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Abstract. Classical evolutionary multi-objective optimization algorithms aim at finding an approx-
imation of the entire set of Pareto optimal solutions. By considering the preferences of a decision
maker within evolutionary multi-objective optimization algorithms, it is possible to focus the search
only on those parts of the Pareto front that satisfy his/her preferences. In this paper, an extended
preference-based evolutionary algorithm has been proposed for solving multi-objective optimiza-
tion problems. Here, concepts from an interactive synchronous NIMBUS method are borrowed
and combined with the R-NSGA-II algorithm. The proposed synchronous R-NSGA-II algorithm
uses preference information provided by the decision maker to find only desirable solutions satis-
fying his/her preferences on the Pareto front. Several scalarizing functions are used simultaneously
so the several sets of solutions are obtained from the same preference information. In this paper,
the experimental-comparative investigation of the proposed synchronous R-NSGA-II and original
R-NSGA-II has been carried out. The results obtained are promising.

Key words: interactive multi-objective optimization, evolutionary multi-objective optimization,
preference-based evolutionary algorithms, scalarizing function.

1. Introduction

Multi-objective optimization problems often arise in different fields of engineering.
The main goal while solving the problems is to minimize (or maximize) several con-
flicting objectives (criteria). As a rule a decision maker (DM) deals with several opti-
mal solutions called Pareto optimal solutions, and he/she should select the most prefer-
able one. The most popular approaches for solving multi-objective optimization prob-
lems are evolutionary multi-objective optimization (EMO) and multiple criteria decision
making (MCDM). In EMO, the main target is to find a set of well-converged and well-
distributed non-dominatedobjective vectors (equally good solutions) that approximate the
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entire Pareto front (Deb, 2001; Coello et al., 2002; Talbi, 2009; Lančinskas et al., 2013).
This set of solutions is subsequently presented to the DM, who finally chooses one among
them as his/her preferred solution. Many EMO algorithms and modifications have been
developed during the past two decades. The most widely used are NSGA-II (Deb et al.,
2002a), SPEA2 (Zitzler et al., 2001), PAES (Knowles and Corne, 2000), PESA-II (Corne
et al., 2001), etc. However, most of EMO algorithms are not suitable for handling a large
number of objectives (especially, more than three) (Knowles and Corne, 2007). During the
last decade some studies have been carried out in order to extend usability of the EMO
algorithms for many objective problems (Hughes, 2005; López Jaimes and Coello Coello,
2009), and several EMO algorithms to handle many objective problems were developed –
MOEA/D (Zhang and Li, 2007), its extensions (Zhang et al., 2009; Ray et al., 2013;
Asafuddoula et al., 2013), and NSGA-III (Deb and Jain, 2012; Jain and Deb, 2014). How-
ever, the increased dimensionality of Pareto-optimal front poses several challenges such
as, large computational cost, difficulty in visualization of the objective space appears, ex-
ponentially more number of points are required to represent a higher-dimensional Pareto
front (Kurasova et al., 2013), etc. So, the DM may be unable to revise all the obtained
solutions and to select the best without support of interactive methods. Usually, the more
objectives are incorporated in a problem, the more preference information provided by the
DM is required for the search in the interesting places of the decision space.

In MCDM, the DM’s preferences are important when we deal with multi-objective op-
timization problems, because the main goal is to find the most satisfactory solution for the
DM without exploring the whole set of Pareto optimal solutions. The MCDM approaches
usually are classified into a priori, posteriori and interactive methods, depending on when
the preference information is asked from the DM (Miettinen, 1999). A comprehensive
overview of MCDM methods is given in Branke et al. (2008). Some recent approaches
related to the MCDM are presented in Zeng et al. (2013), Hashemi et al. (2014), Meng and
Chen (2014). In MCDM it is common for a multi-objective problem to be scalarized into
a single-objective problem taking into account the DM’s preference information and solv-
ing it using a suitable mathematical programming technique to find the preferred Pareto
optimal solution.

When we deal with complex problems, interactive multi-objective optimization meth-
ods can assist to solve them. In the interactive methods, the DM specifies preference in-
formation progressively during the solution process. After each iteration, the DM is pro-
vided with one or some Pareto optimal solutions that reflect his/her preferences. Such a
strategy allows the DM to analyze the solutions and learn about the problem during the
solving process, and “move” towards the most preferable solution (Petkus et al., 2009).
Interactive methods can be computationally inexpensive, as only solutions that satisfy the
DM’s preferences are generated. However, they may require involvement of the DM exten-
sively as compared to other MCDM methods because of the iterative solving process. The
preference information of the DM can be expressed in different ways, such as reference
direction, reference points or other techniques. Interactive methods can be classified into
at least three groups: weight, constraint, and reference point methods (Miettinen, 1999).
In general, they differ from each other in terms of scalarizing functions and preference
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information used. The comprehensive surveys of the interactive methods are presented in
Vira and Haimes (1983), Miettinen (1999), Branke et al. (2008), Luque et al. (2011).

In order to support the DM better, the principles of interactive and a posteriori methods
are hybridized to use advantages of both these approaches (Thiele et al., 2009). Recently,
incorporation of DM’s preference information into evolutionary approaches has been ac-
tively investigated. So-called preference-based EMO algorithms focus on only some parts
of the Pareto front that are interesting for the DM and a crowded set of non-dominated
objective vectors is found. So, preference-based EMO algorithms allow to reduce the
computational cost and more complex multi-objective problems can be solved. Moreover,
fewer efforts are required from the DM when analyzing the obtained set of solutions, be-
cause only solutions from region of interest are presented for him/her. The well-known
preference-based EMO approaches are the cone-domination based EMO (Branke et al.,
2001), the biased niching based EMO (Branke and Deb, 2005), the reference point based
EMO (Deb et al., 2006b; Thiele et al., 2009; Siegmund et al., 2012), the light beam
approach based EMO (Deb and Kumar, 2007), the weighted hypervolume based EMO
(Auger et al., 2009), etc. The comprehensive survey of the preference-based EMO al-
gorithms is presented in Purshouse et al. (2014). Most of these approaches can be trans-
formed into interactive multi-objective methods simply by allowing the DM to adjust pref-
erences during the solving process interactively. In the interactive methods, the preference
information requested from the DM is usually much simpler than it required by a priori
methods (Purshouse et al., 2014). Moreover, in interactive methods, the DM controls the
search process, he/she is able to modify the preferences, learns about potential solutions
of the problem during the solving process, and makes reliable decision.

Recently, researches have shown a big interest in developing evolutionary-based inter-
active methods (Deb and Chaudhur, 2007; Jaszkiewicz and Branke, 2008; Molina et al.,
2009; Fowler et al., 2010; Greco et al., 2010; Sinha et al., 2014; Ruiz et al., 2014). Among
a variety of proposed preference-based EMO algorithms and evolutionary-based multi-
objective interactive methods a considerable attention is given to incorporation of scalar-
izing functions into EMO approaches. López Jaimes and Coello Coello (2014) have pro-
posed an interactive technique that uses the achievement scalarizing function (Wierzbicki,
1980) based on the Chebyshev distance (Ehrgott, 2005). Earlier Gong et al. (2011) pro-
posed an interactive version of the decomposition based multi-objective evolutionary al-
gorithm where Chebyshev approach is used, too. In the paper of Ruiz et al. (2014), the
authors have suggested a preference-based EMO algorithm where an achievement scalar-
izing function is incorporated (Miettinen and Mäkelä, 2002). In the paper of Thiele et

al. (2009), the authors have proposed preference-based evolutionary algorithm (PBEA),
where the binary quality indicator of indicator-based evolutionary algorithm (IBEA) (Zit-
zler and Künzli, 2004) is redefined using an achievement scalarizing function and refer-
ence points. In the mentioned approaches, only one scalarizing function is used. It means
that such approaches lead the DM only to one region on the Pareto front. However, in
literature there exists other scalarizing functions, all of which consider the same prefer-
ence information from the DM and yield comparatively different sets of Pareto optimal
solutions. In practice, there is no certainty that one scalarizing function can reflect the
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DM’s preference. Therefore, EMO algorithms should be developed, where more than one
scalarizing function should be incorporated.

In this paper, we propose a new evolutionarypreference-based algorithm where several
scalarizing functions are used simultaneously. Concepts from the interactive reference
point method – synchronous NIMBUS (Miettinen and Mäkelä, 2006) – are borrowed and
combined with the R-NSGA-II algorithm (Deb et al., 2006b; Siegmund et al., 2012).

The remainder of this paper is organized as follows. A description of the multi-
objective problem, concepts of the multi-objective interactive synchronous NIMBUS
method, as well as EMO algorithms NSGA-II and R-NSGA-II are presented in Section 2.
The proposed synchronous R-NSGA-II algorithm is introduced in Section 3. Following,
the results of the experimental-comparative investigations are presented in Section 4. In
Section 5, we draw conclusions and give directions of the future researches.

2. Background Concepts

In this research, we extend the preference-based multi-objective evolutionary algo-
rithm R-NSGA-II by incorporating the concepts of an interactive synchronous NIMBUS
method. Fundamentals of multi-objective optimization as well as description of the in-
volved approaches are presented in the next subsections.

2.1. Multi-Objective Optimization Problem Statement

At first, a formulation of multi-objective optimization problem is introduced. Let us have
k > 2 conflicting objectives, described by the functions f1(x), f2(x), . . . , fk(x), where
x = (x1, x2, . . . , xn) is a vector of variables (decision vector), n is the number of variables.
A multi-objective minimization problem is formulated as follows Miettinen (1999):

minimize f(x) =
[

f1(x), f2(x), . . . , fk(x)
]

,

subject to x ∈ S,

where S is a decision space (feasible set, bounded domain) in the n-dimensional Euclidean
spaceRn; f(x) ∈ R

k is a vector of objective functions. Each vector x ∈ S is called a feasible

solution. The vector z = f(x) ∈ R
k for a feasible solution x is called an objective vector.

A set of the objective vectors composes the so-called feasible criterion space Z (feasible
region). A point x∗ ∈ S is (globally) Pareto optimal if there does not exist another point
x ∈ S such that fi(x) 6 fi(x

∗) for all i = 1, . . . , k, and fj (x) < fj (x
∗) for at least one j .

Objective vectors are regarded as optimal if none of their components can be improved
without deterioration to at least one of the other components. An objective vector z∗ =

f(x∗) is Pareto optimal if the corresponding point x∗ is Pareto optimal. The set of all
the Pareto optimal solutions is called a Pareto set. The region defined by the value of all
objectives for all the Pareto set points is called a Pareto front.
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For two objective vectors z, z′ ∈ Z, we say that z dominates z′ iff that zi 6 z′
i for

all i = 1, . . . , k and there exists one j such that zj < z′
j . In EMO algorithms, the sub-

set of solutions in a population whose objective vectors are not dominated by any other
objective vector is called the non-dominated set, and the objective vectors are called the
non-dominated objective vectors. The main aim of the EMO algorithms is to generate
well-distributed non-dominated objective vectors as close as possible to the Pareto opti-
mal front.

When we want to solve a multi-objective optimization problem, we are interested in
finding the Pareto optimal solution that best satisfies the desires of the DM, a person who
is interested in solving the problem and can express preferences in some way (Sindhya
et al., 2011). So, two more vectors that fix the ranges of the Pareto front are used – the
ideal objective vector zid ∈ R

k , and the nadir objective vector znad ∈ R
k . Lower bounds

of the Pareto optimal set are available in the ideal objective vector, its components zid
i are

obtained by minimizing each of the objective functions individually subject to the feasible
region. The upper bounds of the Pareto optimal set are expressed by the components znad

i

of the nadir objective vector. A vector zu, that is strictly better than zid is called the utopian

objective vector (zu
i = zid

i − ǫ, i = 1, . . . , k where ǫ is a small positive scalar) (Miettinen,
1999). Unfortunately, there exists no constructive way to obtain the exact nadir objective
vector for non-linear problems so, typically it is approximated (Deb et al., 2006a, 2010).
In general, the ideal, utopian and nadir objective vectors correspond to a non-existent
solutions.

2.2. Synchronous NIMBUS

NIMBUS (Miettinen and Mäkelä, 1995; Miettinen, 1999) is a popular interactive
classification-based multi-objective optimization method, which is continuously being de-
veloped and applied to different engineering problems (Hakanen et al., 2005, 2006; Miet-
tinen and Mäkelä, 2006; Laukkanen et al., 2010; Miettinen et al., 2014). NIMBUS method
and its extensions are realized in the decision support system IND-NIMBUS (Ojalehto et

al., 2007) that is aimed at solving complex non-linear multi-objective optimization prob-
lems. It is also realized in WWW-NIMBUS (Miettinen and Mäkelä, 2000) that is free for
academic and research use.

In the NIMBUS method, new Pareto optimal solutions are generated by solving a
scalarized problem which includes preference information given by the DM. Scalar-
ization plays a very important role in multi-objective optimization (Miettinen, 1999;
Miettinen and Mäkelä, 2006). By the usage of the scalarizing function, the multiple ob-
jectives and some preference information provided by a DM are transformed into a single
objective function and a subproblem is formed. In Miettinen and Mäkelä (2002), Branke
and Gardiner (2003) it was shown that by incorporating more scalarizing functions the
more different optimal solutions can be obtained even in the case when exactly the same
preference information is provided by the DM.

In synchronous NIMBUS approach (Miettinen and Mäkelä, 2006), the NIMBUS was
extended by incorporating three scalarizing functions that are based on the same pref-
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erence information. It should be noted, that the scalarizing functions involved in syn-
chronous NIMBUS are based on reference points. As a rule, in the reference point meth-
ods, the DM is asked to specify a reference point z̄ ∈ R

k , that is consisted of desirable
aspiration levels z̄i for each objective function. The involved scalarizing functions in the
synchronous NIMBUS approach are as follows Miettinen and Mäkelä (2002, 2006):

STOM: minimize max
i=1,...,k

[

fi(x) − zu
i

z̄i − zu
i

]

+ ρ

k
∑

i=1

fi(x)

z̄i − zu
i

, (1)

subject to x ∈ S,

ASF: minimize max
i=1,...,k

[

fi(x) − z̄i

znad
i − zu

i

]

+ ρ

k
∑

i=1

fi(x)

znad
i − zu

i

, (2)

subject to x ∈ S,

GUESS: minimize max
i=1,...,k

[

fi(x) − znad
i

znad
i − z̄i

]

+ ρ

k
∑

i=1

fi(x)

znad
i − z̄i

, (3)

subject to x ∈ S,

where a so-called augmentation coefficient ρ > 0 is a relatively small scalar. Using such
an approach the DM may obtain several Pareto optimal solutions, where each of them
reflects the DM’s preferences and gives variety of different solutions. After that the DM
can select the most preferred one as a final solution or use it for the further improvement.

2.3. Evolutionary Multi-Objective Optimization Algorithms NSGA-II and R-NSGA-II

Among the EMO algorithms NSGA-II is commonly used (Deb et al., 2002a). It is an elitist
algorithm, where the best solutions found are preserved. In addition, NSGA-II also uses a
crowding comparison procedure, an explicit diversity preservation mechanism to obtain
a well-distributed approximation of the Pareto optimal front. The steps of NSGA-II are
described in Algorithm 1.

NSGA-II uses two types of fitness functions – the primary fitness function is the Pareto
optimality, the secondary one is a crowding distance. In the paper of Deb et al. (2006b), the
reference point-based NSGA-II algorithm (called R-NSGA-II) has been proposed, where
the DM’s preferences are expressed by reference points. In order to speed up and control
of diversity, an extension of R-NSGA-II has been provided in Siegmund et al. (2012).
The crowding distance used in NSGA-II is changed to the Euclidean distance from the
reference points. The Step 3 of NSGA-II algorithm is changed so, that the parents with
smaller Euclidean distances are preferred. The Step 5 is modified by such issues: each
front of the population R is clustered, and only the representatives of the clusters are
saved to the population P ; if not all representatives of the clusters could be picked, only
the representatives with smaller Euclidean distance are added into the population P .
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Algorithm 1 NSGA-II
Step 1: Generate a random initial population P0 of size N .
Step 2: Sort the population to different non-domination levels (fronts), and assign each

individual a fitness equal to its non-domination level (1 is the best level).
Step 3: Create an offspring population of size N using binary tournament selection, re-

combination and mutation operations (parents with larger crowding distance are pre-
ferred if their non-domination levels are the same).

Step 4: Combine the parent and the offspring populations and create a population R.
Step 5: Reduce the population R to the population P of size N : sort the population R

into different non-dominated fronts; fill the population P with individuals from popu-
lation R starting from the best non-dominated front until the size of P is equal to N ;
if all the individuals in a front cannot be picked fully, calculate a crowding distance and
add individuals with the largest distances into the population P .

Step 6: Check if the termination criterion is satisfied. If yes, go to Step 7, else return to
Step 2.

Step 7: Stop.
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Fig. 1. Non-dominated objective vectors of ZDT1 problem, obtained by: (a) NSGA-II, (b) R-NSGA-II.

NSGA-II algorithm tries to approximate the whole Pareto front and to distribute the ob-
tained non-dominatedobjective vectors evenly. On contrary, the obtained objective vectors
by R-NSGA-II are concentrated on a particular region of the Pareto front approximated
according to a reference point expressed by the DM. The differences of results, obtained
by the NSGA-II and R-NSGA-II algorithms, are demonstrated using the popular test prob-
lems ZDT1 (2 objectives) and DTLZ2 (3 objectives) in Figs. 1 and 2.

3. Synchronous R-NSGA-II Algorithm

The original R-NSGA-II algorithm provides the concentrated solutions on a region of in-
terest according to the DM’s preferences. However, the preference information expressed
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Fig. 2. Non-dominated objective vectors of DTLZ2 problem, obtained by: (a) NSGA-II, (b) R-NSGA-II.

by the DM is treated only in one way. Incorporating several scalarizing functions to the
algorithm will enable to focus the search on several regions of interest using the same
preference information. Usage of the various functions in the same approach simultane-
ously will increase a variety of the obtained non-dominated objective vectors, but still
obeying the preference information of the DM. In this way, the DM will have access to
multiple solutions that reflect his/her preference information and thereby can find his/her
preferred solution. The DM will have more freedom and flexibility in the decision process.
Here we propose the synchronous R-NSGA-II algorithm that is based on the concept of
the R-NSGA-II algorithm involving three different scalarizing functions used simultane-
ously. The steps of the proposed synchronous R-NSGA-II are described in Algorithm 2,
which involves a synchronous preference operator.

3.1. Synchronous Preference Operator

In order to coordinate the use of all three scalarizing functions in the synchronous
R-NSGA-II algorithm, the synchronous preference operator is proposed. Here for every
individual in each front F̄i the values of the scalarizing functions (1), (2), (3) are evalu-
ated. Next, all the individuals in F̄i are ranked in ascending order according to the values
of scalarizing functions, i.e. rank 1 being the individual with minimum value of the cor-
responding scalarizing function. Hence, for every individual up to 3 different ranks are
available. The global rank of every individual being the minimum of all the ranks.

In Fig. 3, the Pareto front approximations, obtained the synchronous R-NSGA-II algo-
rithm, are presented for ZDT1 and DTLZ2 problems. The non-dominated objective vec-
tors are concentrated to three regions, although only one reference point is used. These
concentration depends on the clustering parameter value δ (0 < δ 6 1) which must be set
carefully. Too small value compress the solutions to three very crowded groups. Too high
value does not allow formation of separated groups, therefore preference-based method
loses its sense.
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Algorithm 2 Synchronous R-NSGA-II
Step 1: Generate a random initial population P0 of size N and set a generation count

t = 0. Set values of recombination r and mutation m operations. Set a clustering pa-
rameter value δ (0 < δ 6 1).

Step 2: Sort the population to different non-domination levels (fronts) and assign for each
objective vector a fitness equal to its non-domination level (1 is the best level). Calculate
values of the three scalarizing functions and the global rank for each individual (see
Section 3.1).

Step 3: Create an offspring population Q′
t using binary tournament selection (parents

with smaller global rank are preferred), recombination and mutation operations.
Step 4: Combine the parent and offspring populations and create a population Rt =

Pt ∪ Q′
t .

Step 5: Perform non-dominated sorting to the population Rt and identify different
fronts F̄i , i = 1,2, . . . , p.

Step 6: Set a new population Pt+1 = ∅.
Step 7: Cluster each front F̄i , i = 1,2, . . . , p: the individuals are assigned to one clus-

ter, if the smallest value of the three scalarizing functions differs less than δ (as in
R-NSGA-II algorithm); R̄t (R̄t ⊂ Rt ) is a set of representatives of each cluster, R̄t i

(R̄t i ∈ R̄t ) are representatives in i-th front.
Step 8: Set a count i = 1. As long as |Pt+1| + |R̄t i| 6 N , perform Pt+1 = Pt+1 ∪ R̄t i ,

i = i + 1, if (i > p and |Pt+1| < N ) then set F̄i = F̄i \ R̄t i , i = 1,2, . . . , p and go to
Step 7.

Step 9: Add (N − |Pt+1|) representatives of F̄i , i = 1,2, . . . , p with the smallest global
rank to Pt+1.

Step 10: Check if the termination criterion is satisfied. If yes, go to Step 11, else set
t = t + 1 and return to Step 2.

Step 11: Stop.
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Fig. 3. Non-dominated objective vectors, obtained by the synchronous R-NSGA-II, when solving: (a) ZDT1,
(b) DTLZ2 problems.
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3.2. Performance Metrics

The comparison of the results of EMO algorithms is one of the main problems in multi-
objective optimization. It is obvious, that performance metrics should be used in order
to evaluate EMO algorithms. During the past few decades, many metrics have been in-
troduced (Deb, 2001; Zhou et al., 2011). The most popular performance metrics are as
follows:

• The generational distance (GD) (Deb, 2001; Van Veldhuizen, 1999) measures the
convergence of EMO algorithms.

• The inverted generational distance (IGD) (Zitzler et al., 2003) measures both con-
vergence and diversity of the obtained objective vectors simultaneously.

• The spacing (Schott, 1995) and spread (Deb, 2001; Deb et al., 2002a) measure the
distribution of the obtained objective vectors.

• The hypervolume metric (HV) (Zitzler and Thiele, 1998; Van Veldhuizen, 1999) is
used to compare the non-dominated sets of objective vectors and performance of the
algorithms, estimating convergence as well as diversity.

Summarizing, EMO algorithms are measured on two aspects: the convergence (how
close the obtained non-dominated objective vectors are to the Pareto front), and the dis-
tribution of the obtained objective vectors.

Recently, some performance metrics were proposed for preference-based EMO algo-
rithms. In Wickramasinghe et al. (2010), the authors have adapted HV metric for such
algorithms, but this metric can be misleading depending on the location of the reference
point. In Mohammadi et al. (2013), the authors have improved the metric by incorporating
IGD in it. However, the proposed metric does not suit when evaluating performance of the
preference-based algorithm with more than one crowded set of non-dominated objective
vectors.

In this investigation, generational distance (GD) and spread-based performance met-
rics were used to compare two preference-based algorithms – original R-NSGA-II and
proposed synchronous R-NSGA-II.

The generational distance for a set of non-dominated objective vectors Q is calculated
by the formula (Deb, 2001):

GD =
1

|Q|

|Q|
∑

j=1

gj , (4)

where

gj = min
l=1,...,|Q′|

(

k
∑

i=1

(

f
(j)

i − f
′ (l)
i

)

)

. (5)

Here gj is a distance between the j -th objective vector of Q and the nearest objective

vector of a set of members of the Pareto optimal front Q′. f
(j)
i and f

′ (l)
i are the i-th
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objective function values of the j -th objective vector of the set Q and that of the l-th
objective vector of the set Q′, respectively.

Spread for a set of non-dominated objective vectors Q is calculated by the formula
(Deb, 2001):

SP =

∑k
i=1

de
i +

∑|Q|
j=1

|dj − d̂|
∑k

i=1
de
i + |Q|d̂

, (6)

where dj is a distance between neighboring objective vectors, d̂ is an average of these dis-
tances, de

i is a distance between the extreme objective vectors of Q′ and Q corresponding
to the i-th objective function. In preference-based EMO methods non-dominated objec-
tive vectors are obtained from a region of the Pareto front, but not from the entire Pareto
front as in classic EMO methods. So, incorporation of de

i distances in the metric can dis-
tort representation of diversity of the objective vectors obtained. We propose to eliminate
de
i distance, and to calculate the spread metric by the formula:

SPp =

∑|Q|
j=1

|dj − d̂|

|Q|d̂
. (7)

Moreover, as it shown in Fig. 3, some gaps between the obtained non-dominated ob-
jective vectors and some sets of the crowded objective vectors can appear, when we solve
an optimization problem using the synchronous R-NSGA-II algorithm. In order to evalu-
ate the diversity of the obtained objective vectors more precisely, the spread metric value
should be calculated for each set of the crowded objective vectors individually, and the
average of all spread values should be evaluated. However, the problem of the clustering
of the obtained objective vectors arises. In this paper, we propose such a clustering way:

• Three Pareto optimal solutions and corresponding objective vectors (Solution1, So-
lution2, and Solution3) are obtained by optimizing scalarizing functions (1), (2), (3)
using any exact single-objective optimization method (mathematical programming).

• Distances between the objective vectors corresponding to the optimal solutions and
the non-dominated objective vectors, obtained by preference-based EMO, are cal-
culated.

• The non-dominated objective vectors are assigned to different clusters (Cluster1,
Cluster2, and Cluster3). The non-dominated objective vectors nearest to Solution1
are assigned to Cluster1, nearest to Solution2 – to Cluster2, and nearest to Solu-
tion3 – to Cluster3.

As it is shown in Miettinen and Mäkelä (2002) that in some cases depending on the
selected reference point different scalarizing functions may provide the same Pareto so-
lution. So, the number of clusters is equal to the number of different Pareto solutions. It
is important to note that a non-dominated objective vector can be assigned only to one
cluster (nearest one). So, it can happen that some clusters are empty. The spread should
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be calculated for the non-dominated objective vectors from non-empty clusters. We pro-
pose to evaluate spread metric, when more than one crowded set of the non-dominated
objective vectors are obtained, by such a formula:

SPs =
1

s

s
∑

r=1

(

1

|Qr |d̂

|Qr |
∑

j=1

|dj − d̂|

)

, (8)

where s is the number of non-empty clusters, Qr is a set of the obtained non-dominated
objective vectors, assigned to r-th cluster. In the case when s = 1 the formula (8) is iden-
tical to the formula (7).

4. Numerical Experiments and Discussion

In order to evaluate the proposed synchronous R-NSGA-II algorithm and to compare it
with the original R-NSGA-II, computational experiments have been carried out. The well-
known test problems for evaluation of multi-objective optimization algorithms have been
considered: two-objective problems ZDT1–ZDT4, ZDT6, and three-objectives problems
DTLZ1–DTLZ6 (Huband et al., 2006). Both investigated algorithms require preference
information provided by the DM that is expressed as a reference point, therefore various
reference points were selected. The used reference points, the number of objectives and
variables for each problem considered are presented in Table 1. All the reference points
are achievable – it means that all objectives values can be improved at the same time,
without having to impair any of them.

We have used a population size of 100 individuals and 100 generations for the problems
with two-objectives, and a population size of 150 individuals and 150 generations for the
three-objective problems. The clustering parameter δ controls the diversity of the obtained
non-dominated objective vectors. As it is shown in Siegmund et al. (2012) the R-NSGA-II
algorithm finds a concentrated set of non-dominated objective vectors when the value of

Table 1
Problems and reference points used in R-NSGA-II and synchronous R-NSGA-II algorithms.

Problem Number of Number of Reference point
objectives variables

ZDT1 2 30 (0.80, 0.60)
ZDT2 2 30 (0.90, 0.60)
ZDT3 2 30 (0.35, 0.85)
ZDT4 2 10 (0.90, 0.60)
ZDT6 2 10 (0.90, 0.60)
DTLZ1 3 7 (0.10, 0.20, 0.40)
DTLZ2 3 12 (0.60, 0.90, 0.50)
DTLZ3 3 12 (0.60, 0.90, 0.50)
DTLZ4 3 12 (0.60, 0.90, 0.50)
DTLZ5 3 12 (0.60, 0.50, 0.95)
DTLZ6 3 12 (0.50, 0.80, 0.70)
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Table 2
Average and confidence intervals of GD metric.

Problem R-NSGA-II Synchronous R-NSGA-II

Average Confidence interval Average Confidence interval

ZDT1 2.85E–06 (2.36E–06, 3.34E–06) 1.96E–06 (1.73E–06, 2.18E–06)
ZDT2 2.00E–06 (1.77E–06, 2.24E–06) 2.24E–06 (1.94E–06, 2.54E–06)
ZDT3 3.90E–03 (3.45E–03, 4.35E–03) 1.92E–03 (1.66E–03, 2.18E–03)
ZDT4 1.39E–02 (7.21E–03, 2.06E–02) 1.74E–02 (8.73E–03, 2.60E–02)
ZDT6 1.94E–06 (1.71E–06, 2.16E–06) 2.07E–06 (1.83E–06, 2.31E–06)
DTLZ1 4.38E+00 (3.87E+00, 4.89E+00) 1.89E+00 (1.71E+00, 2.07E+00)
DTLZ2 1.47E–03 (9.50E–04, 1.99E–03) 4.28E–05 (3.27E–05, 5.29E–05)
DTLZ3 3.06E+01 (2.85E+01, 3.28E+01) 2.20E+01 (2.06E+01, 2.34E+01)
DTLZ4 8.83E–04 (4.04E–04, 1.36E–03) 2.85E–04 (2.35E–04, 3.35E–04)
DTLZ5 1.49E–05 (1.17E–05, 1.81E–05) 1.02E–05 (8.36E–06, 1.20E–05)
DTLZ6 5.68E–02 (2.07E–02, 9.28E–02) 5.87E–02 (2.14E–02, 9.59E–02)

Table 3
Average and confidence intervals of Spread metric.

Problem R-NSGA-II Synchronous R-NSGA-II

Average Confidence interval Average Confidence interval

ZDT1 1.18E–02 (1.01E–02, 1.35E–02) 8.33E–02 (7.11E–02, 9.55E–02)
ZDT2 1.02E–02 (9.39E–03, 1.10E–02) 7.75E–02 (6.65E–02, 8.85E–02)
ZDT3 1.44E–02 (1.20E–02, 1.69E–02) 5.38E–02 (4.67E–02, 6.10E–02)
ZDT4 7.60E–02 (6.60E–02, 8.60E–02) 3.70E–02 (3.05E–02, 4.35E–02)
ZDT6 8.14E–03 (7.54E–03, 8.75E–03) 6.98E–02 (5.94E–02, 8.02E–02)
DTLZ1 3.75E–02 (3.11E–02, 4.40E–02) 4.17E–02 (3.62E–02, 4.73E–02)
DTLZ2 7.80E–03 (6.57E–03, 9.02E–03) 2.35E–02 (1.86E–02, 2.84E–02)
DTLZ3 5.89E–02 (5.16E–02, 6.63E–02) 4.37E–02 (3.79E–02, 4.94E–02)
DTLZ4 8.53E–03 (6.94E–03, 1.01E–02) 4.67E–02 (3.98E–02, 5.36E–02)
DTLZ5 7.10E–03 (6.03E–03, 8.17E–03) 8.43E–02 (7.19E–02, 9.66E–02)
DTLZ6 4.69E–03 (4.22E–03, 5.17E–03) 3.29E–02 (2.83E–02, 3.75E–02)

the parameter δ is relatively small. In this investigation, we have fixed the value of the
parameter δ = 0.0001.

The evaluated algorithms have been implemented in Matlab environment. The same
computer (Intel Core i7-3632QM @2.2 GHz, 8.00 GB) has been used for experimental
investigations.

Approximations of the Pareto front obtained by both algorithms are measured by the
generational distance (GD) performance metric (4). Diversity of the obtained objective
vectors is measured by spread metric (8) (in the R-NSGA-II case s = 1). We have carried
out 100 independent runs with each test problem with various initial populations. The
average values of the used metrics and the confidence intervals (95% confidence level)
have been calculated and presented in Tables 2 and 3. The lowest average values of the
calculated metrics are written in bold.

Table 2 shows that in more cases the synchronous R-NSGA-II algorithm approximates
the Pareto front better, but the differences comparing with R-NSGA-II are not essential.
Moreover, the advantage of synchronous R-NSGA-II is that in almost all the cases when
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the average values are lower, the confidence intervals do not overlap with the correspond-
ing intervals calculated for R-NSGA-II. On the contrary, for those test problems when
the average values calculated for R-NSGA-II are lower the confidence intervals overlap
with ones calculated for the synchronous R-NSGA-II. Both the algorithms have difficul-
ties to approximate the complex test problems (DTLZ1 and DTLZ3) with many local
Pareto fronts, and to converge to the global Pareto front in the limited number of genera-
tions. Such difficulties commonly appear with evolutionary algorithms including original
NSGA-II (Deb et al., 2002b; Zitzler et al., 2003).

The average values of spread metric presented in Table 3 are slightly higher in the
most cases of the synchronous R-NSGA-II algorithm. It means that the non-dominated
objective vectors, obtained by the R-NSGA-II algorithm, are more evenly distributed on
the part of the Pareto front. However, in both algorithms, the spread values are small,
therefore sufficient distribution of the obtained objective vectors is ensured.

5. Conclusions and Future Works

The synchronous R-NSGA-II algorithm has been proposed in this paper. It is an extension
of the evolutionary reference-based R-NSGA-II algorithm. The idea of synchronization
is adapted from the synchronous NIMBUS method. The main difference of the proposed
algorithm from original R-NSGA-II is that three scalarizing functions are used instead
of the Euclidean distance. The advantage of the proposed synchronous R-NSGA-II algo-
rithm is that it provides several crowded groups of the non-dominatedobjective vectors for
the DM according the same preference information. Scalarizing functions are used in the
selection of the parents for recombinations, and in the generation of the new population.

The proposed synchronous R-NSGA-II algorithm has been compared with the original
R-NSGA-II solving the widely-used test problems. Two performance metrics – the gener-
ational distance and spread – are selected for the comparison of the algorithms. Moreover,
the modified spread metric for performance evaluation of the preference-based EMO al-
gorithms is proposed. The proposed metric is adapted for evaluation of the algorithms
where the several sets of grouped objective vectors are obtained.

Experimental investigation has been showed that the synchronous R-NSGA-II algo-
rithm approximates the Pareto front better than the original R-NSGA-II algorithm, and
higher spread value is insignificant in the case of the synchronous R-NSGA-II algorithm.

In the future, a new interactive method for multi-objective optimization shall be de-
veloped on basis of the proposed synchronous R-NSGA-II algorithm. As the algorithm
allows to obtain non-dominated objective vectors from several regions of interests, the
variety of the obtained solutions, that are interesting for the DM is increasing. The inter-
active method would enable the DM to achieve the desired solution in few steps.
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Pirmenybe grįstas evoliucinis algoritmas daugiakriteriniam
optimizavimui – sinchroninis R-NSGA-II

Ernestas FILATOVAS, Olga KURASOVA, Karthik SINDHYA

Klasikinių evoliucinių daugiakriterinių algoritmų tikslas – rasti visos Pareto optimalių spren-
dinių aibės aproksimaciją. Evoliuciniuose daugiakriteriniuose optimizavimo algoritmuose sprendi-
nių paiešką galima sukoncentruoti tik į tas Pareto aibės dalis, kurios tenkina sprendimų priemė-
jo teikiamą pirmenybę. Šiame straipsnyje pasiūlytas pirmenybe grįsto evoliucinio algoritmo prap-
lėtimas daugiakriteriniams optimizavimo uždaviniams spręsti, pasiremiant interaktyvaus sinchro-
ninio NIMBUS metodo įdėja ir ją pritaikant R-NSGA-II algoritmui. Pasiūlytame sinchroniniame
R-NSGA-II algoritme naudojama informacija apie sprendimų priėmėjo teikiamą pirmenybę, sie-
kiant rasti tik jį tenkinančius Pareto aibės sprendinius. Sinchroniškai naudojant kelias skaliarizacijas
funkcijas, iš tos pačios pirmenybės informacijos randamos kelios sprendinių aibės. Šiame straips-
nyje atliktas pasiūlyto sinchroninio R-NSGA-II ir originalaus R-NSGA-II algoritmų eksperimenti-
nis lyginamasis tyrimas. Gauti rezultatai parodė, kad pasiūlytas algoritmas aproksimuoja Pareto aibę
geriau nei originalus R-NSGA-II algoritmas, o sprendinių pasiskirstymo tolygumas yra pakankamai
geras. Pagrindinis pasiūlyto algoritmo privalumas lyginant su originaliuoju yra tas, kad sinchroniš-
kai gaunamos kelios nedominuojančių sprendinių grupės, atitinkančios skirtingus daugiakriterinio
uždavinio skaliarizavimo būdus, esant tai pačiai sprendimų priemėjo teikiamos pirmenybės infor-
macijai.


