r∈n

xr(t)

)αr(
εr

∑

l:l∈r

pl(t)+ (1 − εr)

))+

xr (t)

(11)

for each route of user n ∈ N , where wr = wn, αr = αn for all routes r associated with
user n.

2.3. Convergence Rate

We have obtained in Theorem 1 that the system (7) or (8) converges to the equilib-
rium point of (4), next we investigate the rate of convergence, by linearization about
the equilibrium point x . At the equilibrium point, let yn =

∑
r :r∈n xr , U

′
n = U ′

n(yn)

and U ′′
n = U ′′

n (yn), and suppose pl is differentiable at this point, with derivative p′
l . Let

xr (t) = xr + ϑr(t), yn(t) = yn + νn(t) and zl(t) = zl + σl(t), then, linearizing the sys-
tem (8) about x , we obtain

dϑr (t)

dt
= −

εrκrxr

U ′
n

(
−U ′′

n νn(t)+ η
∑

l:l∈r

p′
lσl(t)

)
, (12)

νn(t)=
∑

r :r∈n

ϑr (t), (13)

σl(t)=
∑

r :l∈r

ϑr (t). (14)

We can write (12)–(14) in matrix form as

d

dt

(
ν(t)

σ (t)

)
= −P−1R(ε)TR(ε)P

(
ν(t)

σ (t)

)
,

where P is a (|N | + |L|)× (|N | + |L|) diagonal matrix with entries Pnn = 1, Pll = ηp′
l ,

and R(ε) is an |R| × (|N | + |L|) matrix with the entries

Rrn =

(
−U ′′

n

εrκrxr

U ′
n

)1/2

, for r ∈ n,

Rrl =

(
εrκrxr

U ′
n

ηp′
l

)1/2

, for l ∈ r,

and all other entries of R(ε) are zero.
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Let

ŴT2Ŵ = P−1R(ε)TR(ε)P, (15)

where Ŵ is an orthogonal matrix, ŴT Ŵ = I , and2= diag{φi, i ∈N ∪L} is the matrix of
eigenvalues of the real, symmetric, positive definite matrix (15). Then

d

dt

(
ν(t)

σ (t)

)
= −ŴT2Ŵ

(
ν(t)

σ (t)

)
.

Thus, the rate of convergence to the equilibrium point is determined by the smallest
eigenvalue φi of matrix (15). Notice that the speed of convergence increases with both the
gain parameter κ and the fraction of packet loss due to congestion ε.

3. Stability of the Algorithm with Round-Trip Delays

For each route r ∈ n and link l ∈ r , we define a forward delayDrl from r to l, and a return

delay Dlr from l to r . The forward delay is the delay incurred in communication for a
packet from user n to link l along route r; the return delay is the delay incurred in com-
munication for an acknowledgement packet from link l back to user n along route r . In the
protocols under consideration, a packet must reach its destination before an acknowledge-
ment packet, which contains congestion feedback (via some form of explicit congestion

notification), is returned to its source. In the current Internet, each route is subject to a
round-trip delay. We model this delay by assuming each route has an associated delay
denoted by Dr , i.e. for all l ∈ r , Drl +Dlr =Dr .

3.1. Stability of the Continuous-Time Algorithm

In this part, we consider the local stability of the continuous form of the proposed algo-
rithm. Thus the algorithm (8) with round-trip delay can be described as follows

dxr(t)

dt
= κrxr(t)

(
εr −

ηεrqr(t)+ η(1 − εr)

U ′
n(

∑
r :r∈n xr (t))

)+

xr (t)

, (16)

qr (t)=
∑

l:l∈r

µl(t −Dlr), (17)

µl(t)= pl
(
zl(t)

)
, (18)

zl(t)=
∑

r :l∈r

xr(t −Drl), (19)

yn(t)=
∑

r :r∈n

xr (t −Dr ). (20)

We motivate the algorithm (16)–(20) as follows. The total flow through link l is zl(t),
which is the aggregated flow rate from all routes that pass the link. However, the flow
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that link l observes at time t on route r is the traffic sent Drl time units earlier, which is
given in (19). After link l adds a price pl(zl(t)) onto packets, the congestion feedback
packets leaving link l experience a delayDlr before returning to user n, as shown in (17).
Finally, for the total rate of acknowledgements yn(t) in (20), packets on each route r ∈ n

are subject to a round-trip delay denoted by Dr . Through (16)–(20), user n adjusts xr(t)
on route r to reach the target equilibrium point.

We next establish a sufficient condition for the local stability of algorithm (16)–(20)
at the equilibrium point x which satisfies (9)–(10).

Theorem 3. Let x be the equilibrium point of dynamic system (16)–(20), then the pro-

posed algorithm (16)–(20) is locally stable if the following sufficient condition is satisfied

for each route r serving user n

εrκr

U ′
n

(
−U ′′

n yn +
∑

r :l∈r

zlp
′
l

)
<

π

2Dr
. (21)

Proof. The proof of this theorem, which is based on the generalized Nyquist criterion
(Desoer and Yang, 1980), can be found in Appendix B. �

Then, we can obtain the following results after substituting (3) into (21).

Remark 1. From (3) the sufficient condition (21) reduces to

εrκr

(
αn +

y
αn
n

wn

∑

r :l∈r

zlp
′
l

)
<

π

2Dr
, r ∈ n,

for user n ∈N .
Moreover, if we choosepl(zl(t))= (zl(t)/Cl)

βl , then from (9)–(10) the sufficient con-
dition (21) reduces to

εrκr

(
αr + βr

qr

η(qr + (1 − εr)/εr)

)
<

π

2Dr
, r ∈ n,

for user n ∈N , where βr = max{βl, l ∈ r}, αr = αn, r ∈ n.

Remark 2. If εr = 1, r ∈ n, i.e., the random losses due to non-congestion related reasons
are not considered, and η = 1, i.e., the trade off between maximizing user utility and
minimizing link price is 1, then the sufficient condition (21) reduces to

κr

qr

(
−U ′′

n yn +
∑

r :l∈r

zlp
′
l

)
<

π

2Dr
.

From the sufficient conditions for local stability of the congestion control and routing
algorithm, we can observe that network stability in the presence of round-tripdelays can be
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guaranteed by simple, decentralized conditions on each end user and its links, i.e., in order
to achieve the local stability, each end user only needs knowledge of its own information,
such as the round-trip delay Dr , the aggregated price qr along any one of its routes, and
so on.

3.2. Stability of the Discrete-Time Algorithm

Now we investigate local stability of the discrete-time algorithm corresponding to the
continuous-time system (16)–(20). Consider the following delayed system analogous to
the continuous one, where Drl and Dlr are assumed to be integer values

xr [t + 1] = xr [t] + κrxr [t]

(
εr −

ηεrqr [t] + η(1 − εr )

U ′
n(

∑
r :r∈n xr [t])

)+

xr [t ]

, (22)

qr [t] =
∑

l:l∈r

µl[t −Dlr], (23)

µl[t] = pl
(
zl[t]

)
, (24)

zl[t] =
∑

r :l∈r

xr [t −Drl], (25)

yn[t] =
∑

r :r∈n

xr [t −Dr ]. (26)

We motivate the algorithm (22)–(26) as follows. The packets for user n experience a
delay Drl before arriving at link l on route r; then packets with price for route r leaving
link l experience a delay Dlr before returning to user n. Finally, packets of the total rate
of acknowledgements yn(t) on route r ∈ n are subject to a round-trip delay Dr .

For the discrete-time algorithm (22)–(26), we obtain a sufficient condition for the local
stability of the delayed algorithm at the equilibrium point x .

Theorem 4. The proposed algorithm (22)–(26) is locally stable at the equilibrium point x

if the following sufficient condition is satisfied for each route r serving user n

εrκr

U ′
n

(
−U ′′

n yn +
∑

r :l∈r

zlp
′
l

)
< 2 sin

(
π

2(2Dr + 1)

)
. (27)

Proof. For proof please see the Appendix C. �

Remark 3. From (3) the sufficient condition (27) reduces to

εrκr

(
αn +

y
αn
n

wn

∑

r :l∈r

zlp
′
l

)
< 2 sin

(
π

2(2Dr + 1)

)
,

where r ∈ n for user n ∈N .
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Moreover, if pl(zl(t))= (zl(t)/Cl)
βl , then from (9)–(10) the sufficient condition (27)

reduces to

εrκr

(
αr + βr

qr

η(qr + (1 − εr)/εr)

)
< 2 sin

(
π

2(2Dr + 1)

)
,

where r ∈ n for user n ∈ N , and βr = max{βl, l ∈ r}, αr = αn, r ∈ n. Obviously, the
stability of the proposed algorithm can be guaranteed on each route by simple, distributed
conditions.

Remark 4. If εr = 1, r ∈ n and η= 1, then the sufficient condition (27) reduces to

κr

qr

(
−U ′′

n yn +
∑

r :l∈r

zlp
′
l

)
< 2 sin

(
π

2(2Dr + 1)

)
. (28)

Meanwhile, (28) is also equivalent to

κr

qr

(
αrqr +

∑

r :l∈r

zlp
′
l

)
< 2 sin

(
π

2(2Dr + 1)

)
,

which is very similar to the sufficient condition for local stability of delayed congestion
control algorithm in single-path networks (Johari and Tan, 2001). Moreover, if pl(zl(t))=
(zl(t)/Cl)

βl , then (28) reduces to

κr (αr + βr ) < 2 sin

(
π

2(2Dr + 1)

)
, r ∈ n.

The discrete form of sufficient conditions can give us some useful guidelines for effective
implementation of multipath transmission protocols in Internet in order to achieve the
stability of network in the presence of round-trip delays.

Actually, the sufficient condition given by (27) for local stability of the discrete-time
algorithm approximates the sufficient condition given by (21) for local stability of the
continuous-time one when the round-trip delay Dr on route r is large enough, i.e.,

2 sin

(
π

2(2Dr + 1)

)
≈ 2

π

2(2Dr + 1)
≈

π

2Dr
.

4. Window Flow Control

Window-based flow control where the window size is increased or decreased upon re-
ceipt of acks (positive acknowledgements) or nacks (negative acknowledgements) is more
convenient to implement than rate-based flow control mechanism since it is inherently
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self-clocking. To obtain a window flow control scheme, we discretize the system (11) and
obtain

xr (t + δ)− xr(t)

δ
=
κrxr(t)

wr

(
εrwr − η

( ∑

r :r∈n

xr(t)

)αr xr(t)− x̂r (t)

xr(t)

)+

xr (t)

for each route of user n ∈N .
Let Wr (t) be the window size of user n on its route r at time t . We follow the ap-

proximation relating data transmission rate and window size (Lakshman and Madhow,
1997)

xr (t)≈
Wr (t)

Dr
.

Let Ar (t, t + δ) and Nr (t, t + δ) denote the numbers of acks and nacks received by
user n on its route r in the time interval [t, t + δ), respectively. Thus,

Ar (t, t + δ)

δ
≈ xr (t)≈

Wr (t)

Dr

and

(
xr(t)− x̂r(t)

)
δ ≈Nr (t, t + δ).

Then,

xr (t + δ)− xr(t)

δ
=
Wr (t + δ)−Wr (t)

Ar(t, t + δ)

Ar(t, t + δ)

Drδ
=
Wr (t + δ)−Wr (t)

Ar(t, t + δ)

Wr (t)

D2
r

.

Using the approximations above, the window-based congestion control mechanism
becomes

Wr (t + δ)−Wr (t)= εrκrDrAr (t, t + δ)− η
κr

wr
Dr

( ∑

i:i∈n

Wi

Di

)αr
Nr (t, t + δ),

(29)

for each route r of user n ∈N .

Remark 5. If εr = 1, r ∈ n and η= 1, the window-based congestion control mechanism
above reduces to

Wr (t + δ)−Wr (t)= κrDrAr(t, t + δ)−
κr

wr
Dr

( ∑

i:i∈n

Wi

Di

)αr
Nr (t, t + δ), (30)

for each route r of user n ∈ N . This results can give us some interesting guidelines to
achieve optimal window-based flow control of multipath transmission protocols in inter-
net.
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We can interpret the window flow control mechanisms (29)–(30) as follows: when
each ack is received, the window size is increased by a fixed amount that is in proportion
to Dr , which is a linear increase process; when each nack is received, the window size is
deceased by a fixed amount that is in proportion to Dr (

∑
i:i∈nWi/Di)

αr for user n ∈N ,
which is a multiplicative decease process. Hence, the window flow control scheme realizes
the adaptive increase/multiplicative decrease (AIMD) principle which is also used in the
original TCP version and other variants.

5. ECN Marking

Congestion control algorithms that we have discussed so far rely on loss as the congestion
indicator. Indeed, explicit congestion notification (ECN) marking is also a mechanism to
provide early indication to users about imminent congestion of the network at very low
levels of loss.

In order to recast the fluid model to incorporate ECN marking, we interpret “lost”
packets as “marked” packets. For example we now interpret x̂r(t) as the rate at which
“unmarked” packets are received at the receiver. Since buffer is always limited, we assume
that, at each link l, a fraction of the packets are marked when the arrival rate exceeds
the threshold Ĉl , where Ĉl 6 Cl . The fraction of packets marked is given by pl(zl) =

(zl − Ĉl)
+/zl where zl is arrival rate on link l.

Then in this framework, it is possible to offer a loss-free service if the marking level
Ĉl(t) is chosen appropriately for each link l. In the following, we characterize the level
Ĉl at which marking should take place so that the total arrival rate on each link does not
exceed the link capacity, and obtain the following theorem.

Theorem 5. For each link l, if the marking level Ĉl satisfies the following inequality

∑

r :l∈r

(
wn

η(1/εr − Ĉl/Cl)

) 1
αn

6 Cl, (31)

where r ∈ n. Then the equilibrium of (4) satisfies
∑
r :l∈r xr 6 Cl .

Proof. For proof see the Appendix D. �

Along with appropriate marking, the rate and window flow control algorithms we have
proposed can be used to provide loss-free service by substituting marks for negative ac-
knowledgments, e.g., in the window flow control implementation, the window size should
be reduced upon receipt of a mark.

From the sufficient condition (31) we observe that, in order to increase the available
capacity Ĉl , we need to increase η to ensure loss-free service. To understand this better,
we consider a simple multipath network where every user n ∈N accesses two concurrent
links l1, l2 with capacities C1 = C2. From (9) or (10), the equilibrium of (4) satisfies

wn

(xr1 + xr2)
αn

= η

(∑
si :li∈si

xsi (t)− Ĉli∑
si :l∈si

xsi (t)
+

1 − εri

εri

)
,
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Fig. 1. Multipath network topology.

for each ri , i = 1,2. By symmetry it is clear that xr1 = xr2 and xsi = xri for any si , ri .
Therefore

wn

(2xr)αn
= η

(
Nxr (t)− Ĉl

Nxr (t)
+

1 − εr

εr

)
.

Considering αn = 1 and εr = 1, then Nxr (t) = Ĉl + Nwn/2η. Obviously, if Ĉl +

Nwn/2η 6 Cl , the equilibrium of (4) results in zero loss. Notice that Ĉl depends on the
number N of users in the network. Thus, increasing the available capacity by increas-
ing η is the only way to ensure loss-free service. Therefore, as N increases, we need to
increase η to ensure loss-free service.

6. Numerical Examples

In this section we investigate the performance of the proposed algorithm. We consider the
following simple multipath network consisting of two users as shown in Fig. 1. There are
two available paths for each source: one is A → B, the other is C → E. We assume there is
only one bottleneck link on each path, i.e., L1 in the former and L2 in the latter. Suppose the
capacities of bottleneck links are C = (C1,C2)= (30,50)Mbps, the transmission delays
on links are d = (d1, d2) = (30 ms,20 ms), and the willingness to pay of users are w =

(w1,w2)= (5,10). In the primal algorithm we choose η= 1, κ = (κ1, κ2)= (0.05,0.05),
and the following price function, the “packet loss rate”,

pl
(
zl(t)

)
=
(zl(t)−Cl)

+

zl(t)
. (32)

Indeed, for large buffers operating with drop tail, it is a more reasonable approximation for
the proportion of packets overflowing the buffer (Srikant, 2004). Here, we only consider
the proportional fairness among competing users.

6.1. Algorithm with Only Congestion-Related Losses

Firstly we only consider congestion-related packet losses in the network and investi-
gate the performance of our algorithm. The simulation results for algorithm with only
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Fig. 2. Performance of the algorithm with only congestion-related losses.
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Fig. 3. Performance of the algorithm with random losses.

congestion-related losses are shown in Fig. 2, where (a) is the optimal rate of user 1 on
its paths and (b) is the optimal rate of user 2 on its paths, respectively. Obviously, the
proposed algorithm converges to an optimal fair resource allocation within reasonable
convergence times. In this case the optimal rate allocation is x∗ = (x∗

11, x
∗
12, x

∗
21, x

∗
22) =

(4.5434,22.1212,25.4630,27.8724)Mbps.

6.2. Algorithm with Random Losses

Now we consider the performanceof algorithm when there are non-congestion related ran-
dom losses in the network along with congestion packet losses. Suppose ε = (ε1, ε2) =

(0.98,0.97), i.e., the fraction of non-congestion related random losses in paths 1 and 2
are 0.02 and 0.03, respectively. The simulation results for algorithm with non-congestion
related random losses are shown in Fig. 3, where (a) and (b) are the optimal rate of
users 1 and 2 on their own paths. We can observe from the results that the algo-
rithm is efficient to converge the optimal rate allocation, i.e., x∗ = (x∗

11, x
∗
12, x

∗
21, x

∗
22) =

(4.4030,22.9816,26.2116,28.5624)Mbps, within reasonable convergence times.
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7. Conclusions

In this paper we investigate fair, stable congestion control and routing schemes for mul-
tipath networks in the presence of non-congestion related packet losses. We develop a
relaxed multipath network utility optimization problem and propose a primal algorithm
to achieve the optimum of utility maximization problem. The algorithm is globally stable
in the absence of round-trip delays, and when round-trip delays are considered, decen-
tralized sufficient conditions for local stability are presented in both continuous-time and
discrete-time forms. Finally, we present a window-based flow control scheme and inter-
pret the increase or decease of window size upon receipt of acks or nacks. The proposed
algorithm and sufficient conditions for local stability can apply to multipath networks with
random losses which consist of arbitrary interconnections of users and links with arbitrary
heterogeneous round-trip delays.
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Appendix A. Proof of Theorem 1

Notice that

∂U

∂xr(t)
= U ′

n

( ∑

r :r∈n

xr(t)

)
− η

1 − εr

εr
− η

∑

l:l∈r

pl

( ∑

j :l∈j

xj (t)

)

= U ′
n

( ∑

r :r∈n

xr(t)

)
− η

1 − εr

εr
− η

xr(t)− xr (t)

xr(t)

= U ′
n

( ∑

r :r∈n

xr(t)

)
−
η

εr

xr(t)− x̂r (t)

xr(t)

=
U ′
n(

∑
r :r∈n xr (t))

εr

(
εr −

η

U ′
n

(∑
r :r∈n xr(t)

) xr(t)− x̂r(t)

xr (t)

)
.

Hence, setting these derivatives to be zero identifies the maximum. Further,

dU

dt
=

∑

n∈N

∑

r :r∈n

∂U

∂xr(t)

dxr(t)

dt

=
∑

n∈N

∑

r :r∈n

κrxr (t)U
′
n

(∑
r :r∈n xr(t)

)

εr

(
εr −

η

U ′
n

(∑
r :r∈n xr(t)

) xr (t)− x̂r(t)

xr(t)

)2

,
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so that U is strictly increasing with time t , unless x(t)= x , the equilibrium point maxi-
mizing U . The function U is thus a Lyapunov function for the dynamic system, and the
theorem follows.

Appendix B. Proof of Theorem 3

Let xr (t)= xr + ϑr (t), yn(t)= yn + νn(t), zl(t)= zl + σl(t). By linearizing the system
(16)–(20) about the equilibrium point x , we can obtain the following equations

dϑr (t)

dt
= −

εrκrxr

U ′
n

(
−U ′′

n νn(t)+ η
∑

l:l∈r

p′
lσl(t −Dlr)

)
,

νn(t)=
∑

r :r∈n

ϑr (t −Dr ),

σl(t)=
∑

r :l∈r

ϑr (t −Drl).

Taking Laplace transforms of variables ϑr (t), νn(t) and σl(t), we obtain

ωϑr (ω)= −
εrκrxr

U ′
n

(
−U ′′

n νn(ω)+ η
∑

l:l∈r

p′
le

−ωDlrσl(ω)

)
,

νn(ω)=
∑

r :r∈n

e−ωDrϑr (ω),

σl(ω)=
∑

r :l∈r

e−ωDrlϑr (ω),

where ϑr (ω)= L(ϑr (t)), νn(ω)= L(νn(t)) and σl(ω)= L(σl(t)). Here, we assume the
initial state of system is zero.

Rewrite the above equations in matrix form as

(
ν(ω)

σ(ω)

)
= −P−1R(−ω)T T (ω)R(ω)P

(
ν(ω)

σ(ω)

)
,

where T (ω) is an |R| × |R| diagonal matrix with entries Trr(ω) = e−ωDr /ωDr , P is a
(|N | + |L|)× (|N | + |L|) diagonal matrix with entries Pnn = 1, Pll = ηp′

l , and R(ω) is
an |R| × (|N | + |L|) matrix with the entries

Rrn =

(
−U ′′

n

εrκrxrDr

U ′
n

)1/2

, for r ∈ n,

Rrl = e−ωDlr

(
εrκrxrDr

U ′
n

ηp′
l

)1/2

, for l ∈ r,

and all other entries of R(ω) are zero.
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Let G(ω)= −P−1R(−ω)T T (ω)R(ω)P , which is the return ratio for (ν, σ ). By the
generalized Nyquist criterion (Desoer and Yang, 1980), the control loop is stable if the
eigenvalues of G(iθ) do not encircle (−1, i0) for θ ∈ (−∞,+∞).

Suppose for some θ ∈ (−∞,+∞), λ is an eigenvalue of G(iθ). Then, there exists a
unit vector ξ such that λξ = R(iθ)†T (iθ)R(iθ)ξ , where † denotes the matrix conjugate.
Hence, λ= ξ†R(iθ)†T (iθ)R(iθ)ξ .

Let K = (2/π)1/2R(iθ)ξ with elements kr , since T (iθ) is diagonal, then

λ=
∑

r

π

2
|kr |

2Trr(iθ)=
∑

r

|kr |
2π

2

e−iθDr

iθDr
.

Thus, λ= aϕ, where a = ‖(2/π)1/2R(iθ)ξ‖2 and ϕ lies in

γ = Co

(
0 ∪

{
π

2

e−iθDr

iθDr

})
,

where Co denotes the convex hull of set {·}. Meanwhile, a is bounded by its spectral norm,
and the spectral radius of a matrix is bounded by its maximum absolute row sum, thus

a =
2

π
ξ†R(iθ)†R(iθ)ξ 6

2

π
ρ
(
R(iθ)†R(iθ)

)
6

2

π

∥∥R(iθ)†R(iθ)
∥∥

∞
< 1,

where the last inequality follows from the sufficient condition (21).
It has been shown that aγ does not contain the point (−1, i0) for any given real number

0 6 a < 1 and for all θ ∈ (−∞,+∞) based on Lemma 2 (Tian and Yang, 2004a).
Therefore, when the loci of the eigenvalues ofG(iθ) for θ ∈ (−∞,+∞) cross the real

axis, they do so to the right of −1. So the loci of the eigenvalues ofG(iθ) cannot encircle
(−1, i0), the generalized Nyquist stability criterion is satisfied and the system (16)–(20)
is local stability at the equilibrium point. This theorem is completed.

Appendix C. Proof of Theorem 4

Let xr [t] = xr + ϑr [t], yn[t] = yn + νn[t], zl[t] = zl + σl[t]. By linearizing the system
(22)–(26) about the equilibrium point x and taking the z-transforms, we can obtain the
following equations

zϑr (z)= ϑr (z)−
εrκrxr

U ′
n

(
−U ′′

n νn(z)+ η
∑

l:l∈r

p′
lz

−Dlrσl(z)

)
,

νn(z)=
∑

r :r∈n

z−Drϑr (z),

σl(z)=
∑

r :l∈r

z−Drlϑr (z),
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where ϑr(z) = Z(ϑr [t]), νn(z) = Z(νn[t]) and σl(z) = Z(σl[t]). Here, we assume the
initial state of system is zero.

Rewrite the above equations in matrix form as

(
ν(z)

σ (z)

)
= −P−1R(z−1)T T (z)R(z)P

(
ν(z)

σ (z)

)
,

where T (z) is an |R| × |R| diagonal matrix with entries Trr(z) = z−Dr /(z − 1), P is a
(|N | + |L|)× (|N | + |L|) diagonal matrix with entries Pnn = 1, Pll = ηp′

l , and R(z) is
an |R| × (|N | + |L|) matrix with the entries

Rrn =

(
−U ′′

n

εrκrxr

U ′
n

)1/2

, for r ∈ n,

Rrl = z−Dlr

(
εrκrxr

U ′
n

ηp′
l

)1/2

, for l ∈ r,

and all other entries of R(z) are zero.
Let G(z)= −P−1R(z−1)T T (z)R(z)P , which is the return ratio for (ν, σ ). Suppose

that for some θ ∈ [−π,+π], λ is an eigenvalue ofG(eiθ ). Then, there exists a unit vector
ζ such that λζ = R(eiθ )†T (eiθ )R(eiθ )ζ , where † denotes the matrix conjugate. Thus,
λ= ζ †R(eiθ )†T (eiθ )R(eiθ )ζ .

Let K =H−1/2R(eiθ )ζ with elements kr , where

H = diag{hr , r ∈ n}, hr = 2 sin

(
π

2(2Dr + 1)

)
,

since T (eiθ ) is diagonal, then

λ=
∑

r

hr |kr |
2Trr

(
eiθ

)
=

∑

r

|kr |
2hr

e−iθDr

eiθ − 1
.

Thus, λ= bψ , where b = ‖H−1/2R(eiθ )ζ‖2 and ψ lies in

χ = Co

(
0 ∪

{
hr
e−iθDr

eiθ − 1

})
,

where Co denotes the convex hull of set {·}. Mean- while,

b = ζ †R
(
eiθ

)†
H−1R

(
eiθ

)
ζ 6 ρ

(
R

(
eiθ

)†
H−1R

(
eiθ

))

6
∥∥R

(
eiθ

)†
H−1R

(
eiθ

)∥∥
∞
< 1,

where the last inequality follows from the sufficient condition (27).
It can be obtained from Lemma 2 (Tian and Yang, 2004b) that bχ does not contain

the point (−1, i0) for any given real number 0 6 b < 1 and for all θ ∈ [−π,+π].
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Therefore, when the loci of the eigenvalues of G(eiθ ) for θ ∈ [−π,+π] cross the real
axis, they do so to the right of −1. So the loci of the eigenvalues ofG(eiθ ) cannot encircle
(−1, i0), thus the system (22)–(26) is local stability at the equilibrium point. This theorem
is completed.

Appendix D. Proof of Theorem 5

The theorem is proved by contradiction. Suppose there exists a link l such that, at the
equilibrium

∑
s:l∈s xs >Cl .

Consider a route r ∈ n of user n ∈N such that l ∈ r , at the equilibrium of (4), from (9)
or (10) we can obtain

wn(∑
r :r∈n xr

)αn = η

( ∑

l:l∈r

(
∑
k:l∈k xk(t)− Ĉl)

+

∑
k:l∈k xk(t)

+
1 − εr

εr

)

> η

(∑
s:l∈s xs(t)− Ĉl∑

s:l∈s xs(t)
+

1 − εr

εr

)

> η

(
Cl − Ĉl

Cl
+

1 − εr

εr

)
.

Then

∑

r :r∈n

xr 6

(
wn

η(1/εr − Ĉl/Cl)

) 1
αn

,

thus, for link l

∑

s:l∈s

∑

r :r∈n

xr 6
∑

s:l∈s

(
wn

η(1/εr − Ĉl/Cl)

) 1
αn

.

From (31), for each link l the right term of the inequality above is less than or equal to Cl ,
meanwhile, from the assumption the left term is larger than Cl . This is a contradiction.
The theorem is obtained.
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Optimali perkrovimo kontrolė ir daugiasrautinių tinklų pasiskirtymas
su atsitiktiniais praradimais

Shiyong LI, Wei SUN, Yaming ZHANG, Yehua CHEN

Šiame darbe nagrinėjamas optimalus perkrovimo valdymas ir daugiasrautinių tinklų skirstymo sche-
mos su duomenų paketų praradimu. Taip pat darbe išspręsta šio tipo tinklų naudingumo problema.


