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Abstract. Poisson conditional autoregressive model of spatio-temporal data is proposed. Markov

property and probabilistic characteristics of this model are presented. Algorithms for maximum like-

lihood estimation of the model parameters are constructed. Optimal forecasting statistic minimizing

probability of forecast error is given. The “plug-in” principle based on ML-estimators is used for

forecasting in the case of unknown parameters. The results of computer experiments on simulated

and real medical data are presented.
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1. Introduction

Statistical analysis of spatio-temporal data is an important problem for practice: it al-

lows to model adequately the underlying stochastic phenomenon taking into account both

the dependence on time and the dependence on space. Models based on spatio-temporal

data become widely used for solving practical problems in meteorology (Quintian et

al., 2014), ecology, economics (Pragarauskaite and Dzemyda, 2013), medicine and other

fields (Gelfand et al., 2010). Let us present some examples of these models.

The Spatial Temporal Conditional Autoregressive model (STCAR) is considered in

Mariella and Tarantino (2010) for modeling and statistical analysis of spatio-temporal data

on bankruptcy of small and medium-sized enterprises in the provinces of Italy. A distinc-

tive feature of this model is that the vector in the time slice of the process under study has

the conditional Gaussian distribution.

The statistical testing for a parameter change of Poisson autoregressive models is con-

sidered and experiments are conducted on real data that describes the incidence of po-

liomyelitis in Kang and Lee (2014). In Fokianos and Tjøstheim (2012) the authors study

statistical properties of non-linear regression models for discrete data. In particular, a non-

linear Poisson autoregressive model is considered; it is a generalization of linear Poisson

regression model (Fokianos et al., 2009). This model is used to simulate the mortality data
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in a certain area of Portugal. Long memory autoregressive conditional Poisson (LMACP)

model for modeling discrete time series with a high persistence is introduced by Grob-

KlubMann and Hautsch (2013). The model is applied to forecast the bid-ask spreads. This

model allows handling such properties of the bid-ask spreads as a strong autocorrelation

and discreteness of observations. Homogeneous and non-homogeneous Poisson models

are used by Rodrigues (2013) for statistical analysis of air pollution data. Note that the

spatial dependence was not taken into account in the given above models of discrete data.

This paper is devoted to statistical analysis of the Poisson conditional autoregressive

model that can be used to describe the discrete spatio-temporal data. The structure of

the paper is as follows. The Poisson conditional autoregressive model of spatio-temporal

data is constructed in Section 2. We study the probabilistic characteristics of this model

in Section 3. The likelihood function is constructed and an algorithm for computing the

maximum likelihood estimators of the model parameters is given in Section 4. Section 5

is devoted to statistical forecasting of spatio-temporal data using the Poisson conditional

autoregressive model; forecasting statistic that minimizes the probability of the forecast

error is built in the case of known parameters of the model. The “plug-in” principle is ap-

plied to the constructed forecasting statistic in the case of unknown parameters. Section 6

presents the results of computer experiments which were conducted on simulated and real

medical data.

The paper is based on the presentation given at the X International Conference “Com-

puter Data Analysis and Modeling” (Minsk, September 10–14, 2013).

2. Poisson Conditional Autoregressive Model

Introduce the notation: (�,F,P ) is the probability space; N is set of positive integers,

N0 = N ∪ {0}; I {A} is the indicator function of the event A; s ∈ S = {1,2, . . . , n} is the

set of indexed spatial regions or space locations (let us agree to call them sites), into which

the analyzed spatial area is partitioned; n is number of sites; t ∈ N is discrete time; T is

the length of observation period; xs,t ∈ N0 is a discrete random variable at time t at site s

which describes the number of incidences in the studied region; U(s) ⊆ S is a subset of

neighbors of site s (a subset of sites which are situated most closely to the site s, or which

share common boundary with site s, or which have the greatest impact on the random

variable xs,t in this site); Fs̄,< t = σ {xu,τ : u 6= s, τ < t} ⊂ F is the σ -algebra generated

by the indicated in braces random variables; zs,t > 0 is an observed (known) level of ex-

ogenous factors (e.g., environmental pollution) at time t at site s which influences xs,t ;

{ϕk(t) : 1 6 k 6 K} is a given set of K ∈ N basic functions which determine a trend; L(ξ)

means the probability distribution of the random variable ξ ; E{·}, D{·}, cov{·} are sym-

bols of expectation, variance, covariance of the random variables; 5(l;λ) is the Poisson

probability distribution of the random variable ξ with the intensity parameter λ > 0:

P {ξ = l} = 5(l;λ) =
λl

l!
e−λ, l ∈ N0. (1)
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Fig. 1. Graph of sites dependence in the case U(s) ≡ {1}.

Fig. 2. Graph of sites dependence in the case U(s) ≡ {1,2, . . . , s − 1}.

We construct the Poisson conditional autoregressive model for spatio-temporal data

{xs,t} using the idea of the paper of Mariella and Tarantino (2010):

L{xs,t |Fs̄,<t } = 5(·;λs,t), (2)

ln λs,t = lnλs,t

({

xj,t : j ∈ U(s)
}

, xs,t−1

)

= asxs,t−1I {t > 1} +
∑

j∈U(s)

bs,jxj,t + βszs,t +

K
∑

k=1

γs,kϕk(t), t ∈ N,s ∈ S,

(3)

U(s) ⊆ {1,2, . . . , s − 1}, s = 2, . . . , n,

U(1) ≡ ∅,
∣

∣U(s)
∣

∣= Ks , K1 ≡ 0, (4)

where a = (a1, a2, . . . , an)
′ ∈ Rn, bs = (bs,j1

, . . . , bs,jKs
)′ ∈ RKs , jk ∈ U(s): k =

1, . . . ,Ks , s ∈ S, β = (β1, β2, . . . , βn)
′ ∈ Rn, γs = (γs,1, . . . , γs,K)′ ∈ RK , s ∈ S, are

the parameters of the model. The number of parameters of the model is equal to D =

n(K + 2) +
∑n

s=1 Ks .

Depending on types of the sets of neighbors U(s), s ∈ S, we propose some typical

models of the sites dependence for the considered random process xs,t :

(a) all sites depend only on the first site (U(s) ≡ {1}); graphically this type of depen-

dence presents “star” and is shown in Fig. 1;

(b) each site depends on all previous sites (U(s) ≡ {1,2, . . . , s − 1}; see Fig. 2);

(c) each site depends on the previous one (see Fig. 3):

U(s) ≡ {s − 1}. (5)



70 Yu. Kharin, M. Zhurak

Fig. 3. Graph of sites dependence in the case U(s) ≡ {s − 1}.

To reduce the number of model parameters we use an additional condition for the

cardinality of sets U(2),U(3), . . . ,U(n):

K1 = 0, Ks 6 1, s = 2,3, . . .n.

This condition is satisfied, in particular, for types of dependence that are illustrated in

Figs. 1 and 3. In this case the number of parameters of the model is equal to D 6 n(K +

2) + n − 1 = n(K + 3) − 1.

3. Probabilistic Properties of the Model

Let Xt = (x1,t , x2,t , . . . , xn,t )
′ ∈ Nn

0 be the column vector specifying the time slice of the

process under consideration at time t ; L = {lj = (l1,j , . . . , ln,j )
′ ∈ Nn

0 : j = 0,1, . . .} be

an ordered set of all admissible values of the vector Xt , e.g. the set L can take the following

form:

L =























0

0
...

0
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0
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where the first vector has all zero components, then n vectors of all possible combinations

of 0 and 1 follow, then – combinations of 0, 1 and 2, etc.

Theorem 1. For the model (2)–(4) the observed vector process Xt is the n-dimensional

nonhomogeneous Markov chain with the countable state space L, the one-step transition

probability matrix P(t) = (pij (t)), i, j ∈ N0, t > 2:

pij (t) =

n
∏

s=1

exp{−λs,t({lk,j : k ∈ U(s)}, ls,i)}λ
ls,j
s,t ({lk,j : k ∈ U(s)}, ls,i)

ls,j !
, (6)

and the initial probability distribution p = (p0,p1, . . .)
′:

pj =

n
∏

s=1

exp{−λs,1({lk,j : k ∈ U(s)})}λ
ls,j
s,1 ({lk,j : k ∈ U(s)})

ls,j !
, j ∈ N0. (7)

Proof. Let us show that for the model (2)–(4) vector process Xt is the n-dimensional non-

homogeneous Markov chain. Use the generalized formula for multiplying probabilities:

P {Xt = lit |Xt−1 = lit−1
, . . . ,X1 = li1}

= P {x1,t = l1,it , . . . , xn,t = ln,it |Xt−1 = lit−1
, . . . ,X1 = li1}
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= P {x1,t = l1,it |Xt−1 = lit−1
, . . . ,X1 = li1}

×

n
∏

s=2

P {xs,t = ls,it |x1,t = l1,it , . . . , xs−1,t = ls−1,it ,Xt−1 = lit−1
, . . . ,X1 = li1}.

By condition (4) we have:

{

xk,t = lk,it : k ∈ U(s)
}

⊆ {x1,t = l1,it , . . . , xs−1,t = ls−1,it }, s ∈ S.

According to model assumptions (2)–(4) we obtain:

P {Xt = lit |Xt−1 = lit−1
, . . . ,X1 = li1}

= P {x1,t = l1,it |x1,t−1 = l1,it−1
}

×

n
∏

s=2

P
{

xs,t = ls,it
∣

∣

{

xk,t = lk,it : k ∈ U(s)
}

, xs,t−1ls,it−1

}

= P {Xt = lt |Xt−1 = lit−1
}, t > 2. (8)

Thus, the Markov property is satisfied, and Xt is the n-dimensional nonhomogeneous

Markov chain. The one-step transition probability matrix P(t) = (pij (t)) is determined

by taking into account (8) and (1), (3):

pij (t) = P {Xt = lj |Xt−1 = li}

= P {x1,t = l1,j |x1,t−1 = l1,i}

×

n
∏

s=2

P

{

xs,t = ls,j

∣

∣

∣

⋂

k∈U(s)

{xk,t = lk,j }, xs,t−1 = ls,i

}

= 5
(

l1,j ;λ1,t(l1,i)
)

n
∏

s=2

5
(

ls,j ;λs,t

({

lk,j : k ∈ U(s)
}

, ls,i
))

=

n
∏

s=1

exp{−λs,t({lk,j : k ∈ U(s)}, ls,i)}λ
ls,j
s,t ({lk,j : k ∈ U(s)}, ls,i)

ls,j !
,

i, j ∈ N0, t > 2,

that coincides with (6).

Calculate the initial probability distribution p = (p0,p1, . . .)
′:

pj = P {X1 = lj }

= P {x1,1 = l1,j }

n
∏

s=2

P

{

xs,1 = ls,j

∣

∣

∣

⋂

k∈U(s)

{xk,1 = lk,j }

}
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= 5(l1,j ;λ1,1)

n
∏

s=2

5
(

ls,j ;λs,1

({

lk,j : k ∈ U(s)
}))

=

n
∏

s=1

exp{−λs,1({lk,j : k ∈ U(s)})}λ
ls,j
s,1 ({lk,j : k ∈ U(s)})

ls,j !
, j ∈ N0,

that coincides with (7). �

Corollary 1. Under conditions of Theorem 1, the matrix of transition probabilities

H(t1, t2) = (hi,j (t1, t2)), hi,j (t1, t2) = P {Xt2 = lj |Xt1 = li} , i, j ∈ N0, for t2 − t1 steps

from time point t1 to time point t2 (t1 < t2, t1, t2 ∈ N ) is:

H(t1, t2) = P(t1 + 1)P (t1 + 2) . . .P (t2). (9)

Proof. Proof follows from the Kolmogorov–Chapman formula (Kemeny and Snell,

1976). �

Corollary 2. Under conditions of Theorem 1, if βs ≡ 0, K = 1, ϕ1 ≡ 1, then the one-step

transition probability matrix does not depend on t , and Markov chain is homogeneous:

P(t) = P = (pij ),

pij =

n
∏

s=1

exp{−λs,t({lk,j : k ∈ U(s)}, ls,i)}λ
ls,j
s,t ({lk,j : k ∈ U(s)}, ls,i)

ls,j !
,

H(t1, t2) = P t2−t1,

where lnλs,t = as ls,i +
∑

k∈U(s) bs,klk,j + γs,1 does not depend on t .

Corollary 3. The current probability distribution p(t) = (p0(t),p1(t), . . .)
′, pj (t) =

P {Xt = lj }, j = 0,1, . . . , is determined by formula:

pj (t) =

+∞
∑

i=0

pihi,j (1, t), j ∈ N0, t ∈ N, (10)

or in matrix form:

p(t) = H ′(1, t)p, t ∈ N,

where H(1,1) = I∞ is the infinite dimensional identity matrix.

Proof. Proof follows from the total probability formula and Corollary 1. �

Present now some probabilistic properties of the model (2)–(4) for the case U(s) =

{s − 1} that will be used for statistical estimation of the model parameters.
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Introduce the notation: ⌊a/b⌋, a mod b are the integer part and the residual of a modulo

b respectively.

Lemma 1. For the model (2)–(5) the 2-dimensional probability distribution P {xs−1,t =

ist−1, xs,t−1 = ist−s}, s > 2, t ∈ N , is

P {xs−1,t = ist−1, xs,t−1 = ist−s}

=

+∞
∑

i1=0

· · ·

+∞
∑

ist−s−1=0

+∞
∑

ist−s+1=0

· · ·

+∞
∑

ist−2=0

exp

{

st−1
∑

k=1

(ik lnλs ′,t ′ − λs ′,t ′ − ln ik!)

}

,

where k = (t ′ − 1)s + s′, s′ = (k − 1) mod s + 1, t ′ = ⌊(k − 1)/s⌋ + 1.

Proof. Use the total probability formula:

P {xs−1,t = ist−1, xs,t−1 = ist−s}

=

+∞
∑

ist−2,ist−s−1,ist−2s=0

P {xs−1,t = ist−1, xs,t−1 = ist−s|A}P {A},

where A= {xs−2,t = ist−2, xs−1,t−1 = ist−s−1, xs,t−2 = ist−2s}.

Since under fixed values xs−2,t , xs−1,t−1, xs,t−2 the random variables xs,t−1, xs−1,t

are independent and have conditional Poisson distribution (2)–(4), then

P {xs−1,t = ist−1, xs,t−1 = ist−s}

=

+∞
∑

ist−2,ist−s−1,ist−2s=0

P {xs−1,t = ist−1|xs−2,t = ist−2, xs−1,t−1 = ist−s−1}

×P {xs,t−1 = ist−s|xs−1,t−1 = ist−s−1, xs,t−2 = ist−2s}P {A}

=

+∞
∑

ist−2,ist−s−1,ist−2s=0

5
(

ist−1;λs−1,t(ist−2, ist−s−1)
)

×5
(

ist−s;λs,t−1(ist−s−1, ist−2s)
)

P {A}.

Probability P {A} can be found analogously. Doing similar calculations, we obtain the

following result:

P {xs−1,t = ist−1, xs,t−1 = ist−s}

=

+∞
∑

i1=0

· · ·

+∞
∑

ist−s−1=0

+∞
∑

ist−s+1=0

· · ·

+∞
∑

ist−2=0

st−1
∏

k=3, k 6=s+1

5(ik;λs ′,t ′)
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×P {x1,2 = is+1, x2,1 = i2}

=

+∞
∑

i1=0

· · ·

+∞
∑

ist−s−1=0

+∞
∑

ist−s+1=0

· · ·

+∞
∑

ist−2=0

exp

{

st−1
∑

k=1

(ik lnλs ′,t ′ − λs ′,t ′ − ln ik!)

}

,

where k = (t ′ − 1)s + s′, s′ = (k − 1) mod s + 1, t ′ = ⌊(k − 1)/s⌋ + 1. �

Corollary 4. Under conditions of Lemma 1 the 1-dimensional probability distribution of

the discrete random variable xs,t in time point t ∈ N at site s ∈ S has the following form:

P {xs,t = ist} =

+∞
∑

i1,...,ist−1=0

exp

{

st
∑

k=1

(ik lnλs ′,t ′ − λs ′,t ′ − ln ik!)

}

. (11)

where k = (t ′ − 1)s + s′, s′ = (k − 1) mod s + 1, t ′ = ⌊(k − 1)/s⌋ + 1.

Proof. Use the total probability formula and model (2)–(5) definition:

P {xs,t = ist} =

+∞
∑

ist−1,ist−s=0

P {xs,t = ist |xs−1,t = ist−1, xs,t−1 = ist−s}

× P {xs−1,t = ist−1, xs,t−1 = ist−s}.

Considering the result of Lemma 1, we obtain

P {xs,t = ist}

=

+∞
∑

ist−1,ist−s=0

5
(

ist;λs,t(ist−1, ist−s)
)

×

+∞
∑

i1=0

· · ·

+∞
∑

ist−s−1=0

+∞
∑

ist−s+1=0

· · ·

+∞
∑

ist−2=0

exp

{

st−1
∑

k=1

(ik lnλs ′,t ′ − λs ′,t ′ − ln ik!)

}

=

+∞
∑

i1,...,ist−1=0

exp

(

st
∑

k=1

(ik lnλs ′,t ′ − λs ′,t ′ − ln ik!)

)

,

that coincides with (11). �

Lemma 2. For the model (2)–(5) expectation and variance of the random variable xs,t

have the following form:

E{xs,t}

= cs,t

+∞
∑

i1,...,ist−1=0

exp

{

asist−1 + bs,s−1ist−s +

st−1
∑

k=1

(ik lnλs ′,t ′ − λs ′,t ′ − ln ik!)

}

,

(12)
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D{xs,t }

= c2
s,t

+∞
∑

i1,...,ist−1=0

exp

{

2asist−1 + 2bs,s−1ist−s +

st−1
∑

k=1

(ik lnλs ′,t ′ − λs ′,t ′ − ln ik!)

}

+ E{xs,t}
(

1 − E{xs,t}
)

, (13)

where cs,t = exp{βszs,t +
∑K

k=1 γs,kϕk(t)}.

Proof. By (2)–(5) and the total expectation formula we have

E{xs,t} = E
{

E{xs,t |xs,t−1, xs−1,t}
}

= E
{

λs,t(xs,t−1, xs−1,t)
}

.

Further, by Lemma 1, we obtain:

E
{

λs,t (xs,t−1, xs−1,t)
}

=

+∞
∑

ist−1,ist−s=0

λs,t (ist−1, ist−s)P {xs−1,t = ist−1, xs,t−1 = ist−s}

= exp

{

βszs,t +

K
∑

k=1

γs,kϕk(t)

}

+∞
∑

ist−1,ist−s=0

exp{asist−1 + bs,s−1ist−s}

×

+∞
∑

i1=0

· · ·

+∞
∑

ist−s−1=0

+∞
∑

ist−s+1=0

· · ·

+∞
∑

ist−2=0

exp

{

st−1
∑

k=1

(ik lnλs ′,t ′ − λs ′,t ′ − ln ik!)

}

= cs,t

+∞
∑

i1,...,ist−1=0

exp

{

asist−1 + bs,s−1ist−s +

st−1
∑

k=1

(ik lnλs ′,t ′ − λs ′,t ′ − ln ik!)

}

,

which leads to (12).

Using the total expectation formula, variance property of the Poisson distribution and

the previous result, we find

D{xs,t } = E
{

x2
s,t

}

− E2{xs,t}

= E
{

E
{

x2
s,t

∣

∣xs,t−1, xs−1,t

}}

− E2
{

E{xs,t |xs,t−1, xs−1,t}
}

= E
{

λ2
s,t + λs,t

}

− E2{λs,t } = E
{

λ2
s,t

}

+ E{λs,t } − E2{λs,t }

= E
{

λ2
s,t

}

+ E{xs,t}
(

1 − E{xs,t}
)

,

where

E
{

λ2
s,t

}

= c2
s,t

+∞
∑

i1,...,ist−1=0

exp

{

2asist−1 + 2bs,s−1ist−s +

st−1
∑

k=1

(ik lnλs ′,t ′ − λs ′,t ′ − ln ik!)

}

,

and it leads to (13). �



76 Yu. Kharin, M. Zhurak

Lemma 3. If the parameters of the model (2)–(5) satisfy the conditions as < 0, bs,s−1 <

0, s ∈ S, ϕk(t) → ak 6= 0, ak ∈ R, k = 1, . . . ,K if t → +∞ and f (xs,t−1, xs−1,t) > 0 is

some polynomial function of variables xs,t−1, xs−1,t , then

0 < E
{

λs,tf (xs,t−1, xs−1,t)
}

< +∞.

Proof. Calculate E{λs,tf (xs,t−1, xs−1,t)} using the results of Corollary 4:

E
{

λs,tf (xs,t−1, xs−1,t)
}

= cs,tE
{

exp{asxs,t−1 + bs,s−1xs−1, t}f (xs,t−1, xs−1,t)
}

= cs,t

+∞
∑

i1,...,ist−1=0

exp{asist−1 + bs,s−1ist−s}f (ist−1, ist−s)

× exp

{

st−1
∑

k=1

(ik lnλs ′,t ′ − λs ′,t ′ − ln ik!)

}

,

where cs,t = exp{βszs,t +
∑K

k=1 γs,kϕk(t)}. Since under the condition of this lemma

as < 0, bs,s−1 < 0, s ∈ S, then λs ′,t ′ → 0 if ik → +∞ , k = 1,2, . . . , st − 1, and the

series
∑+∞

ist−1,ist−s=0 exp{asist−1+bs,s−1ist−s}f (ist−1, ist−s) converges uniformly.There-

fore, exp{
∑st−1

k=1 (ik lnλs ′,t ′ − λs ′,t ′ − ln ik!)} → 0 if ik → +∞, k = 1,2, . . . , st − 1, and

the sequence of partial sums
∑N

ist−1,ist−s=0 exp{asist−1 + bs,s−1ist−s}f (ist−1, ist−s) is

bounded. Then by Dirichlet’s feature for the convergence of a series we obtain that the

infinite series converges, that is E{λs,tf (xs,t−1, xs−1,t)} < +∞. Since ϕk(t) → ak 6= 0,

ak ∈ R if t → +∞, k = 1, . . . ,K and f (xs,t−1, xs−1,t) > 0, then

E
{

λs,tf (xs,t−1, xs−1,t)
}

= cs,t

+∞
∑

i1,...,ist−1=0

exp{asist−1 + bs,s−1ist−s}f (ist−1, ist−s)

× exp

{

st−1
∑

k=1

(ik lnλs ′,t ′ − λs ′,t ′ − ln ik!)

}

> 0.
�

Corollary 5. Under conditions of Lemma 3 expectation for xs,t , s ∈ S, t ∈ N , is finite:

0 < E{xs,t} < +∞.

Proof. Proof follows from Lemmas 2 and 3. �
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4. Statistical Estimation of Parameters for the Poisson Conditional Autoregressive

Model

Introduce the notation: θs = (as, b
′
s, βs , γ

′
s )

′ ∈ R2+K+Ks , θ = (θ ′
1, . . . , θ

′
n)

′ ∈ RD is the

composite vector of D unknown parameters.

Theorem 2. The log-likelihood function for the model (2)–(4) under the observed spatio-

temporal data {Xt : t = 1,2, . . . , T } takes the separable additive form:

l(θ) =

n
∑

s=1

ls(θs), ls(θs) =

T
∑

t=1

(−λs,t + xs,t lnλs,t − ln xs,t !) (14)

where λs,t is defined by (3).

Proof. Use the generalized formula for multiplying probabilities and properties of the

Markov chain defined in Theorem 1:

L(θ) = P {X1, . . . ,XT } = P {X1}

T
∏

t=2

P {Xt |Xt−1},

P {X1} =

n
∏

s=1

exp{−λs,1}λ
xs,1

s,1

xs,1!
,

P {Xt |Xt−1 } = pij (t) =

n
∏

s=1

exp{−λs,t }λ
xs,t

s,t

xs,t !
, t > 2,

where λs,t is defined by formula (3). Then we have the log-likelihood function

l(θ) = lnL(θ) =

n
∑

s=1

T
∑

t=1

(−λs,t + xs,t lnλs,t − lnxs,t !),

that coincides with (14). �

To find the maximum likelihood estimators (MLE) θ̂ = (θ̂ ′
1, . . . , θ̂

′
n)

′ for the parameters

of the model we need to maximize the log-likelihood function (14):

l(θ) → max
θ

. (15)

Based on the model (2)–(4) and Theorem 2 the problem (15) splits into n maximization

problems:

ls(θs) → max
θs

, s ∈ S. (16)
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A necessary condition for a local maximum in (16) is

∇θs ls(θs) = O2+K+Ks , (17)

where O2+K+Ks is a vector with 2 + K + Ks zero elements.

To construct a numerical algorithm for computation of MLE θ̂ we give some auxiliary

results.

Lemma 4. For the model (2)–(4) the column vector of first-order derivatives and the

matrix of second-order derivatives (with respect to the parameter θs ) of the function ls(θs ),

s ∈ S, have the form:

∇θs ls(θs) =

T
∑

t=1

(−λs,tYs,t + xs,tYs,t ), ∇2
θs

ls(θs) = −

T
∑

t=1

λs,tYs,tY
′
s,t ,

where

Ys,t =
(

xs,t−1I {t > 1}, xj1,t , . . . , xjKs ,t , zs,t , ϕ1(t), . . . , ϕK (t)
)′
,

Ys,t ∈ R2+K+Ks , s ∈ S, t ∈ N.
(18)

If |
∑T

t=1 λs,tYs,tY
′
s,t | 6= 0, the matrix ∇2

θs
ls(θs) is negative defined.

Proof. By (14), (18) and properties of matrix differentiation we have:

λs,t = exp{θ ′
sYs,t},

∇θs ls(θs) =

T
∑

t=1

(−∇θs λs,t + xs,t∇θs ln λs,t) =

T
∑

t=1

(−λs,tYs,t + xs,tYs,t ),

∇2
θs

ls(θs) = ∇θs

(

∇θs ls(θs)
)

= −

T
∑

t=1

∇θs exp{θ ′
sYs,t}Ys,t = −

T
∑

t=1

λs,tYs,tY
′
s,t . (19)

Since |
∑T

t=1 λs,tYs,tY
′
s,t | 6= 0, and for arbitrary vector z ∈ R2+K+Ks

z′∇2
θs

ls(θs)z = −z′

(

T
∑

t=1

λs,tYs,tY
′
s,t

)

z = −

T
∑

t=1

λs,tz
′Ys,tY

′
s,tz

= −

T
∑

t=1

λs,t(z
′Ys,t )(z

′Ys,t)
′ 6 0,

where the equality is attained only if z is the zero vector, then the property of negative

definiteness of matrix is satisfied: ∇2
θs

ls(θs) ≺ 0. �
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Let θ∗
s be some solution of Eq. (17), then the sufficient condition for a local maxi-

mum (16) at the point θ∗
s is the condition of negative definiteness of the matrix of second

derivatives at this point, which is satisfied because of Lemma 4 results.

We solve (17) numerically using the Newton iterative method which has the quadratic

convergence rate. For this method the (k + 1)th iteration is:

θ (k+1)
s = θ (k)

s −
(

∇2
θs

ls
(

θ (k)
s

))−1
· ∇θs ls

(

θ (k)
s

)

, k = 0,1,2, . . . , (20)

where θ
(k)
s is an approximation of the MLE θ̂s on the kth step. The iterative process

stops if ‖∇θs ls(θ
(k)
s )‖ < ε, where ε > 0 is a given small quantity which determines the

computation accuracy for the MLE; in this case we take the statistic θ̂s = θ
(k+1)
s as the

MLE.

Problem (16) can define several local maxima, so to find the global maximum of ls(θs)

we apply (20) several times with different initial values, and then we choose the solution

of (16) with the greatest value of the likelihood function as the estimate θ̂s . As one of the

vectors of the initial values θ
(0)
s for the iterative algorithm (20) we propose to take

θ (0)
s =

(

T
∑

t=1

Ys,tY
′
s,t

)−1( T
∑

t=1

vs, tYs,t

)

,

where Ys,t is defined in (18), vs,t = lnxs,t . Other vectors of initial values we propose to

generate randomly in the set {θ : ‖θ
(0)
s − θ‖ < M}, where M is a given radius of the ball.

Theorem 3. If parameters of the model (2)–(5) satisfies the conditions as < 0, bs,s−1 < 0,

s ∈ S, and ϕk(t) → ak 6= 0 (k = 1, . . . ,K) if t → +∞, then the constructed maximum

likelihood estimators {θ̂s} are consistent, effective, asymptotically normal and asymptoti-

cally unbiased under the asymptotics with T → +∞.

Proof. Check regularity conditions R1–R4 (Borovkov, 1998). Since the function

ps(Xt ; θs) = 5(xs,t;λs,t) =
exp{−eθ ′

s Ys,t +xs,t θ
′
sYs,t }

xs,t !
is twice differentiable with respect to

θs for all Xt ∈ Nn
0 , then regularity condition R1 is satisfied.

By Lemma 4 we have

∂ lnps(Xt ; θs)

∂θsj

= −λs,ty
j
s,t + xs,ty

j
s,t ,

∂2 lnps(Xt ; θs)

∂θsj∂θsk

= −λs,ty
j
s,ty

k
s,t , j, k = 1, . . . ,2 + K + Ks, t ∈ N,

where θsj is the j th componentof the vector θs , y
j
s,t is the j th componentof the vector Ys,t .

Using the total expectation formula and properties of the Poisson distribution, we perform

the following transformation:
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E

{(

∂ lnps(Xt ; θs)

∂θsj

)2}

= E
{

(−λs,t + xs,t)
2
(

y
j
s,t

)2}

= E
{

E
{

(−λs,t + xs,t)
2
(

y
j
s,t

)2∣
∣Fs̄,<t

}}

= E
{

E
{(

− E{xs,t |Fs̄,<t } + xs,t

)2∣
∣Fs̄,<t

}(

y
j
s,t

)2}

= E
{

D{xs,t |Fs̄,<t

}(

y
j
s,t

)2}
= E

{

λs,t

(

y
j
s,t

)2}
.

So we have

E

{(

∂ lnps(Xt ; θs)

∂θsj

)2}

= E
{

λs,t

(

y
j
s,t

)2}
,

E

{
∣

∣

∣

∣

∂2 ln ps(Xt ; θs)

∂θsj∂θsk

∣

∣

∣

∣

}

= E
{

λs,ty
j
s,ty

k
s,t

}

, j, k = 1, . . . ,2 + K + Ks , t ∈ N.

Evaluate the value of E{λs,ty
j
s,ty

k
s,t} = E{λs,tfjk(xs,t−1, xs−1,t)}, where fjk(xs,t−1,

xs−1,t) = y
j
s,ty

k
s,t . Since under conditions of this theorem as < 0, bs,s−1 < 0, s ∈ S, then

by Lemma 3 we get E{λs,ty
j
s,ty

k
s,t} < +∞, therefore, regularity condition R2 is satisfied.

Regularity condition R3 is satisfied due to the fact that the range of the vector Xt does not

depend on the parameters θs of the model (2)–(5).

Compute now the Fisher information matrix I (s) = (ijk(s))
2+K+Ks

j,k=1 for the sample

value Xt , t = 1, . . . , T :

ijk(s) = E

{

−
∂2 lnps(Xt ; θs)

∂θsj∂θsk

}

= E
{

λs,ty
j
s,ty

k
s,t

}

, j, k = 1, . . . ,2 + K + Ks .

Since ϕk(t) → ak 6= 0 (k = 1, . . . ,K) if t → +∞, then fjk(xs,t−1, xs−1,t) > 0; by

Lemma 3 we have ijk(s) = E{λs,ty
j
s,ty

k
s,t} > 0, therefore, |I (s)| 6= 0, and regularity con-

dition R4 also is satisfied.

Thus, according to Borovkov (1998), constructed estimators {θ̂s} if T → +∞ are con-

sistent, effective, asymptotically normal and asymptotically unbiased. �

5. Statistical Forecasting

5.1. Optimal Forecasting Statistic

Consider now the problem of forecasting of the future state XT +τ in τ > 1 steps ahead

based on observations until the time t = T inclusively: X1, . . . ,XT . Denote some fore-

casting statistic X̂T +τ = gτ (X1, . . . ,XT ; θ), where θ is the vector of true values of the
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model parameters. Since Xt is the Markov chain, as in Kharin (2013b), we use the prob-

ability of the forecast error as a measure of forecast performance:

r(τ ) = P {X̂T +τ 6= XT +τ }.

Theorem 4. Under the model (2)–(4) the optimal forecasting statistic minimizing the

probability of the forecast error r(τ ) is

X̂T +τ = arg max
lj∈L

hi,j (T ,T + τ ), (21)

where i is determined by the equation li = XT . In this case the minimum of the forecast

error

r(τ ) = 1 −

+∞
∑

i=0

+∞
∑

k=0

max
lj∈L

hi,j (T ,T + τ )pkhk,i(1, T ). (22)

Proof. The optimal forecasting statistic that minimizes the probability of the forecast error

is defined by the following condition (Kharin, 2013b):

X̂T +τ = arg max
lj∈L

P {XT +τ = lj |X1,X2, . . . ,XT }. (23)

Since dependence on the time in model (2)–(4) is determined by Markov chain the

forecasting statistic (23) depends only on XT :

X̂T +τ = arg max
lj∈L

P {XT +τ = lj |XT } = arg max
lj ∈L

hi,j (T ,T + τ ),

that coincides with (21).

Calculate the probability of the forecast error for the forecasting statistic (21), using

the total probability formula:

r(τ ) = P {X̂T +τ 6= XT +τ } = 1 − P {X̂T +τ = XT +τ }

= 1 −

+∞
∑

i=0

P {X̂T +τ = XT +τ |XT = li}P {XT = li}. (24)

By (21) and the Markov property we have

P {X̂T +τ = XT +τ |XT = li}

= P
{

arg max
lj∈L

hi,j (T ,T + τ ) = XT +τ |XT = li

}

=

+∞
∑

k=0

hi,k(T ,T + τ )I
{

arg max
lj∈L

hi,j (T ,T + τ ) = lk

}

= max
lj∈L

hi,j (T ,T + τ ).

(25)
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Substituting (25) into (24), we obtain:

r(τ ) = 1 −

+∞
∑

i=0

max
lj ∈L

hi,j (T ,T + τ )

+∞
∑

k=0

pkhk,i(1, T )

= 1 −

+∞
∑

i=0

+∞
∑

k=0

max
lj ∈L

hi,j (T ,T + τ )pkhk,i(1, T ),

that coincides with (22). �

Note that if there is more than one maximum element in (21), then we have equivalent

forecasts with the same error probability.

5.2. Forecasting in Case of Unknown Parameters

In case of parametric prior uncertainty we construct the forecasting statistic using “the

plug-in” principle (Kharin, 2013b, 2011):

X̃T +τ = gτ (X1, . . . ,XT ; θ̂ ),

where θ̂ is the MLE for the parameters of the model (2)–(4) based on observations

{X1, . . . ,XT }. The “plug-in” forecasting statistic based on (21)

X̃T +τ = arg max
lj∈L

h̃ij (T ,T + τ ), (26)

where i is determined by the equation li = XT , h̃i,j (T ,T + τ ) depends on θ̂ according to

Theorem 1 and Corollary 1.

Theorem 5. The minimal probability of the forecast error for the forecasting statistic (26)

has the following form:

r̃(τ ) = 1 −

+∞
∑

it ,...,iT =0

hiT ,m(T ,T + τ )

n
∏

s=1

T
∏

t=1

exp{−λs,t}λ
ls,it
s,t

ls,it !
,

where m is determined by the equation lm = X̃T +τ .

Proof. Calculate the probability of the forecast error using the total probability formula:

r̃(τ ) = P {X̃T +τ 6= XT +τ } = 1 − P {X̃T +τ = XT +τ }

= 1 −

+∞
∑

it ,...,iT

P {X̃T +τ = XT +τ |XT = liT , . . . ,X1 = li1}

× P {XT = liT , . . . ,X1 = li1}. (27)
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According to (26):

P {X̃T +τ = XT +τ |XT = liT , . . . ,X1 = li1}

=

+∞
∑

k=0

hiT ,k(T ,T + τ )I
{

arg max
lj ∈L

h̃iT ,j (T ,T + τ ) = lk

}

= hiT ,m(T ,T + τ ), (28)

where lm = X̃T +τ . We have from Theorem 2 that P {XT = liT , . . . ,X1 = li1} =

∏n
s=1

∏T
t=1

exp{−λs,t }λ
ls,it
s,t

ls,it !
, then substituting (28) into (27) we obtain:

r̃(τ ) = 1 −

+∞
∑

it=0, t=1,...,T

hiT ,m(T ,T + τ )

n
∏

s=1

T
∏

t=1

exp{−λs,t}λ
ls,it
s,t

ls,it !
.

�

6. Results of Computer Experiments

6.1. Experiments on Simulated Data

We consider the model (2)–(5) with the following values of parameters: n = 3, K = 1,

S = {1,2,3}, U(1) = ∅, U(2) = {1}, U(3) = {2}, ϕ1(t) = 1, βs ≡ 0, θ1 = (−0.1,1.4)′,

θ2 = (−0.2,−0.1,1.2)′, θ3 = (−0.15,−0.2,1.5)′, T = 20, τ ∈ {1,2, . . . ,5}. Statistical

estimators of the parameters obtained by T = 20 observations are

θ̂1 = (−0.04,1.4)′, θ̂2 = (−0.4,−0.04,1.16)′, θ̂3 = (−0.01,−0.22,1.24)′.

Figure 4 plots dependence of the mean square error of the parameter estimators

v̂ = Ê
{

‖θ̂ − θ‖2
}

=
1

M

M
∑

k=1

∥

∥θ̂ (k) − θ
∥

∥

2

on the observation time T (T varies from 20 to 240) that was estimated by M = 5000

Monte Carlo replications, where θ̂ (k) is the estimate for the kth realization. Figure 4 illus-

trates the property of consistency of the MLE θ̂ .

To illustrate performance of the forecasting statistic (26), we use the relative forecast

error:

κ =
1

τn

τ
∑

t=1

n
∑

s=1

κs,t , κs,t =

∣

∣

∣

∣

x̂s,t − xs,t

xs

∣

∣

∣

∣

, (29)

where xs = 1
T

∑T
t=1 xs,t , {xs,t : t = 1, . . . , T ; s ∈ S} is the observed data, which is used

to construct the forecasting statistic, {xs,t : t = T + 1, . . . , T + τ ; s ∈ S} are values which

are needed to be forecasted, {x̂s,t : t = T + 1, . . . , T + τ ; s ∈ S} are estimates calculated
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Fig. 4. Dependence of the mean square risk on T .

Table 1

Values of the relative forecast error for the simulated data.

T = 20, τ = 1 T = 20, τ = 3 T = 20, τ = 5

0.09 0.22 0.35

Fig. 5. Forecasting for s = 1. Fig. 6. Forecasting for s = 2. Fig. 7. Forecasting for s = 3.

Simulated data Optimal forecast

by the forecasting statistic (26). The values of the relative forecast error (29) are presented

in the Table 1.

Figures 5–7 show simulated data for 3 sites and computed “plug-in” forecasts in τ = 5

steps ahead at future time points: t ∈ {21,22,23,24,25}.

6.2. Experiments on Real Data

Experiments were carried out on real data that describes the incidence rate of children

leukemia in 3 sites (n = 3) of Republic of Belarus for 25 years (T = 25). We consider the

model (2)–(5) with the following values of parameters: K = 1, S = {1,2,3}, U(1) = ∅,

U(2) = {1}, U(3) = {2}, ϕ1(t) = 1, βs ≡ 0. Statistical estimators of the parameters ob-
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Table 2

Values of the relative forecast error for the real data.

T = 20, τ = 5 T = 22, τ = 3 T = 24, τ = 1

0.33 0.32 0.35

Fig. 8. Forecasting for s = 1. Fig. 9. Forecasting for s = 2. Fig. 10. Forecasting for s = 3.

Real data Optimal forecast

tained by T = 25 observations are

θ̂1 = (−0.06,1.5)′, θ̂2 = (−0.01,−0.02,1,51)′, θ̂3 = (0.07,0.05,0.82)′.

To study the performanceof the constructed forecasts for the considered model, experi-

ments were conducted on real data for different sizes of learning samples (T = 20,22,24).

The values of the relative forecast error (29) for different values of τ are presented in the

Table 2.

Figures 8–10 show real data and computed “plug-in” forecasts in τ = 5 steps ahead at

future time points: t ∈ {21,22,23,24,25}.

7. Conclusion

The Poisson conditional autoregressive model of spatio-temporal data is developed. It is

proved that under the model the observed process is the nonhomogeneous vector Markov

chain with countable space of states. Probabilistic properties of this model are studied: the

formulae for calculation of the one-step transition probability matrix, the current prob-

ability distribution in a separate site, expectation and variance for each component of

Markov chain are given. An algorithm for computing the maximum likelihood estimators

is developed; asymptotic properties of estimators are studied. The forecasting statistic that

minimizes the probability of the forecasting error is built. The forecast error is calculated;

“plug-in” forecasting statistic is constructed in the case of unknown parameters. The com-

puter experiments are carried out on simulated and real medical data.

Finally, let us mention, that the authors intend to use the developed in this paper model

(2)–(4) for robust clustering as in Kharin and Zhuk (1998), robust forecasting as in Kharin

(2005), Kharin and Voloshko (2011), and for robust sequential hypotheses testing as in

Kharin (2013a).
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Statistinė laiko-erdvės duomenų, grindžiamų Puasono sąlyginiu
autoregresiniu modeliu, analizė

Yuriy KHARIN, Maryna ZHURAK

Pasiūlytas Puasono sąlyginis autoregresinis laiko-erdvės duomenų modelis. Pateikta šio modelio

Markovo savybė ir tikimybinės jo savybės. Sukonstruotas algoritmas šio modelio didžiausio tikė-

tinumo vertinimui. Nustatyta optimali prognozavimo statistika minimizuojanti prognozės klaidos

tikimybę. Pateikti eksperimentų su modeliuotais ir realiais duomenimis rezultatai.


