
INFORMATICA, 2015, Vol. 26, No. 1, 159–180 159
 2015 Vilnius University

DOI: http://dx.doi.org/10.15388/Informatica.2015.43

Trust-Based Scheduling Strategy for Cloud
Workflow Applications

Yuli YANG1,2, Xinguang PENG1 ∗, Jianfang CAO1

1College of Computer Science and Technology, Taiyuan University of Technology

No. 79, Yinze West Street, Taiyuan 030024, China
2Department of Public Computer Teaching, Yuncheng University

No. 1155, Fudan West Street, Yuncheng 044000, China

e-mail: yangyuliyyl@126.com, sxgrant@126.com, kcxdj122@126.com

Received: January 2014; accepted: October 2014

Abstract. Traditional researches on scheduling of cloud workflow applications were mainly focused
on time and cost. However, security and reliability have become the key factors of cloud workflow
scheduling. Taking time, cost, security and reliability into account, we present a trust-based schedul-
ing strategy. We firstly formulate the cloud workflow scheduling and then propose the corresponding
algorithm, in which the trustful computation service and storage service are selected according to the
set-based particle swarm optimization (S-PSO) method and set covering problem (SCP) tree search
heuristic method, respectively. Finally, experimental results show that, compared with traditional
methods, the proposed algorithm has better performance.

Key words: cloud computing, cloud workflow system, cloud workflow scheduling, data retrieval,
trust utility value.

1. Introduction

A cloud workflow refers to the implementation of a workflow application in a cloud com-
puting environment. As a newly emerging paradigm in distributed computing, cloud com-
puting can offer three different types of services: Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS), and Software as a Service (SaaS). A cloud workflow manage-
ment system can be deemed as PaaS (Foster et al., 2008), which is conducive to the au-
tomation of distributed applications, such as large-scale e-commerce and e-science (Bessis
et al., 2013; Deelman et al., 2009). Executing the cloud workflow application has some
potential benefits (Abrishami et al., 2013; Deelman, 2010). Firstly, the business model of
pay-as-you-gomakes users purchase computational and storage capacity according to their
needs, thus reducing the cost of infrastructure (Choi et al., 2013). Secondly, the technol-
ogy of virtualization adopted in a cloud computing environment allows the cloud work-
flow management system to create a fully customized execution environment for users.
Meanwhile, the implementation of the cloud workflow application also gives rise to new

*Corresponding author.



160 Y. Yang et al.

challenges. For instance, because of the features of heterogeneity, openness and uncer-
tainty in a cloud computing environment, how to select trustful computation services and
storage services for workflow applications becomes an urgent problem (Wang et al., 2012).

The trust mechanism should be introduced in a cloud computing environment (Abbadi
and Ruan, 2013). The concept of trust mentioned in the paper involves security and relia-
bility. According to the users Quality of Service (QoS) requirements in time, cost, security
and reliability, trustful scheduling of a cloud workflow application can choose appropri-
ate computation services and storage services to fulfill tasks of the workflow application,
even in an unstable network environment.

This paper is focused on the scheduling problem of cloud workflow applications com-
posed of interdependent tasks: to retrieve of data sets required by each task from storage
resources and to schedule the task on a computation service for implementation. In our
previous work (Yang and Peng, 2013), we proposed a trust-based model of cloud workflow
scheduling, which was focused on a trade-off between time and trust using a local search
algorithm. Considering that the proposed model is not suitable for the pay-on-demand
model in cloud computing and that the local search algorithm has weak search ability,
we propose the improved model in this paper, in which the cost has been added and a
global search algorithm has been used to find the approximate scheduling solution. Our
contribution includes two aspects. Firstly, we formulate the problem of cloud workflow
applications based on the comprehensive consideration of time, cost and trust constraints.
Secondly, we propose a novel trust-based scheduling algorithm, in which the trustful com-
putation services and storage services are selected according to the S-PSO and the SCP
tree search heuristic algorithm, respectively.

This paper is organized as follows. Related research on workflow scheduling algo-
rithms is reviewed in the next section. The scheduling model based on trust is formulated
in Section 3. The trustful scheduling algorithm is described in Section 4. Simulation ex-
periment and discussion are presented in Section 5 and conclusions are given in Section 6.

2. Related Work

The scheduling problem of a workflow application in a distributed computing environment
has attracted a lot of attention from researchers. Venugopal and Buyya (2008) established
a scheduling model for data-intensive applications and proposed the SCP tree search strat-
egy to solve the model. Al-Mistarihi and Yong (2009) studied the way to ensure fairness
when users selected a resource replica under the conditions of limited resources.

With the development of distributed data-intensive computing, in order to meet the
QoS requirements of different users, the integration of reliability and security of schedul-
ing algorithms had been studied. Wang et al. (2009) proposed a scheduling scheme, in
which the trust mechanism was integrated into the life cycle of a scientific workflow to
improve the predictability and robustness of the whole scheduling process. Kołodziej and
Xhafa (2011) presented a scheduling scheme based on game theory and genetic algo-
rithms for the scheduling problem with the security requirements. They also considered



Trust-Based Scheduling Strategy for Cloud Workflow Applications 161

the multi-objective scheduling problems including the reliability and security require-
ments (Kołodziej and Xhafa, 2012). Wang et al. (2012) proposed a scientific workflow
scheduling model based on the trust mechanism described with Bayesian Theory. Yang
and Peng (2013) built a cloud workflow scheduling model based on the comprehensive
consideration of time and trust, and presented a local search algorithm to solve the model.

Moreover, since the workflow scheduling is a NP-Complete problem (Garey and John-
son, 1979), many meta-heuristic algorithms have been designed to solve cloud workflow
scheduling problems: evolutionary algorithm (EA) (Zhu and Wang, 2008), ant colony
optimization (ACO) (Chen and Zhang, 2009), and particle swarm optimization (PSO)
(Pandey et al., 2010), in which rules are integrated with randomness to imitate natural
phenomena and find the approximate solution by iteration.

Traditional researches on cloud workflow application scheduling were mainly focused
on the optimization constrained by time and cost, but the trustful scheduling including
security and reliability was seldom considered. In this paper, based on our previous work,
in which a local search algorithm was used to make a trade-off between time and trust,
we extend the approach and try to make it more suitable for cloud workflow schedul-
ing problems. We formulate the cloud workflow scheduling problem by adding the cost
factor, which is important in the cloud computing environment. Moreover, we propose a
combined global search algorithm of S-PSO and SCP to obtain the approximate solution.

3. Statement of the Problem

Before formulating the scheduling problem for cloud workflow applications, we first de-
scribe the environment components of implementing a cloud workflow, and then introduce
the requirements of security and reliability. Finally, the trust constraint model is also given
for the workflow scheduling problem.

3.1. Environment Descriptions

The IaaS service provider offers customers the virtualized services including computa-
tion services and storage services. During the implementation of the cloud workflow ap-
plication, it is usually required to store or transfer large amounts of data. For the cloud
workflow application, we assume that the IaaS service provider offers computation ser-
vices to run tasks and data storage services attached to the computation services. Amazon
Elastic Compute Cloud (EC2)2 and Amazon Elastic Block Store (EBS)3 are respectively
the representatives of the above two services. They are deployed in different data centers
DC = {dc1, dc2, . . . , dcQ} connected by different bandwidths. Figure 1 shows a simpli-
fied cloud computing environment consisting of five data centers. The numbers alongside
the connecting links represent the bandwidths between different data centers.

2http://aws.amazon.com/ec2/.
3http://aws.amazon.com/ebs/.



162 Y. Yang et al.

Fig. 1. A simplified cloud computing environment.

• Computation service: Suppose that there are M computation services denoted
as CS = {cs1, cs2, . . . , csM} with corresponding computing capacity vector C =

{c1, c2, . . . , cM}, where csi (1 6 i 6 M) can provide its computation service with
security level Scsi and reliability level Rcsi . ML = {1,2, . . . ,M} is used to denote
the set of computation services’ labels.
• Storage service: Suppose that there are P available storage services denoted as SS =

{ss1, ss2, . . . , ssP }, where ssi (1 6 i 6 P) can offer storage service with security
level Sssi and reliability level Rssi .
• Workflow application: The workflow application can be modeled as a directed

acyclic graph DAG G = 〈T ,V 〉, where T is the set of N tasks {t1, t2, . . . , tN }; an
edge (tk, ti) ∈ V indicates the constraint relationship between task tk and ti : ti could
not be executed unless tk is performed and the result is returned to ti , the immediate
predecessors tk of task ti is denoted as tk ∈ pred(ti). Each task ti ∈ T has input data,
communication data, and output data, which are usually stored as data files. ti ’s pro-
cessing length is denoted as li . Assume that the ith task requires a set of Ki input
data sets denoted by F ti , which are distributed on a subset of storage services. Espe-
cially, for a data set f ∈ F ti , the storage service which stores a copy of f is marked
as ssf . The requirements of security and reliability of task ti are respectively de-
noted as SDti and RDti . The communication data are the amount of data transmitted
from tk ∈ pred(ti) to task ti . An entry task is the task without any parent and an exit
task is the task without any child. Assume that the DAG in the paper has a single
entry and exit task. As shown in Fig. 2 (Yang and Peng, 2013), this scenario depicts
a workflow application including ten interdependent tasks. Taking the ninth task as
an example, communication data are stored as data files, and transferred from com-
putation services used for executing immediate predecessors task t4 and t5, to the
computation service used for executing t9. Besides, t9 requires 3 input data sets f1,
f2 and f3, which are replicated on different storage services. The adjacency matrix
A9 = [ajk] (1 6 j 6 P, 1 6 k 6 K9) is used to represent the storages of data sets,
where ajk = 1 if the kth data set f (denoted as fk) is replicated on storage service



Trust-Based Scheduling Strategy for Cloud Workflow Applications 163

Fig. 2. A DAG of workflow application.

Fig. 3. The adjacency matrix A9 and tableau Tab9 of task t9 in Fig. 2.

ssf (f ∈ F t9 ); P is the number of storage services; K9 is the number of data sets
F t9 required by t9; Tableau Tab9 consisting of K9 blocks is created for obtaining all
storage service solution sets according to the adjacency matrix A9. The row number
contained in the kth (1 6 k 6 K9) block is the number of storage services that con-
tain the kth data set f , and the contained rows have the same sorting order with the
rows in A9. The adjacency matrix A9 and tableau Tab9 of task t9 in Fig. 2 are shown
in Fig. 3 (Yang and Peng, 2013).
• Resource set: The selected computation service and storage services are collectively

referred as the resource set regarding the ith task, and expressed as Si = {csi, {ssi}},
where csi = csj (csj ∈ CS) represents the computation service selected for execut-
ing the ith task and ssi ⊆∪f∈F Ti ssf is the set of storage services chosen for obtain-
ing the data sets required by the ith task.



164 Y. Yang et al.

Table 1
Security level, concept and range.

Security level Security concept Security range

1 Insecurity [0.0,0.2)

2 Low security [0.2,0.4)

3 Medium security [0.4,0.6)

4 Very security [0.6,0.8)

5 High security [0.8,1.0]

3.2. Security and Reliability Requirements

In order to quantify the trust relationship between task ti and resource set Si = {csi, {ssi}},
the matrix Pss [ssf ][ti] is used to denote the failure probability of storage service ssf

chosen for transferring the data set f required by task ti (f ∈ F ti ). The matrix elements are
explained as the failure probabilities of ssf during transferring data set f because of the
high security restrictions (Kołodziej and Xhafa, 2011). The probability matrix Pss [ssf ][ti]

is calculated as Eq. (1):

Pss [ssf ][ti] =

{

0, SDti 6 Sssf

1− e−λ(k1−k2), SDti > Sssf

(1)

where the security demand vector of task ti is denoted as SDti (i = 1, . . . ,N), and Sssf is
the security level vector of storage service ssf . The values of different security levels, cor-
responding security concepts, and security ranges are shown in Table 1 (Yang and Peng,
2013). According to the results by Song et al. (2005), a real fraction in the range [0,1]

is used to quantified customers security demand and the security level of resources. The
higher the value is, the higher the users security demand or the security level of resources
is. Based on the results, in order to quantify them more finely, we divide [0,1] into five
subintervals with the same length according to five security levels. The values of SDti and
Sssf are integers from 1 to 5. The parameter λ is interpreted as a failure coefficient and is
set to be 3 according to Song et al. (2006), k1 and k2 are random values in the security
range of the corresponding security level.

Under some circumstances, the special strategies of storage services supplier or the
system’s dynamic character may make the storage service unavailable (Kołodziej and
Xhafa, 2012). Therefore, the storage service ssf for transferring data set f required by
task ti may be no longer available with a certain probability Psr[ssf ][ti] calculated by
Eq. (2).

Psr[ssf ][ti] = 1− Pr [ssf ] (2)

where the reliability probability (Rood and Lewis, 2008) Pr [ssf ] is a random value in
the range [0,1] and determined by the reliability level of the storage service ssf . The
higher the value Pr [ssf ] is, the higher the reliability of resources is. Like the method
of quantifying security, we divide [0,1] into five subintervals with the same length to



Trust-Based Scheduling Strategy for Cloud Workflow Applications 165

Table 2
Reliability level, concept and probability.

Reliability level Reliability concept Reliability probability

1 Unreliability [0.0,0.2)

2 Low reliability [0.2,0.4)

3 Medium reliability [0.4,0.6)

4 Very reliability [0.6,0.8)

5 High reliability [0.8,1.0]

quantify the reliability probability more finely according to five reliability levels. The
values of different reliability levels are shown in Table 2 (Yang and Peng, 2013).

Similar to storage services, the failure probabilities owing to the trust relationships be-
tween computation service csj and task ti are denoted as Pcs[csj ][ti] and Pcr [csj ][ti], re-
spectively. The cloud workflow schedulingmodel extended using Pss[ssf ][ti], Psr[ssf ][ti],
Pcs[csj ][ti] and Pcr[csj ][ti] is presented in the following subsection.

3.3. Trustful Cloud Workflow Scheduling Model

Traditional cloud workflow scheduling model contains the following two objectives:

• Time minimization: Time indicates the response speed of cloud service request. It
should spend the least time to complete all tasks of the cloud workflow application.
• Cost minimization: Cost is the total expenses of completing all tasks and should be

minimized.

Supposing that task ti ∈ T is assigned to computation service cst ∈ CS for execution
with non-preemptive approach. Time(ti) is defined as the completion time of task ti and
is composed of two parts: one is the time required for obtaining communication data and
input data sets before executing task ti ; the other is the time required for executing ti on
cst and denoted by Te(ti, cst ). The former is computed by Max[Maxtk∈pred(ti)(Time(tk)+

Td (tk, ti)),Maxf∈F ti (Tn(f, ssf , cst ),avail(cst )], in which Time(tk) is the time of imple-
menting the immediate predecessor tk ∈ pred(ti); Td(tk, ti) is the time required for trans-
ferring communication data from task tk to task ti ; the time required for obtaining commu-
nication data is the maximum time of task tk ∈ pred(ti) completing the data transmission
process and denoted as Maxtk∈pred(ti)(Time(tk)+Td(tk, ti)). Tn(f, ssf , cst ) is the time re-
quired for transferring the required data sets f retrieved from selected storage service ssf

to assigned computation service cst . The time required for obtaining data sets f ∈ F ti in
parallel can be computed by Maxf∈F ti (Tn(f, ssf , cst ). Besides, avail(cst ) is the earliest
time when computation service cst is ready for executing task ti . Therefore, Time(ti) can
be calculated by Eq. (3)

Time(ti) = Max
[

Max
tk∈pred(ti)

(

Time(tk)+ Td(tk, ti)
)

,Max
f∈F ti

(

Tn(f, ssf , cst )
)

,avail(cst )
]

+ Te(ti , cst ). (3)



166 Y. Yang et al.

Supposing that task tk is assigned to computation service csv for execution, then the
time required for transferring communication data from task tk to task ti is defined as
Td (tk, ti)= datatk,ti/BW(dccsv , dccst ). datatk,ti represents the amount of communication
data transmitted from task tk to task ti . BW(dccsv , dccst ) is the bandwidth between the data
centers respectively containing computation services csv and cst . Td(tk, ti) becomes zero
when both task tk and ti are run on the same computation service. The time Tn(f, ssf , cst )

is estimated using Eq. (4)

Tn(f, ssf , cst )= Tw(ssf )+ Size(f )/BW(dcssf , dccst ), (4)

where Tw(ssf ) is the waiting time from making the request to receiving the first byte of the
data set f ; Size(f ) represents the amount of data set f ; BW(dcssf , dccst ) represents the
bandwidth between data centers containing storage service ssf and computation service
cst . The desired execution time Te(ti, cst ) of task ti is given by Eq. (5)

Te(ti, cst )= li/ct , (5)

where li and ct denote the processing length of task ti and the computing capacity of
computation service cst , respectively.

Let Cost(ti) be the economic cost of implementing task ti , which includes the transfer
costs of communication data from all immediate predecessors tk ∈ pred(ti) of task ti , the
data retrieving cost of data sets from the selected storage service, and the execution cost
of task ti on assigned computation service. It is calculated by Eq. (6)

Cost(ti)=
∑

tk∈pred(ti)

Cc(datatk,ti )+
∑

f∈F ti

Cd (f )+Ce(ti , cst ), (6)

where Cc(datatk,ti ) is used to compute the transfer cost of communication data transmit-
ted from the immediate predecessor task tk to task ti , and it is determined by Eq. (7);
datatk,ti denotes the amount of communication data transmitted from task tk to task ti ;
Price(csk, cst ) denotes the transfer cost of unit data from computation service csk to cst

Cc(datatk,ti )= datatk,ti ∗ Price(csv, cst ). (7)

The transfer cost of data set f from the selected storage service ssf to the allocated com-
putation service cst is computed by Eq. (8)

Cd (f )= Size(f ) ∗ Price(ssf , cst ), (8)

where Size(f ) is the amount of data set f , and Price(ssf , cst ) denotes the transfer cost
of unit data from storage service ssf to computation service cst . The execution cost of
task ti on computation service cst is computed by Eq. (9)

Ce(ti , cst )= Te(ti, cst ) ∗ Price(cst ), (9)



Trust-Based Scheduling Strategy for Cloud Workflow Applications 167

where Te(ti, cst ) is the execution time of task ti , and Price(cst ) is the cost of computation
service cst per unit time.

According to the completion time of task ti , Eq. (10) is used to compute the makespan
of the cloud workflow application modeled as DAG

Makespan(DAG)=Maxti∈T

(

Time(ti)
)

. (10)

Similarly, the total cost of the cloud workflow application is defined as Eq. (11)

Cost(DAG)=
∑

ti∈T

Cost(ti). (11)

The heterogeneous, dynamic and open characteristics of cloud computing environ-
ments bring a lot of uncertainty on the execution of the workflow application. How to
obtain trustful service becomes a critical issue. For the purpose of integrating the trust
relationship between resource sets and tasks into the calculation process of time and cost,
the scheduling model is extended by considering the failure probabilities and the unavail-
able probabilities of selected resource sets. So, the completion time Time(ti) of task ti
can be calculated in three steps. Firstly, considering the failure probabilities and the un-
available probabilities of computation service cst and csv caused by transferring commu-
nication data between them, which are denoted as Pcs[cst ][ti], Pcr[cst ][ti], Pcs[csv][ti]

and Pcr [csv][ti], respectively, the expected time of gaining communication data can be
extended based on Td(tk, ti) and calculated using Eq. (12). Secondly, the failure probabil-
ities and the unavailable probabilities of storage service ssf and computation service cst ,
which are denoted as Pss[ssf ][ti], Psr[ssf ][ti], Pcs[cst ][ti] and Pcr[cst ][ti], are consid-
ered when estimating the expected time of retrieving data set f ∈ F ti . It can be extended
based on Tn(f, ssf , cst ) and computed by Eq. (13). Thirdly, the failure probability and the
unavailable probability of computation service cst denoted as Pcs[cst ][ti] and Pcr[cst ][ti]

are considered for estimating the expected execution time, which can be extended based
on Te(ti, cst ) and estimated by Eq. (14). Based on Eqs. (12) to (14), the completion time
Time′(ti) can be computed by Eq. (15):

T ′d (tk, ti)= Td(tk, ti) ∗
(

1+ Pcs[cst ][ti] + Pcr [cst ][ti] + Pcs[csv][ti] + Pcr [csv][ti]
)

,

(12)

T ′n(f, ssf , cst )= Tn(f, ssf , cst ) ∗
(

1+ Pss[ssf ][ti] + Psr[ssf ][ti]

+ Pcs[cst ][ti] + Pcr [cst ][ti]
)

, (13)

T ′e(ti , cst )= Te(ti , cst ) ∗
(

1+ Pcs[cst ][ti] + Pcr[cst ][ti]
)

, (14)

Time′(ti)=Max[Maxtk∈pred(ti)

(

Time′(tk)+ T ′d (tk, ti)
)

,Maxf∈F ti

(

Tn(f, ssf , cst )
)

,

avail(cst )
]

+ T ′e(ti, cst ). (15)

So, the makespan of the workflow application is computed by Eq. (16)

Makespan′(DAG)=Maxti∈T

(

Time′(ti)
)

. (16)



168 Y. Yang et al.

Similar to the makespan of the workflow application, the cost of it can be extended by
Eqs. (17), (18), (19), (20) and (21):

C′c(datatk,ti )= Cc(datatk,ti ) ∗
(

1+ Pcs[cst ][ti] + Pcr[cst ][ti]

+ Pcs[csv][ti] +Pcr [csv][ti]
)

, (17)

C′d (f )= Cd (f ) ∗
(

1+ Pss[ssf ][ti] + Psr[ssf ][ti] +Pcs[cst ][ti] + Pcr[cst ][ti]
)

,

(18)

C′e(ti , cst )= Ce(ti, cst ) ∗
(

1+Pcs[cst ][ti] + Pcr[cst ][ti]
)

, (19)

Cost′(ti)=
∑

tk∈pred(ti)

C′c(datatk,ti )+
∑

f∈F ti

C′d (f )+C′e(ti , cst ), (20)

Cost′(DAG)=
∑

ti∈T

Cost′(ti). (21)

According to the objectives of time and cost with different dimensions, the method
of normalization described in Eq. (22) can be used to map each objective into a value
between 0 and 1 and translate the multi-objective optimization into a weighted sum of
objectives. Supposing that there are Q cloud workflow scheduling solutions, for a certain
solution Si (1 6 i 6 Q), the value of which can be computed according to Eq. (22), and
be denoted as the comprehensive utility value. The scheduling solution that corresponds
to the maximum comprehensive utility value is deemed as the final solution

ComU(Si)=w1

Tmax − T ′(Si)

Tmax − Tmin

+w2

Cmax −C′(Si)

Cmax −Cmin

. (22)

In Eq. (22), T ′(Si) and C′(Si) are denoted the makespan and the cost of a certain
solution Si (1 6 i 6 Q). Tmax(Tmin) is the maximal (minimal) makespan of all scheduling
solutions; Cmax(Cmin) is the maximal (minimal) cost of all scheduling solutions. After
calculating the makespan and cost of all scheduling solutions and selecting the maximal
(minimal) makespan and maximal (minimal) cost, Tmax(Tmin) and Cmax(Cmin) can be
obtained. wk ∈R+(

∑

2

k=1
wk = 1) is a non-negative weight of the kth objective function.

Assuming that the security and reliability are equally important in this paper, w1 = 0.5

and w2 = 0.5 are adopted in this paper.

4. Trust-Based Heuristic Scheduling Algorithm

In this section, we present a trust-based heuristic scheduling algorithm (TBHSA) for the
cloud workflow application. The optimization process of TBHSA consists of two parts.
The steps of mapping the relationship between tasks and computation services with S-PSO
are introduced in Algorithm 1. The steps of mapping the task-storage services relationship
with SCP tree search heuristic method are listed in Algorithm 2.



Trust-Based Scheduling Strategy for Cloud Workflow Applications 169

4.1. S-PSO for Task-Computation Service Mapping

The trust-based scheduling of cloud workflow applications belongs to a typical discrete
optimization problem (Fabio et al., 2009). Therefore, we attempt to establish the mapping
relationship between tasks and computation services with a discrete PSO algorithm named
S-PSO. To understand S-PSO well, the standard discrete particle swarm optimization is
introduced firstly as follows.

4.1.1. Canonical Model

The canonical PSO is a self-adaptive stochastic intelligence algorithm developed by
Kennedy and Eberhart (1995) under the inspiration of the group behaviors of many birds.
The process when the birds fly to the habitat with a good food source can be interpreted
as the process to find an approximate solution according to a set of rules. Each individ-
ual in PSO is considered as a particle without quality or volume, which can fly in the
N -dimension space at a certain speed to search for better solutions. Each particle adjusts
its speed and direction of the flight dynamically according to the flying experience of in-
dividuals and groups. The updating rules of the particle’s velocity and position are shown
in Eqs. (23) and (24):

V t+1

i = ωV t
i + c1r1

(

pbesti −Xt
i

)

+ c2r2(gbest−Xt
i

)

, (23)

Xt+1

i =Xt
i + V t+1

i , (24)

where V t
i and Xt

i are the velocity and position of particle i at the t th iteration, respectively;
pbesti is the best position of particle i , which has the best fitness value computed according
to the fitness function; gbest is the position of the best particle in the whole swarm; ω is the
inertia weight; c1 and c2 represent acceleration factors of individual and social perception;
r1 and r2 are the random values between 0 and 1 to maintain the diversity of the population.

4.1.2. The S-PSO

Because the updating rules (23) and (24) are all defined in a continuous space, they cannot
be used to solve optimization problems in the discrete space directly. We adopt the S-PSO
(Chen et al., 2010) to find a suitable mapping between tasks and computation services. Lin
and Kernighan (1973) believed that a combinatorial optimization problem (COP) usually
could be formulated as such a model, in which a subset X = X1 ∪ X2 ∪ · · · ∪ XN was
found from a universal set E = E1 ∪E2 ∪ · · · ∪EN divided into N dimensions to satisfy
certain constraints � and optimize the objective function f simultaneously. Based on the
point above, we define the search space of the cloud workflow with N tasks as a univer-
sal set E = E1 ∪ E2 ∪ · · · ∪ EN , where Ei = {cs1

i , cs2

i , . . . , csr
i } represents r available

computation services for ti . Meanwhile, a scheduling solution of the cloud workflow is
given as Xi = (X1

i ,X
2

i , . . . ,X
N
i ), in which X

j
i ∈ Ej (j = 1,2, . . . ,N) is the number of

computation service used to execute task tj . Xi is a feasible solution only if it satisfies
cloud customers’ QoS requirements. The goal of the cloud workflow scheduling problem
is to find an approximate solution X∗i ⊆ E, which owns the maximum comprehensive



170 Y. Yang et al.

utility value according to Eq. (22). The updating rule (23) is used by the S-PSO under the
premise of operations in the set space. The redefined operators are given as follows:

• Position: A position in S-PSO denotes a feasible solution of the cloud workflow
scheduling problem. Namely, the position Xi = (X1

i ,X
2

i , . . . ,X
N
i ) (Xi ⊆ E) of

particle i is composed of N dimensions. For each dimension, X
j
i ∈ Ej (j =

1,2, . . . ,N). pbesti ⊆E and gbest ⊆E represent the best position of particle i and
the population.
• Velocity: The velocity Vi = {e/p(e)|e ∈E} of particle i is a set defined on E with

the probability p(e) and each dimension V
j
i = {e/p(e)|e ∈ Ej } in velocity Vi is a

set defined on Ej with the probability p(e).
• Coefficient × velocity: Supposing that coefficient c is a non-negative real number,

the result of c multiplied by velocity V is defined as Eq. (25)

cV =
{

e/p′(e)|e ∈E
}

, p′(e)=

{

1, if c× p(e) > 1,

c× p(e), otherwise.
(25)

• Position − position: The subtraction operation between two positions is defined as
Eq. (26).

A−B = {e|e ∈A and e /∈ B}. (26)

• Coefficient × (position – position): The operator about “Coefficient × (position –
position)” is defined as Eq. (27)

cE′ =
{

e/p′(e)|e ∈E
}

, p′(e)=











1, if e ∈E′ and c > 1,

c, if e ∈E′ and 0 6 c 6 1,

0, if e /∈E′.

(27)

• Velocity + velocity: Assuming that velocity V1 and V2 are the sets defined on E

with the probability p1(e) and p2(e), respectively. The addition operation with V1

and V2 is defined as Eq. (28)

V1 + V2 =
{

e/max(p1(e),p2(e))|e ∈E
}

. (28)

The updating rules of the particle’s position in the discrete space include the following
steps:

Step 1: The j th dimension of the velocity Vi is converted into a crisp set cuta(V
j

i )=

{e|e/p(e) ∈ V
j

i , p(e) > a}, where a is a random value between 0 and 1.
Step 2: Starting from an empty set, the position value of each dimension about the ith

particle is established from the crisp set cuta(V
j
i ), the previous position X

j
i , and other

feasible elements successively.
Supposing that PNum denotes the size of particle swarm, then the number of particle’s

dimensions is equal to the number of tasks included in the cloud workflow application.



Trust-Based Scheduling Strategy for Cloud Workflow Applications 171

Algorithm 1 The S-PSO
Input:

G= 〈T ,E〉: The DAG of the cloud workflow application
lj (1 6 j 6 N): Task tj ’s length
SDtj and RDtj : Task tj ’s security and reliability demand
f (f ∈ F tj ): A set of data sets required by task tj

Size(f ): The size of data set f

ssf : The storage service storied data set f

Sssf and Rssf : Storage service ssf ’s security and reliability level

srPrice(cst ) (1 6 t 6M): The cost of computation service cst

Scst and Rcst : Computation service cst ’s security and reliability level
Price(UniDat): The cost of transferring unit data between resource sets
PNum: The size of particle swarm
g and G: The current iteration and the number of maximum iteration
BW[dcx][dcy] (1 6 x 6 Q,1 6 y 6Q): The bandwidth between data centers

Output:

Schedule
1: for tj ∈ T do

2: Create(Aj ) according to Section 2.1
3: Compute(Pss[ssf ][tj ],Psr[ssf ][tj ],Pcs[cst ][tj ],Pcr[cst ][tj ]) according to

Eqs. (1), (2) et al.
4: end for

5: Initialize(v1

ij , x
1

ij ) (1 6 i 6 PNum,1 6 j 6 N)

6: StorageServiceSelect(x1

ij ,Ai) according to Section 3.2
7: Calculate(fitness(Xi)) according to Eq. (22)
8: Initialize(pbest1

i ,gbest1)

9: while g < G do

10: Update(v
g
ij ) according to Eq. (23)

11: Update(x
g
ij ) according to Section 3.1.2

12: StorageServiceSelect(x
g
ij ,Aj ) according to Section 3.2

13: Update(fitness(Xi)) according to Eq. (22)
14: Update(pbest

g
i ,gbestg)

15: g++

16: end while

17: Output gbest
g
j and corresponding storage services

The position value of each dimension is denoted the number of computation service used
for executing the corresponding task. So each dimension’s value of a particle is limited to
computation services’ labels ML = {1,2, . . . ,M}, namely, Xi = {xij |xij ∈ML, 1 6 i 6

PNum, 1 6 j 6 N}. Since a particle indicates a scheduling solution of the cloud workflow
application, the terms “particle” and “solution” can often be used interchangeably. The



172 Y. Yang et al.

fitness function used to evaluate the performance of the particle is designed as Eq. (22).
The S-PSO algorithm for mapping all tasks to a set of given computation services includes
three different stages as follows:

Initialization stage (lines 1–8): Firstly, adjacency matrix Aj of task tj is generated
according to Section 2.1. Then, the probabilities of the failures caused by the security
and reliability of resource sets are computed. In Line 5, the position of the particle x1

ij

is initialized randomly with computation services’ labels ML = {1,2, . . . ,M}, and the
velocity of the particle v1

ij is initialized by selecting a positive integer from 1 to M and a
random value in [0,1]. The mapping relationship between task tj and storage services is
described in Section 3.2. According to the resource sets Sj = {csj , {ssj }} of task tj , each
particle is evaluated by Eq. (22) in line 7. In the first iteration, the pbest1

i of particle i and
the gbest1 of the population are initialized by a copy of x1

ij and the best pbest1
s (1 6 s 6

PNum) among all the particles.
Execution stage (lines 9–16): In each iteration, the updating velocity of particle i

is determined by Eq. (23) and all operators in Eq. (23) follow the redefinitions in Sec-
tion 3.1.2. After updating the velocity of the particle, the particle’s position is updated
according to the updating steps of the position given in Section 3.1.2. The data sets re-
quired by the j th task are obtained through the storage service selection tactics introduced
in Section 3.2. Then each particle’s fitness value will be updated by Eq. (22), and pbest

g
i

and gbestg in the gth iteration will be updated according to the results. At last, g will be
increased by 1 and the next iteration will be started.

Termination stage (line 17): Through the procedure outlined in Algorithm 1, the best
solution chosen from all feasible solutions, which has the maximum comprehensive utility
value according to Eq. (22), is deemed as the final solution.

4.2. The SCP Tree Search Algorithm for Task-Storage Service Mapping

The SCP tree search strategy was proposed by Venugopal and Buyya (2008) to map tasks
to resources. In this paper, this strategy is improved through considering the trust relation-
ship between resource sets and tasks. The steps in the improved algorithms for choosing
storage services are listed in Algorithm 2.

It starts with initializing the following parameters (line 1), where B is used to keep
the selected storage services. The set U contains the data sets already covered by the
storage service solution set. All schemes of storage service solution sets are stored in
BNum

store, and Num is used to record the number of schemes. B
j
Best is used to store the best

storage service set solution for task tj and the variable z is the value calculated by the
current solution set. Tableau Tabj is generated according to Section 2.1 (line 2). Then, the
blocks in Tabj are searched sequentially to obtain all storage service solution sets (line 3
and lines 9–18), which starts from the smallest index k (fk /∈ U). In the kth block, dk

q

indicates the storage service ssk , where q is a row pointer in block k. If the row contains 1,
corresponding data set fi should be added to U and corresponding storage service dk

q

should be added to B . If all the data sets have been covered (U = F tj ), B is stored in
BNum

store and Num is updated; otherwise, a recursive method is adopted to obtain all the



Trust-Based Scheduling Strategy for Cloud Workflow Applications 173

Algorithm 2 StorageServiceSelect(csj ,Aj )

Input:

The adjacency matrix Aj of task tj

Output:

The storage services B
j
Best of task tj

1: Initialize(B = ∅, U = ∅, BNum
store = ∅, Num= 0,B

j
Best = ∅, z= 0)

2: Create(Tabj )

3: Search(tj ,B,Tabj ,U)

4: for i ∈ [1,Num] do

5: if z < fitness(CSj ,Bi
store) then

6: B
j

Best← Bi
store, z← fitness(CSj ,Bi

store)

7: end for

8: Output(B
j
Best)

9: Search(tj ,B,Tabj ,U)

10: Mark(Tabk
j )(fk /∈ U)

11: while q 6 Tabk
j do

12: FT ←{fi |tqi = 1, 1 6 i 6 K}

13: U←U ∪FT , B← B ∪ {dk
q }

14: if U = F tj then
15: BNum

store← B,Num++

16: else Search(tj ,B,Tabj ,U)

17: B← B − {dk
q },U← U − FT , q ++

18: end while

solution sets in the branches of different blocks. At last, the best storage service solution
set is selected from BNum

store for task tj (lines 4–8). For each storage service solution set
Bi

store (i ∈ [1,Num]), if the fitness value calculated according to Eq. (22) is higher than
the existing value of z, then B

j
Best is replaced by Bi

store and z is updated according to the
fitness value.

4.3. Experimental Settings

To evaluate the proposed algorithm, we developed a simulation platform based on
Cloudsim (2012). Due to the limited availability of data about cloud workflow schedul-
ing, we have to use the data generated randomly to simulate the process. To understand
the simulation process more clearly and orderly, we have divided parameters into three
categories. The parameters and their value ranges contained in each category are given in
Table 3.

We adopted makespan, cost, and trust utility metrics for performance evaluation.
Makespan is the time of completing all the tasks of the cloud workflow application and
can be computed by Eq. (16). The cost is the sum of the costs of completing all tasks and
can be computed by Eq. (21). Suppose the resource sets selected for task ti is denoted as



174 Y. Yang et al.

Table 3
Simulation parameter setting.

Category Parameter Range of vale

DAG The number of tasks [10,100]

The processing length of each task [10,100]

The size of data files [100,1000]

Cloud platform The bandwidth between data centers [20,50]

Computation services’ computing capacity [2,10]

Resource sets’ security and reliability [1,5]

The cost of resource sets [1,3]

QoS requirement Requirement of security and reliability [1,5]

Si = {csi, {ssi}}, where csi = cst represents the computation service for executing task
ti and ssi ⊆ ∪f∈F Ti ss is the set of storage services for obtaining the required data sets.
Security utility value CSeU(cst , ti) and reliability utility value CReU(cst , ti) of execut-
ing task ti on computation service cst are respectively defined as Eq. (29) and Eq. (30),
in which Scst and Rcst represent the security and reliability level of computation service
cst ; SDti and RDti denote security and reliability demand of task ti ; the values of S_ Max
and R_ Max denoted the maximal level of security and reliability demand are all equal to
5 according to Tables 1 and 2.

CSeU(cst , ti)=

{

1, Scst > SDti ,

1−
SDti
−Scst

S_Max−Scst
, Scst < SDti ,

(29)

CReU(cst , ti)=

{

1, Rcst > RDti ,

1−
RDti
−Rcst

R_Max−Rcst
, Rcst < RDti .

(30)

The definitions of security utility value SSeU(ssf , ti) and reliability utility value
SReU(ssf , ti) of obtaining data set f ∈ F ti required by task ti from storage service ssf

are similar to those of computation service cst . The trust utility value of task ti can be
defined as Eq. (31)

TUtil
(

ti, cst ,
{

ssi
})

= CSeU(cst , ti)+CReU(cst , ti)

+
∑

f∈F ti

(

SSeU(ssf , ti)+ SReU(ssf , ti)
)

. (31)

The total trust utility value of the cloud workflow is calculated by Eq. (32)

TotTUtil(DAG)=
∑

ti∈T

TUtil
(

ti, cst ,
{

ssi
})

. (32)

It should be pointed out that the trust of resource sets including security and reliability
is integrated into the fitness function expressed as Eq. (22). In order to obtain maximum



Trust-Based Scheduling Strategy for Cloud Workflow Applications 175

comprehensive utility value, the scheduling scheme should allocate tasks to trustful re-
source sets, which can decrease makespan and cost to some extent. Therefore, the approx-
imate solution should make a trade-off among makespan, cost and the total trust utility
value.

4.4. Simulation Experiments and Evaluations

4.4.1. Experimental Results

First of all, a small-scale scheduling example is used to test the performance of TBHSA.
It includes a workflow application with ten tasks, six computation services and six stor-
age services, denoted as (T10, CS6, SS6). The DAG model of the workflow application is
shown in Fig. 2. The performances of TBHSA, SCP-based scheduling algorithm (SCPSA)
(Venugopal and Buyya, 2008), and trust-based scheduling algorithm (TSA) (Yang and
Peng, 2013) are compared. Evaluation results are provided in Tables 4, 5 and 6. For
TBHSA, the inertia weight ω is set to be 0.6 and parameters c1 and c2 are both set as
2.0. The number of maximum iteration G and the size of particle swarm PNum are set to
be 200 and 50.

From Tables 4–6, it can be seen that the makespan and the total trust utility value
generated by TSA and TBHSA are superior to those generated by SCPSA, but the cost
generated by them are inferior to those generated by SCPSA. Because the trust constraints
considered by them result in an extra cost. Besides, it is obvious that the schedule generated
by TBHSA is better than that generated by TSA. The reason is that TBHSA uses a global
search algorithm with strong search ability, whereas TSA uses a local search algorithm
with weak search ability.

The proposed algorithm TBHSA is further compared with three representative meta-
heuristic algorithms: EA, ACO and PSO. Zhu and Wang (2008) constructed a novel task
scheduling model focused on time and security constrains and proposed an EA to solve
it. Chen and Zhang (2009) presented an ant colony optimization (ACO) algorithm based
on seven new heuristics for large-scale workflows. In ACO, different QoS parameters, in-
cluding reliability, time and cost, were considered to search a solution which could satisfy

Table 4
A schedule generated by the SCPSA.

Task Resource set Time′(ti ) Cost′(ti ) TUtil(ti )

t1 {cs5, {ss6, ss6, ss6}} 4.66 32 6.2
t2 {cs6, {ss5, ss2, ss6, ss5}} 204.4 56 8.5
t3 {cs5, {ss5, ss2, ss5}} 224.6 38 7.1
t4 {cs3, {ss1, ss2, ss2, ss5}} 97.5 54 9.3
t5 {cs5, {ss6, ss6}} 38 22 4.25
t6 {cs6, {ss5, ss5, ss5, ss4}} 234.1 59 8.8
t7 {cs6, {ss5, ss5, ss3, ss5}} 246.4 67 8.1
t8 {cs5, {ss6, ss6, ss3, ss6}} 246.2 46 7.85
t9 {cs3, {ss2, ss1, ss2, ss5}} 248.6 53 9.15
t10 {cs6, {ss5, ss3, ss5}} 270.1 51 5.5
Makespan′(DAG)= 270.1 Cost′(DAG)= 478 TotTUtil(DAG)= 74.75



176 Y. Yang et al.

Table 5
A schedule generated by the TBHSA.

Task Resource set Time′(ti ) Cost′(ti ) TUtil(ti )

t1 {cs5, {ss6, ss6, ss6}} 4.66 32 6.2
t2 {cs5, {ss6, ss6, ss6, ss3}} 158.7 64 9.6
t3 {cs6, {ss5, ss2, ss5}} 91.9 38 7.1
t4 {cs3, {ss1, ss2, ss2, ss5}} 157.7 54 9.3
t5 {cs4, {ss3, ss1}} 42 19 5.75
t6 {cs6, {ss5, ss5, ss5, ss4}} 201.6 59 8.8
t7 {cs4, {ss1, ss5, ss3, ss4}} 172 64 9.45
t8 {cs6, {ss5, ss3, ss4, ss2}} 205.4 50 9
t9 {cs4, {ss2, ss1, ss4, ss5}} 189 49 9.3
t10 {cs6, {ss5, ss3, ss5}} 221.5 51 5.5
Makespan′(DAG)= 221.5 Cost′(DAG)= 480 TotTUtil(DAG)= 80

Table 6
A schedule generated by the TSA.

Task Resource set Time′(ti ) Cost′(ti ) TUtil(ti )

t1 {cs5, {ss6, ss6, ss6}} 4.66 32 6.2
t2 {cs5, {ss6, ss6, ss6, ss3}} 158.7 64 9.6
t3 {cs6, {ss5, ss2, ss5}} 91.9 38 7.1
t4 {cs3, {ss1, ss2, ss2, ss5}} 157.7 54 9.3
t5 {cs5, {ss6, ss6}} 164.2 22 4.25
t6 {cs6, {ss5, ss5, ss5, ss4}} 201.9 59 8.8
t7 {cs6, {ss5, ss5, ss3, ss5}} 214.06 67 8.1
t8 {cs6, {ss5, ss3, ss4, ss2}} 227.6 50 9
t9 {cs3, {ss2, ss1, ss2, ss5}} 200.7 53 9.15
t10 {cs6, {ss5, ss3, ss5}} 236.3 51 5.5
Makespan′(DAG)= 236.3 Cost′(DAG)= 490 TotTUtil(DAG)= 77

all QoS constraints and optimize the QoS parameter according to the user’s preference.
Pandey et al. (2010) proposed a particle swarm optimization (PSO) algorithm for cloud
workflow applications to minimize the total cost, including computation cost and data
transmission cost. The following four scheduling problems are selected for testing: (T12,
CS3, SS3), (T14, CS3, SS4), (T16, CS5, SS6), and (T20, CS6, SS6). In EA, the crossover
rate and the mutation rate are respectively set to be 0.7 and 0.1. According to Wu et al.
(2013), in ACO, the weights of heuristic information and pheromone are set as 2 and 1,
respectively. The updating rate of local pheromone and global pheromone are all 0.1. The
parameters in PSO are the same to those in TBHSA. For fairness, the fitness function, the
maximum iteration and the number of new individuals of four algorithms are the same.
The experimental results based on the three basic performance metrics of makespan, cost
and the total trust utility value are provided in Table 7.

From Tables 7, we can draw the conclusion that the scheduling obtained from TBHSA
is better than those obtained from EA, ACO, and PSO. TBHSA can map tasks to the
trustful computation services for execution and retrieval of the required data sets from
trustful storage services, thus improving the trustworthiness of execution environment.



Trust-Based Scheduling Strategy for Cloud Workflow Applications 177

Table 7
The results of performance indexes generated by four algorithms.

Performance Instance EA ACO PSO TBHSA

Makespan′(DAG) (T12, CS3, SS3) 442.8 403.2 383.6 330.5

(T14, CS3, SS4) 565.3 522.4 502.1 480.7

(T16, CS5, SS6) 743.2 696.8 613.5 570.2

(T20, CS6, SS6) 871.2 810.9 783.7 732.5

Cost′(DAG) (T12, CS3, SS3) 843.1 703.2 688.4 652.8

(T14, CS3, SS4) 1091.3 978.7 893.1 870.5

(T16, CS5, SS6) 1447.2 1306.3 1148.7 1090.1

(T20, CS6, SS6) 1749.6 1502.5 1486.5 1330.6

TotTUtil(DAG) (T12, CS3, SS3) 213.8 251.2 222.2 283.5

(T14, CS3, SS4) 291.6 316.1 324.5 332.4

(T16, CS5, SS6) 394.7 407.5 387.8 417.8

(T20, CS6, SS6) 445.8 423.6 408.2 450.7

Table 8
The comprehensive utility values of (T50, CS8, SS10) generated by four algorithms.

1 2 3 4 5 6 7 8

EA 0.913 0.861 0.863 0.889 0.895 0.892 0.913 0.923
ACO 0.965 0.912 0.926 0.928 0.913 0.925 0.969 0.965
PSO 0.920 0.929 0.912 0.921 0.965 0.971 0.958 0.982
TBHSA 0.976 0.969 0.986 0.993 0.962 0.975 0.988 0.992

Table 9
Significance test using Duncan for four algorithms.

Algorithm Number Subset for alpha = 0.05

1 2 3

EA 8 0.89363
ACO 8 0.93788
PSO 8 0.94475
TBHSA 8 0.98013
Sig. 1.000 0.541 1.000

4.4.2. Significance Test

Furthermore, a significance test is used to evaluate the performances of four algorithms.
Each experiment of the instance (T50, CS8, SS10) is repeated for 8 times with the same
configuration parameters. According to Eq. (22), the comprehensiveutility values of (T50,
CS8, SS10) obtained respectively by four algorithms are provided in Table 8.

To compare the performances of four algorithms, according to Table 8, the signifi-
cance test is carried out with SPSS (Statistical Product and Service Solutions) 19.0. One-
way analysis of variance (ANOVA) is performed through post-hoc analysis with Duncan
method. The significance level is set at 0.05. The results of significance test are shown in
Table 9.

In Table 9, the first column lists the algorithms being tested, which are ordered from
the smallest to the largest according to their average of 8 comprehensive utility values in



178 Y. Yang et al.

Table 8. The second column lists the sample number used to calculate their mean. The
third column lists the comparison results at the significant level of 0.05 and the averages
in the same child column indicate that the corresponding algorithm has no significant
difference. For example, the averages (0.93788 and 0.94475) are in the same second child
column, indicating that the corresponding algorithms of ACO and PSO have no significant
difference. The last row of the table is the mean variance homogeneity test promotion rate,
the value greater than 0.05 indicates that the variance among groups is homogeneous.
According to Table 9, we can know that TBHSA shows the significant difference compared
with EA, PSO, and ACO and that there is no significant difference between PSO and ACO,
et al.

5. Conclusions and Future Work

By integrating the trust mechanism into the strategy for cloud workflow applications, the
proposed trust-based scheduling algorithm TBHSA can make an effective allocation of
tasks to trustful resource sets and improve the trustworthiness of execution environment.
The main contribution of this paper includes formulating the trust relationship between
tasks and resource sets and extending the traditional formulation of the scheduling prob-
lem. Experimental results indicate that TBHSA can get a higher comprehensive utility
value than the traditional algorithms.

In the next phase of our research, we will study the way to describe the characteristics
of trust and the trust relationships between resources sets and tasks more effectively.

Acknowledgement. This research is part of Projects 2009011022-2 and 2013011017-2
supported by Natural Science Foundation of Shanxi Province.

References

Abbadi, I.M., Ruan, A. (2013). Towards trustworthy resource scheduling in clouds. IEEE Transactions on Infor-

mation Forensics and Security, 8(6), 973–984.
Abrishami, S., Naghibzadeh. M., Epema, D. (2013). Deadline-constrained workflow scheduling algorithms for

infrastructure as a service clouds. Future Iteration Computer Systems, 29(1), 158–169.
Al-Mistarihi, H.E., Yong, C. (2009) On fairness, optimizing storage service selection in data grids. IEEE Trans-

actions on Parallel and Distributed Systems, 20(8), 1102–1111.
Bessis, N., Sotiriadis, S., Xhafa, F., Asimakopoulou, E. (2013). Cloud scheduling optimization: a reactive model

to enable dynamic deployment of virtual machines instantiations. Informatica, 24(3), 357–380.
Chen, W.L., Wu, W.J., Shi, Y.H. (2010). A novel set-based particle swarm optimization method for discrete

optimization problem. IEEE Transactions on Evolutionary Computation, 14(2), 278–300.
Chen, W.N., Zhang, J. (2009). An ant colony optimization approach to a grid workflow scheduling problem

with various QoS requirements. IEEE Trans. on Systems, Man, and Cybernetics-Part C: Applications and

Reviews, 39(1), 29–43.
Choi, J., Choi, C., Yim, K., Kim, P. (2013). Intelligent reconfigurable method of cloud computing resources for

multimedia data delivery. Informatica, 24(3), 381–394.
Cloudsim, The Clouds Lab (2012). udsim: a framework for modeling and simulation of cloud computing infras-

tructures and servicesClo. Available at http://www.cloudbus.org/cloudsim/, accessed 28/02/2012.



Trust-Based Scheduling Strategy for Cloud Workflow Applications 179

Deelman, E. (2010). Grids and clouds: making workflow applications work in heterogeneous distributed envi-
ronments. International Journal of High Performance Computing Applications, 24(3), 284–298.

Deelman, E., Gannon, D., Shields, M., et al. (2009). Workflows and e-science: an overview of workflow system
features and capabilities. Future Iteration Computer Systems, 25(5), 528–540.

Fabio, D., Fagundez, A., Xavier, J. (2009). Continuous nonlinear programming techniques to solve scheduling
problems. Informatica, 20(2), 203–216.

Foster, I., Zhao, Y., Raicu, I., et al. (2008). Cloud computing and grid computing 360-degree compared. In:
IEEE Grid Computing Environments. IEEE Press, New York, pp. 60–69.

Garey, M.R., Johnson, D.S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco.

Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. In: IEEE International Conference on Neural

Networks, pp. 1942–1948.
Kołodziej, J., Xhafa, F. (2011). Meeting security and user behavior requirements in grid scheduling. Simulation

Modelling Practice and Theory, 19(1), 213–226.
Kołodziej, J., Xhafa, F. (2012). Integration of task abortion and security requirements in GA-based meta-

heuristics for independent batch grid scheduling. Computers and Mathematics with Applications, 63(2),
350-364.

Lin, S., Kernighan, B.W. (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations

Research, 21(2), 498–516.
Pandey, S., Wu L., Guru S., et al. (2010). A particle swarm optimization-based heuristic for scheduling workflow

applications in cloud computing environments. In: 24th IEEE International Conference on Advanced Infor-

mation Networking and Applications. Institute of Electrical and Electronics Engineers Inc., Perth, pp. 400–
407.

Rood, B., Lewis, M.J. (2008). Resource availability prediction for improved Grid scheduling. In: Proc. of 4th

IEEE Int. Conf. on eScience. Inst. of Elec. and Elec. Eng. Computer Society, Indianapolis, pp. 711–718.
Song, S.S., Hwang, K., Zhou, R., et al. (2005). Trusted P2P transactions with fuzzy reputation aggregation. IEEE

Internet Computing, 9(6), 24–34.
Song, S.S., Hwang, K., Kwok, Y.K. (2006). Risk-resilient heuristics and genetic algorithms for security-assured

grid job scheduling. IEEE Transactions on Computers, 55(6), 703–719.
Venugopal, S., Buyya, R. (2008). An SCP-based heuristic approach for scheduling distributed cloud workflow

application on global grids. J. Parallel Distrib. Comput, 68(4), 471–487.
Wang, M., Ramamohanarao, K., Chen, J. (2009). Trust-based robust scheduling and runtime adaptation of sci-

entific workflow. Concurrency and Computation: Practice and Experience, 21(3), 1982–1998.
Wang, W., Zeng, G.S., Tang, D.Z., et al. (2012). Cloud-DLS: Dynamic trusted scheduling for cloud computing.

Expert Systems with Applications, 39(3), 2321–2329.
Wu, Z.J., Lin X., Ni, Z.W., et al. (2013). A market-oriented hierarchical scheduling strategy in cloud workflow

systems. Journal of Supercomputing, 63(1), 56–293.
Yang, Y.L., Peng, X.G. (2013). Trust-based scheduling strategy for workflow applications in cloud environment.

In: P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC). IEEE Press, pp. 316–320.
Zhu, H., Wang, Y.P. (2008). Security-driven task scheduling based on evolutionary algorithm. In: Proc. of the

Computational Intelligence and Security. IEEE Press, New York, pp. 451–456.



180 Y. Yang et al.

Y.L. Yang received her MS degree in Computer Science and Technology from Guangxi
Normal University, China, in 2007. Now she is studying for her PhD degree in College of
Computer and Software at Taiyuan University of Technology, China. Her research inter-
ests are related with computer network security and cloud computing.

X.G. Peng graduated from Beijing Institute of Technology, China, in 2004 and received
his PhD in Computer Science and Technology. He is now a professor in College of Com-
puter science and technology, Taiyuan University of Technology, Taiyuan, China. His re-
search interests mainly focus on computer network security, trusted computing and cloud
computing.

J.F. Cao received her MS degree in Computer Science and Technology from Shanxi
University, China, in 2005. Currently she is studying for her PhD degree in College of
Computer and Software, Taiyuan University of Technology, China. Her research interests
include neural networks, machine learning and affective computing.

Pasitikėjimu grindžiama planavimo strategija debesų darbo srautų
taikomosioms programoms

Yuli YANG, Xinguang PENG, Jianfang CAO

Tradiciniai debesų darbo srautų taikomųjų programų planavimo tyrimai daugiausia yra orientuoti į
kompromisą tarp užbaigimo laiko ir vykdymo išlaidų. Tačiau, saugumas ir patikimumas yra esmi-
niai debesų darbo srauto planavimo veiksniai atviroje dinaminėje heterogeninėje debesų kompiu-
terijos aplinkoje. Šiame straipsnyje mes pristatome pasitikėjimu grindžiamą planavimo strategiją,
remiantis visapusišku laiko, išlaidų, saugumo ir patikimumo įvertinimu. Pradžioje formuluojame
debesų darbo srauto planavimo uždavinį su pasitikėjimo apribojimais ir pasiūlome naują pasitikė-
jimu grindžiamą debesų darbo srauto planavimo algoritmą, kuriame naudojamas aibėmis pagrįstas
dalelių spiečiaus optimizavimo metodas, aibės padengimo uždavinys, medžio paieškos euristika.
Eksperimento rezultatai rodo, kad lyginant su evoliuciniu algoritmu, skruzdžių kolonijos optimiza-
vimu ir dalelių spiečiaus optimizavimu, pasiūlytas algoritmas yra efektingesnis.


