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Abstract. This paper is devoted to the investigation of difference schemes
for the solution of an important free-surface problem: modelling of a liquid-metal
contact. The existence of a solution and the convergence of proposed iterative
processes are investigated in a weak sense, using the alternative form of the
problem as a nonlinear constrained minimization problem.
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Introduction. The paper is devoted to the investigation of
the connection between the method used to investigate nonlin-
ear difference schemes and the problems of constrained optimiza-
tion. The problem of determination of the liquid-metal contact
free-surface is used as the sample problem. Such a connection is
well-known, especially for linear boundary value problems. Varia-
tional methods (as the Galerkin method, the least squares method
and others) are founded on the alternative formulation as an op-
timization problem (see Fletcher, 1984; Marchuk and Agoshkov,
1981). Two important features of such a methodology may be
outlined. First, the constructed difference schemes are conserva-
tive, i.e., a discrete analogue of the conservation law is satisfied
exactly (for exact definition of conservative difference schemes see
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Samarskij, 1983); second, the usage of the alternative variation
formulation naturally enables us to define a generalized (weak) so-
“lution of a boundary value problem. The sclution of nonlinear
differential problems is a considerably more difficult ta,sk "because
there is no general theory for the investigation of nonlinear differ-
ence schemes (in the linear case such a theory is developed and
based on the connection between the approximation, the stability,
and the convergence of the difference scheme solution, as well as on
the necessary and sufficient conditions for the solution’s stability,
given by Samarskij (1983)).

This work is a continuation of a series of our papers (see Ciegis
and Ciupaila, 1990a, 1990b, 1991), devoted to the theoretical inves-
tigation of numerical methods, used for computational simulation
of liquid-metal contact evolution processes. The main interests of
this paper are the construction of a conservative difference scheme,
investigation of the existence of its generalized (weak) solution, and
the iterative methods for finding the solution. A comparison of the
methods, used in the theory of nonlinear difference schemes, with
that of the constrained nonlinear optimization is one of our main

goals, too. ;o

- 1. Equatioﬁs. . We consider a physical model of a connected
drop of electrocfyndixctive nonviscous liquid of the prescribed vol-
ume Vp, which is compressed by two parallel planes and fixed to
a specially treated disks of radius R. The remaining part of the
contact surface is considered free and depends only on a vertical
gravity field and the surface tension. We restricted our attention to
the case, when the electromagnetic forces can be neglected. Using
the.symmetricity of the problem it is sufficient to investigate only
1D case. A more complete physical model is given by Ciegis and
Ciupaila (1990a); Kairyté et.al. (1986). The mathematical differ-
ential model follows from the constrained minimization problem of
total energy (see also Ciegis and Ciupaila, 1990a). -

Iof E(u)=E(w), E(u)=Ep(w)+ Eq(u), Y

U ={u(z) 20, u(0) = R, u(H) = R, g(u) =0},
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. where E,(u), E,(u) are the gravitational energy and free surface
energy, respectively,

H H

Eg(u) = 21ra/u(:c)\/1 +ulde, Ep(u)= wpg/zuz(:é) dz. (1.2)

, o : 0 .
The constancy of volume of the fluid is a constraint that must be

respected, when the minimum of total energy is determined

- H '
- g(u) = w/uz(z)dz -V =0. (1.3)
d .

The variational formulation of the free surface problem is a
general method for the solution of such problems (see Concus and
Finn, 1974; Huisken, 1983; Giusti, 1984). Introducing a Lagrange
parameter A and using the necessary conditions of the minimum,
we get the differential boundary value problem with an additional
nonlocal condition, from which the solution u(z) is obtained.

_;; (\;Tu-(:— = % %) +(pgz + Nu(z) = —o\/1 + ui, (1.4)
w0 =R ulH)=R (1.5)
y(u)=0. | (1.6)

The numerical methods for the solution of some problems with
nonlocal conditions are investigated by Ciegis (1991). .
For the sake of simplicity we take a uniform mesh wy = {; :
z;=1th,.i=0,1,...,N, 2y = H}. We propose the following method
. to construct a conservative difference scheme. At first we directly
approximate the energy integrals (1.2) and the volume constraint
condition (1.3) ~ ‘

N-1 y2 + y2
"En(y) =Enp(¥) + Ens(v), on(@) =7 —'—Eﬁih - VW,
: | i=0

N-1 y‘g +yg
~ Enp(y) =7p9 > -"-'s'+o,5"—§""‘i h ,

i=0

: N-1
Ey,(y) =270 Z z,—+o,§\/ 1+y2h.

=0
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Then problem (1.1) is replaced by the approximate constrained
minimization problem

inf Ex(y) = En(y"), (1.7)
y€UA
Uh={yi: %?0, yO=R7 yN'——Ra gh(y)=0}

We get the conservative difference scheme with the additional
nonlocal condition from the necessary minimum conditions for the
function En,(y) = En(v) + pon(v)

oy \. o/ -
-(\/l—iﬁyz)zﬂpyzﬁu)ys = —-2-( 1+y2+ \/1+y5),(1-8)
Yo = R, yv = R, (1.9)
gn(y) = 0. (1.10)

The notation and conventions adopted here are as that introduced
by Samarskij (1983)

¥

_ Yyl — ¥ _Y¥—Y%-1 o Yty
Yz = h ) Yz —. h ’ y= 2 -

A simple Tayl{or expansion reveals that the approximation er-
ror of the dxﬁ'erence scheme (1.8) — (1.10) is of order O(h?), i.e., of
the same order as, 'the approximation accuracy of the integrals (1.2),
(1.3) by discrete sums.

2. Existence and convergence. In this section we inves-
tigate the methods, that can be used to prove the existence of
solutions to the above problems (1.7) and (1.8) - (1.10), and their
convergence to the exact solution of problem (1.1). We start from
the difference scheme (1.8) — (1.10) solution. It can be called a
st rong solution, as compared to the weak solution (generalized so-
lution) of the constrained minimization problem (1.7). We may
write the scheme (1.8) — (1.10) in the form

Lig.p) =0,  a(y) =0 (2.1)

By substituting y; = u; + 2, p = A+ w into pi.llem (2.1)
where (u;. A) is the exact solution of the different:a! boundary value
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.problem (1.4) - (1.6), (zi,w) is the error function of the difference
scheme (1.8) - (1.10) solution, we get equations (2.2)

Lud)=vi,  ga(u) = o @

Functions y; are the approximation errors and as stated above,
they can be bounded by |¢;| < Ch?. Subtracting equations (2.2)
from equations (2.1) and using the Taylor expansion for the error
(zi,w) we get a linear boundary value problem with the additional
nonlocal condition

oL oL Ogn _ _
3;2 + ap“:" - d)l’ 6y z= ¢2s (2'3)

or if to use the operator notation
AY = \Fa Y= (ziaw)v ¥= (¢1)¢2)-

It is well-known that the condition of strong monotonicity of the
operator A (A > vE, where E is the unity operator)

(4Y,Y) 2+(Y)Y), v>0 (24)

is the sufficient condition for the stability of difference scheme (2.3)
(see Samarskij, Nikolayev, 1978). Condition (2.4) gives us the con-
vergence of the difference scheme (1.8) - (1.10) solution to the exact
solution of the boundary value problem with additional nonlocal
conditién (1.4) - (1.6) ‘

IVI< Sl < OB, VIR =l + ol @5)

The existence of the unique difference scheme (1.8) - (1.10) solu-
tion follows from the fixed point theorem too, if condition (2.4) is
satisfied. _ “ :

It is interesting to compare condition (2.4) with the conditions
- that guarantee the existence of the constrained optimization prob-
lem (1.7) solution. The well-known sufficient conditions for the
existence of the global minimum are (see Vasilyev, 1988):
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« a) En(y) is a strongly convex functional,
b) Un(y) is a closed and convex set of permissible functions.
It is easy to prove that in this case the weak solution of problem
(1.7) coincides with the classical (strong) solution of the difference
scheme (1.8) - (1.10). Simple calculations reveal to us that the set
Un(y) is not convex. Using the Lagrangian functlon we obta.m the
equivalent form of problem (1. 7) ' _ ‘ .

o () = L"), La() = Ba(e) +pmn(e),  (26)

Vi={v: v=(y,n), w30}

For this case the'set., of the permissible functions Vj, is convex
and closed. The necessary and sufficient condition for the function
Ln(v) € C?(V3) to be strongly convex functional is the existence of
the positive constant v > 0, such that (Vasilyev, 1988)

(L ' (v)w, w) 2 p(w,w), weW. 2.1

It is easy tcf see that condition (2.7) coincides with condi-

tion (2.4), obta.ir{ed when investigated the difference scheme (1.8) -

(1. 10) If we restrict the problem only to lecal minimum of (1.7)

then the sufficient condition for the existence of such a solution if

Li(v) € C3(Va) (we have the strong solution again) is positivity of
the quadratic form

(0"%;3(3)2,;) >0, (%(y)z,?) =0, (2.8)

i.e., only nonzero vectors z that are orthogonal to the constraint
gradient g (y) are investigated. A comparison of expressions (2.7)
and (2.8) suggests that condition (2.8) is weaker than condition
(2.7), it suffices to expand the quadratic form (2.7) to see that

82L;.(v) FLu), z)

(v)w7 w) = + 2“"(9)1(”)"5 z).
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- Considering this fact, we 1nvest1gated only condltlon (2.8). It fol-
lowg after: snnple calculations that

(82L;.(v) , ) ( oj

B2 2,z a-rz—)l-;z,,z,] + pg(z2, 2)

+ p(;, z) - (((—1—;{’—3?3);:, z) .

The positive definitness of the two last terms can not be guaranteed,
so the validity of condition (2.8) can’t be proved. The existence of
the solution (maybe not unique) can be investigated directly using
the weak formulation of problem (1.7), as a nonlinear constrained
minimization problem. But the convergence of the discrete solu-
tion y; to the exact solution of the boundary value problem with
additional nonlocal condition (1.4) ~ (1.6) must be assumed as a
generalized convergence of total energy integrals only.

(2.9)

Theorem 1. The following statements are true for the con-
strained minimization problem (1.7)

a) Ex(y*) = infyev, Ea(y) > —o0,

b) the set U} = {y: y € Un, En(y) = En(y*)} is non-empty and
compact,

¢) each minimizing sequence y' converges to U;.

Proof, As it follows from the Veierstras’s theorem: (see Vasi-
lyev, 1988), it suffices to prove that U, is a compact set and the
function Ex(y) is bounded and lower semicontinuous in Us. The set
Uy is closed, this follows from the continuity of the function gx(y).
From the definition of the function g, (y) we get the boundedness of
Un |lyllc € max(R,(Vo/h)%®), i.e., the set U is compact. The function
En(y) is bounded from below by zero and belongs to the space of
functions Ex(y) € CY}(Us) (E4(y) is the Lipschitz function in Uy),
so it is lower semicontinuous with respect to the maximum norm
convergence. The theorem is proved.

‘REMARK 1. If the objective Ex(y) and constraint gi(y) functions
are smooth (have the first derivatives), then the local minimum can
be achieved only if 8L} (v)/dv = 0, i.e., if (y,n) is the solution of
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the difference scheme (1.8) - (1.10). So Theorem 1 guarantees the
existence of the difference scheme (1.8) - (1.10) solution, too.

3. Iterative methods. The difference scheme (1.8) — (1.10)
is nonlinear, therefore some iterative method is needed to find the
solution, existence of which is guaranteed by Theorem 1. Some
iterative processes are given and investigated by Ciegis, Ciupaila
(1990a). At first we introduce some helpful notation

Ey(y) =Lily)y+ o(¥),
=_ (%Y ___\ .
Ll(y)t b ((l + yg)os vz)! +sz'vh
(y) =0.50((1+y2)™* + (1 + 3)*°).
We start from the two-stage iterative process, which perfectly il-

lustrates the main idea, used in this paper to construct iterative
processes )

Li(* W + uft = —o(vF), an(pFth) =0. (3.1)

Itis nécessary to solve the linear boundary problem with the nonlin-
ear nonlocal additional condition (3.1) in order to find the iteration
y*+1. For this puﬁ'pose the inner iterative process is proposed

prs1 = Gpi, v"). (3:2)

The bisection method may be used as such a process. The conver-
gence of the inner iterative process (bisection method) follows from
the lemma (the proof is given by Ciegis, Ciupaila, 1990a).

Lemma 1. The solution of problem (3.1) monotonously de-
pends on the parameter p and dgx(y**+')/0u < 0.

The proof of the outer iterative process convergence is more
complicated. Obviously, it is directly connected with the violence
of condition {2.4). The weak formulation of the difference scheme
(2.8) - (2.10) must be used again as the problem of constrained
optimization (2.7). It is easy to prove that iterative process (3.1)
is equivalent to the variational problem

inf Eix(y) = Ex(y**), (33)
yEUL
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. where the objective function is defined as

Eu@) = BaGh) + B = 1) + 50— )LD —1h). (39)

The quadratic approximation Ei(y) coincides with the Taylor ex-
pansion of Ex(y), only the seconrd derivative matrix E}(y) is replaced
by its part- L;(y). In order to achieve the convergence from poor
starting approximations the change y*+! — y* may be additionally
imposed to depend on a-merit function ®(y) (the objective function
Ex(y) may serve-as an example of such a function). A new iteration
y*+! is proved as a new vector only if ®(*+!) < ®(y*). If the matrix
Ly(y) does not provide sufficient proper second derivative informa-
tion for some parameters.of problem, then the Newton method is
used | ' '
inf Ein(y) = Ean(y**),
yeUs

Eun(y) = Ea(P) + By (F)(y - v*) +0.5(y — ") EL &)y — 1),

Such a variational problem is equivalent to the iterative process

BN =)+t = (L +edh), o) =0. (349)

A modified iterative process may be constructed, if it is necessary
to obtain the convergence of the iteration process

B+ DY L = (L +eh), (35)
. (@) =0.

In the limit case § — 0 we have a variant of the gradient method
(see Powell, 1982). An obvious defect of the proposed iterative pro-
cesses (3.1), (3.2) is their noneconomical realization, because one
must use additional inner iterative process (3.2) to find the iter-
ation y**!. In order to overcome this difficulty the linearization
of constraints is implemented in the following two iterative pro-
cesses. The simplest way is to assume the vector y*+! as the one
minimizing the quadratic function

Jnf Exn(y) = Een (), (3.6)
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suhjéct to the linear constrains
Ur={y:% >0, =R, sa(¥*)+ sh(s")v - ") = 0}.

The solution y*+! of variational problem (3.6) can be found from
the linear boundary value problem with the additional nonlocal
linear condition : )

B - i)+ = —(LGA + o), ()
a@") + a0 -h) =0

The iterative process is economically realized by a modified fac-

torization algorithm (see Ciegis, Ciupaila, 1990a, Samarskij, 1983).

The iterative process (3.7) converges only linearly, while the two-

stage iterative process (3.4), (3.2) converges quadratically. It is nec-
essary to correct the objective function of (3.6) to get the quadratic

convergence ' -

nf By 405 -0 -). (38
It is easy to provd, that the iterative process generated by variational
problem (3.8) coi'nci‘des with the classical Newton method, applied
directly to the nonlinear difference scheme (1.8) - (1.10)

} (B (5*) + i) (7P = 0%) + (e — )
= —(Li(*)* + mey* + o(y*)). (3.9)
@) + ()P - ) =0.

The computer simulation data, presented by Ciegis, Ciupaila
(1990a), show the efficiency of the proposed difference scheme (1.8)
- (1.10) and iterative processes (3.1) - (3.9). o

4. The parametric difference scheme., The difference sche-
me, constructed in Section 1 and, consequently, the iterative pro-
cesses proposed in Section 3 are the problems.of specific kind. They
consist of a boundary value problem and additional discrete nonlo-
cal condition. The nonlocal condition causes serious troubles both
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+in the course of investigation of the difference scheme and during

the construction of economical iterative processes. We propose a
new different method for the solution of such problems (we fol-
low here the methodology given in the paper of Ciegis, Ciupaila
(1991)). The method is based on some appropriate parametriza-
tion of integrals (1.2), (1.3). At first the parametrxza.txon of the
region is introduced

s=2(e),  u=ule(@)=ue), ael01]

Then the integrals (1.2), (1.3) must be rewritten in the form

0.5
E,(u) =21w/u(a) ((6::) (gz)z) da,

° (4.1)
E,(u) =7pg / z(a)uz(a)gzda,
0
oy ,
9(u) =/u2(a)(—9£-da. (4.2)

0.
Only the difference case of problem (1.1) is investigated in our
paper. Two difference grids are constructed in the interval [0,1]

wi ={a; =th, i=0,1,...,N, ay =1},
wy ={eios, i=0,1,...,N+1}.
The function u(a) is approximated on the grid w; and the function

z(a) - on the grid w,. The volume constraint (4. 2) is a,pproxxma,ted
by the sum

N-1
w; + w; 2T e .
m(w) = 3 ST 2"’ Vo, wi= Ty THet s —— 05 . (4.3)
=0

The. parametrization is introduced so that the following condition
be valid

g(w)=0, wi>e>0, =01, N (4.4)
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Obviously, the definition of parametrization is not unique, the sim-
plest case is w; = w*. Then from equation (4.4) we have

N-1
E wh=V,, uw' = V.

For a given function w;, the function y; may be attained from equa-

tion (4.3)
o ( w’.h )0.5
¥ = \*(=iros — zi0s)/
therefore the unknown function is only zios, ¢ = 0,1,...,.N+1.
Then integrals (4.1) are approximated by discrete sums

. N=1
_ 0.5
Ey, =272 Z %2+ 0'5(33.1‘—0.5 +22405) b

i=0"
N-1 o
Eyp =0.5p9 Z wi(Zigos + Tios)-
i=0
The form of the contact free surface is determined by the minimiza-
tion problem , -

0 (B J(@)+ Enp(®) = Eny(z) + Enol("), | (45)

i *
. Zos — T-05 W
- X= {zi-‘o,s 1zos+T-05=0, h =g

ZN-05t IN+05 _ pr IN$0.5 = IN-05 _ w* }
2 . h xR?

‘

The difference scheme for the function z;_¢5, i =0,1,...,N+1
follgws from the necessary minimum condition

dEy _ OEn, 0E,, . 6E,, Oy OEn,. Oyiy:
0Zizos OZiyos Ozizos  Oyi Ozizos  Oyit1 0%ivos

. (4.6)

with the corresponding boundary conditions. The existence the-
orem, analogous to . heorem 1 from Section 2, can be proved for
problem (4.5), (4.6). The nonlinear difference scheme is solved by
the Newton iterative method, each iteration z* being the solution
of the linear equation system with the fivediagonal matrix.
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We have got the boundary value problem without the addi-
tional nonlocal condition. Such a method is especially useful for
the evolution free-surface problems (see Ciegis, Ciupaila, 1991).
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