
INFORMATICA, 2016, Vol. 26, No. 1, 135–157 135
 2016 Vilnius University

DOI: http://dx.doi.org/10.15388/Informatica.2015.42

Event-Based Awareness Services for P2P

Groupware Systems

Alex POULOVASSILIS1∗, Fatos XHAFA2, Thomas O’HAGAN1

1London Knowledge Lab, Birkbeck, University of London, UK
2Universitat Politècnica de Catalunya, Spain

e-mail: ap@dcs.bbk.ac.uk, fatos@lsi.upc.edu, trohaga@outlook.com

Received: January 2014; accepted: September 2014

Abstract. P2P systems enable decentralised applications for supporting collaborating groups and

communities, where the collaboration may involve both sharing of data and sharing of group pro-

cesses among group members. In such applications, monitoring and awareness are critical func-

tionalities required for an effective collaboration. However, to date there has been little research into

providing generic, application-independent awareness in P2P groupware systems. We present a dis-

tributed event-based awareness approach for such systems that provides different forms of awareness

through a set of interoperating, low-level awareness services. The user and technical requirements

for the approach are motivated with reference to Project-Based Learning in a P2P environment. We

describe the implementation of a superpeer P2P network on a Cloud platform and the provision

of reliable awareness services (AaaS – Awareness as a Service) from the Cloud. We report on the

outcomes of an empirical evaluation of the performance and scalability of the approach.

Key words: P2P systems, collaboration, awareness, services, cloud computing, awareness as a

service (AaaS).

1. Introduction

Most classical educational and learning models have been teacher-centred: they have been

built around the teacher as the main actor and leader while students play the role of fol-

lowers and secondary actors. Due to the long tradition, experience and educational in-

stitutions’ inertia, the teacher-centric approach also became the basis for online learning

and teaching platforms developed using web technologies. However, the teacher-centric

approach has been questioned over time as it does not fully support active learning and stu-

dents’ engagement. Alternative models such as Project-Based Learning (PBL) have been

proposed to overcome its limitations and to give a more active role to students (Zumbach

et al., 2003). In the PBL model, the roles of teacher and student are inverted: the student

is a primary actor and PBL can be considered a student-centric approach.

The emergence of new computational paradigms and technologies has, on the one

hand, prompted questions such as which technology is best suited for implementing which

learning model and, on the other hand, is inspiring the development of new learning

*Corresponding author.

136 A. Poulovassilis et al.

models and the enhancement of existing ones, based on features of the computational

paradigms. One such computational paradigm is the Peer-to-Peer (P2P) one. The P2P

paradigm has several features that have the potential to benefit computer-supported online

learning processes:

Symmetry of network nodes: From a computational viewpoint, P2P network nodes are

symmetric, i.e. there is no distinction between them. This feature is relevant for supporting

learning communities, where participants may be at the same time learners and teachers.

Direct communication: In P2P systems, peers can communicate directly with each

other, without server mediation, and network barriers (e.g. NATs and firewalls) can be

overcome. This can allow peers to establish direct connections at any time, either syn-

chronously or asynchronously, fostering peer interaction through sharing of knowledge

and resources and provision of mutual support. P2P systems can also facilitate transitions

between synchronous to asynchronous communication.

Information sharing: P2P systems enable the sharing of many kinds of information.

Each peer can maintain its own repository and can also share its content with other peers.

This can increase the availability of documents, especially when replication techniques

are supported by the system, allowing multiple copies of the same document to be stored

at different network sites. This feature can also be helpful to peers with more limited

resources; for example, a mobile peer having limited storage capacity can use a repository

hosted at another peer or can run software installed at other peers.

Group and community building: P2P networks can grow naturally with the addition

of new peers and can enable grouping of peers, thus supporting the building of learner

groups and communities. Social networking features can be readily implemented in P2P

systems and are particularly relevant for scaffolding and emotional support in online learn-

ing processes.

Context: In P2P networks, context can be defined along several dimensions, for exam-

ple context of individual peers, context of peer-groups, context of workspaces, and context

of resources. Capturing and exploiting information about context can be very useful for

learning purposes.

Ubiquity: P2P networks can support not only fixed peers (desktop or wired computers)

but also mobile peers. This makes possible the support of mobile learning, with its premise

of “anytime, anywhere” learning.

While P2P systems can support learning in general, in this paper we are concerned

with their use for collaborative group work. P2P technologies can potentially provide more

support for collaboration than centralised approaches since group members can interact

directly with their peers in order to provide additional scaffolding and social support (You

and Pekkola, 2001; Bentley et al., 1995). We consider in this paper requirements and

approaches for endowing P2P systems with awareness mechanisms in order to fully sup-

port groups working collaboratively on common projects. In its basic form, awareness

refers to the system’s ability to notify the members of a group of changes occurring in

the group’s workspace. More generally, awareness refers to knowledge provided by the

system to group members about the current and past actions and status of other group

members (Gutwin et al., 1996). Provision of awareness enables more efficient informa-

Event-Based Awareness Services for P2P Groupware Systems 137

tion and knowledge sharing among group members, and more timely support and decision

making.

The paper is organised as follows. We review previous work on the use of P2P tech-

nologies for supporting group collaboration in Section 2. In Section 3 we analyse the user

and technical requirements relating to building P2P systems to support PBL and we iden-

tify some major types of group awareness relevant to this setting. We describe in Section 4

a structured P2P network model for meeting these requirements. In Section 5 we present a

set of awareness services and show how these interoperate over the P2P network to provide

the various types of awareness. In Section 6 we give an overview of a proof-of-concept

implementation of our approach. In Section 7 we report on the results of an empirical

investigation of performance and scalability. We give our concluding remarks and direc-

tions of future work in Section 8. This paper extends (Poulovassilis and Xhafa, 2013) to

give more detailed analysis of the user requirements for building P2P networks to support

collaborative group work, and how a set of low-level awareness services interoperate to

meet these requirements. We also describe here an implementation of our approach and

the results of an empirical evaluation of its performance and scalability.

2. Related Work

Several works have discussed the benefits of using P2P technologies to support learning

communities. Two key benefits are sharing of learning resources and support for collabo-

ration (Nejdl et al., 2002; Simon et al., 2003; Bulkowski et al., 2006). The work of Papa-

markos et al. (2006) explores the use of Event-Condition-Action (ECA) rules to provide

the change propagation and notification services required by a distributed learning com-

munity. The work of Jin et al. (2004), Fakas et al. (2004) examines how P2P technologies

may be useful for enabling e-learning environments to be more efficient, scalable and ver-

satile. Other work identifies support for group cognition processes (Dou and Wang, 2004)

and integration of P2P technologies with personal knowledge management (Berman and

Annexstein, 2003).

Approaches using P2P technologies to support collaborating groups include (Busetta

and Merzi, 2003; Rossi and Busetta, 2004), which provide agent-based, pervasive sup-

port for group work; Menchaca-Mendez et al. (2004), which describes a JXTA-based P2P

system supporting opportunistic collaboration in editing of shared documents; Parker et

al. (2005), which presents a P2P framework allowing applications to collaborate over a

JXTA-based architecture; Xhafa et al. (2010), which supports management of collaborat-

ing peer groups using JXTA, focusing on group monitoring, autonomy, confidentiality and

security; and Kurmanowytsch et al. (2003), which presents a P2P middleware providing

services for mobile teamwork.

The two main modes of collaboration in distributed environments are asynchronous

and synchronous (Preguiēa et al., 2005; Qu and Nejdl, 2011). Examples of the former are

interaction throughasynchronousdiscussion forums, and asynchronousdocument updates

made in shared workspaces. Examples of the latter are synchronous interactions in chat,

138 A. Poulovassilis et al.

audio and video-conference systems, and synchronous document updates made in shared

workspaces. With asynchronouscollaboration, the interaction spans longer periods of time

and information relating to the collaboration is not immediate. In contrast, synchronous

collaboration enables immediate knowledge about the ongoing collaboration and strongly-

coupled interaction between group members.

The above mentioned proposals are concerned mainly with asynchronous collabo-

ration and generally provide simple awareness mechanisms, e.g. through messages and

alerts. P2P-based applications targeting synchronous collaboration include (Kawashima

and Ma, 2004; Li et al., 2004; Ma et al., 2004; Margaritis et al., 2004; Oasis et al., 2006).

However, these do not consider the provision of awareness information to group members.

In our work, we aim to support not only notifications about the activities of group mem-

bers but also group processes so as to enhance the group’s abilities to carry out a common

group project effectively and efficiently. Moreover, we develop a generic set of awareness

services provided within P2P middleware, on top of which groupware applications can

build specific awareness functionalities.

Finally, the work in Fenkam et al. (2002) proposes a publish-subscribe approach to

event notification and awareness in P2P collaborative systems. However, this does not

support all the forms of awareness provision that we have identified. Recent service-

oriented approaches address interoperability, groupware features and QoS (Chan et

al., 2007; Galatopoullos et al., 2008; Mason and Ellis, 2010). However, these provide

publish/subscribe models of awareness and do not support a full-featured awareness

model.

3. Motivating Setting and Requirements

Our motivating setting is Project-Based Learning (PBL) (Zumbach et al., 2003), although

our approach is intended to apply more generally to project-based collaboration in other

sectors beyond education, such as business, science and healthcare. In PBL, learning is

seen as a process-oriented activity through which learners build their knowledge by solv-

ing problems, accomplishing tasks and projects. PBL has been implemented not only in

traditional face-to-face teaching but also in online university curricula. The Open Univer-

sity of Catalonia2 (OUC) is an example where distributed PBL is used to achieve learning

goals. One such module is Software Development Techniques, which is part of Software

Engineering degree programme at OUC. In this module, the students begin by forming

themselves into groups and then engage in the development of a specified distributed soft-

ware development project. Examples of tasks to be undertaken within the project are:

• Undertaking a critical analysis of alternative software development techniques and

technologies to be used in the software development project.

• Deciding on the design approach and the architectural model.

• Configuring the software development tools to be used for the project.

2http://www.uoc.edu/portal/en/index.html.

Event-Based Awareness Services for P2P Groupware Systems 139

• Implementing the components of the software system being developed and carrying

out unit testing.

• Integrating the components of the system, and carrying out integration testing and

regression testing.

• Software quality assessment of the software developed.

• Deployment of the system developed in a real networking infrastructure.

Considering the above setting, a number of general user requirements emerge for build-

ing P2P networks to support collaborative group work:

R1: Definition of a project as a workflow of tasks and precedence relationships bet-

ween these relating to their order of completion.

R2: Deciding on, and revising as necessary, task deadlines.

R3: Assigning, or re-assigning, a task to one or more group members.

R4: Checking if inter-task dependencies are being met.

R5: Discovering and assigning the resources needed for accomplishing a task.

R6: Updating the status of each task, moving through different states such as “pend-

ing assignment”, “assigned”, “in progress”, “delayed”, “waiting for another task

to be completed”, “feedback needed”, “completed”.

R7: Tracking of task completion.

R8: Tracking of progress with respect to the project workflow.

R9: Tracking the availability of group members to participate in discussions and

undertake assigned tasks.

These user requirements imply the need for several different types of awareness, listed

below (we refer the reader to Xhafa and Poulovassilis, 2010 for a general discussion of

awareness requirements in P2P groupware systems and to Gutwin et al., 1996, You and

Pekkola, 2001 in the context of web-based groupware systems):

Activity awareness provides information about the progress of the group on the ac-

complishment of project tasks. It comprises knowing about actions taken by members of

the group according to the tasks assigned to them. As part of activity awareness, we also

consider information about group members’ actions on artefacts created by the group.

(Relates to requirements R2, R3, R6, R7.)

Process awareness provides group members with information about their progress

with respect to the project workflow – both individually and as a group. It enables the

identification of past, current and next states of the project workflow, with the aim of

supporting the group in moving the project forward. (Relates to requirements R1, R4,

R8.)

Communication awareness relates to message exchange, and information about the

creation and usage of synchronous and asynchronous discussion forums. It allows peers

to establish links with each other, share ideas, provide feedback on each other’s work,

and conduct negotiations about task assignment, deliverables and deadlines. (Relates to

requirements R1, R2, R3.)

140 A. Poulovassilis et al.

Context awareness provides information about the time, location and environment in

which group members perform actions, and the profiles and preferences of group mem-

bers. (Relates to requirements R2, R3, R5, R9.)

Availability awareness provides information about the availability of group members

and of their resources for project-related work. The former is necessary for establishing

synchronous communication. The latter is useful for supporting group members’ require-

ments for specific resources in undertaking tasks assigned to them (e.g. availability of a

machine for running a program). (Relates to requirements R5, R9.)

A number of technical requirements also arise for providinggeneric awareness services

in this P2P setting (we refer the reader to Xhafa and Poulovassilis (2010) for a general

discussion of technical requirements for awareness provision in P2P groupware systems):

Dynamic P2P network conditions: awareness provision needs to be able to handle peers

joining and leaving the system at any time. Distribution and replication of information is

needed in order to ensure provision of awareness under dynamic conditions. Replication

increases processing efficiency and improves the availability of information; both full and

partial replication of objects is possible. Updates made to a local copy of an object need

to be propagated and applied to all its replicas; this needs to be undertaken under the

dynamic conditions of the P2P network using reliable message passing mechanisms.

Genericity of events, e.g. using an XML or RDF-based representation, since we are

aiming at application-independent awareness services.

Lightweight mechanisms, to reduce the overhead of event notification and processing,

especially for peers with limited computational resources.

Multiple granularities of awareness presentation, allowing awareness provision to be

adapted to group members’ short, mid and long-term objectives. For instance, for a late-

comer to the group or a peer who has been disconnected for some time, it is more useful

to receive a summary of the group’s activities rather than a fully detailed report.

Multiple modes of awareness delivery, allowing awareness information to be delivered

either ‘passive’ or ‘active’ mode. The former does not require any specific actions by group

members while the latter allows group members to request specific awareness information.

4. Computational Model

We now present our computational model for provision of awareness in P2P groupware

systems, to the level of detail necessary for this paper (we refer the interested reader

to Poulovassilis and Xhafa (2013) for further details). Our model is a superpeer network

model, cf. (Nejdl et al., 2002; Simon et al., 2003), in which the network consists of sev-

eral, possibly overlapping, peergroups. The peers of each peergroup are connected to a

single superpeer. There is frequent communication between peers within a peergroup, and

less frequent communication between superpeers. Superpeers serve as coordinators of the

overall network while other peers represent group members at the network ‘edge’. Super-

peers will typically be wired networked computers while peers may be wired computers

or mobile, more resource-constrained, devices.

Event-Based Awareness Services for P2P Groupware Systems 141

Peergroups form in order to undertake group projects, and peers may join or leave a

peergroup at any time. Each group project is coordinated by one superpeer (superpeers

may coordinate multiple projects). Peers contact the relevant superpeer in order to join a

project – we term the set of peers working on a project a project group, or just group.

Information about the group’s work on a project is distributed between the peers of

the group and stored in local repositories at the peers. Peers’ actions are notified by them

to their superpeer, which manages the distribution, replication and consistency of infor-

mation across the group. Each superpeer supports Event-Condition-Action (ECA) rule

processing capabilities, cf. Papamarkos et al. (2006). A rule’s Event part matches events

occurring at a peer or at the superpeer, and its Condition part is evaluated with respect to

the superpeer’s repository. There is ‘immediate’ coupling between the event part and the

condition part (see Paton, 1999, for discussion of ECA rule coupling modes). A rule fires

when its condition evaluates to true.

In general, several rules may fire as a result of some event occurrence in the peergroup.

We assume that in such cases the rules that fire are ordered by a precedence relationship,

or if not that they commute (see, e.g. Papamarkos et al., 2006, for discussion of techniques

for determining the confluence properties of sets of ECA rules). When a rule fires, one

or more instances of its Actions part are scheduled for execution within the peergroup,

with each instance executing at a single peer. There is ‘detached’ coupling between the

Condition and the Action i.e. the superpeer does not wait to receive acknowledgement

from peers that they have received and executed these actions. We assume the provision

of reliable message passing services between the superpeer and peers, so that actions are

eventually propagated to a disconnected peer and executed there when it reconnects to the

network.

These ECA rule capabilities at the superpeer are used for a number of purposes:

• To encode the workflow of each project as a finite state machine (FSM) and maintain

the project state;

• To encode the replication policies and consistency requirements of the project: peers

will notify the superpeer of updates on their local copies of group artefacts, which

it can propagate to peers holding replicas;

• To automate the passive mode delivery of awareness information to peers according

to their current status, the status of the projects and tasks they are participating in,

their preferences, and their context;

• To automate the generation and delivery of global summaries from detailed infor-

mation and local summaries received from individual peers.

5. Awareness Services

We now identify a set of services that peers and superpeers need to support in order to

provide the types of group awareness identified in Section 3. Each peer (and superpeer)

implements a set of core services that are necessary to support the group awareness ser-

vices: Event Notification, Repository Connection, Messaging, Resource Information, Ob-

ject Sharing, and Synchronous Discussion Forum services, as listed in Table 1. Superpeers

142 A. Poulovassilis et al.

Table 1

Peer core services.

Event Notification Services

Detect event occurrences at a peer. Notify the superpeer’s Event Handler Service, sending the type of the

event, event parameters, and any data changes (insertions/deletions/updates).

Repository Connection Services

Manage connection with the local peer repository. They include an Update Manager that submits data update

requests to the repository, and a Query Manager that communicates with the repository’s query processing

engine.

Messaging Services

Responsible for message exchange between peers. Wrap/unwrap outgoing/incoming messages and pass them

to the appropriate service. Provide reliable message passing between peers in the face of network dynamicity.

Resource Information Services

Provide information about the peer’s computational resources (e.g. data storage, CPU, bandwidth), their

state, and their availability.

Object Sharing Services

Send documents and other group artefacts to other peers. Metadata describing the artefacts is also sent.

Synchronous Forum Services

Create a room for an online synchronous session; notify other group members of a room’s creation; request

group members to join a room; request the superpeer to create a room.

Table 2

Superpeer core services.

Routing Services

Keep a list of the peers comprising the superpeer’s peergroup and its neighbouring superpeers, in order to

maintain the communication paths in the network.

ECA Rule Processing Services

Include Event Handler, Condition Evaluator and Action Scheduler services, as described earlier.

ECA Rule Management Services

Maintain the superpeer’s Rule Base, including indexing its contents and providing query and update func-

tionalities over it.

Synchronous Forum Management Services

Allow the superpeer to satisfy peers’ requests for room creation, notify the group of ongoing synchronous

sessions, and support latecomers.

in addition support ECA Rule Management and Processing, Routing, and Synchronous

Discussion Forum Management services, as listed in Table 2.

Tables 3 and 4 list a set of services to be implemented at peers in order to support

“passive” mode and “active” mode delivery of awareness, respectively. We indicate in

each case for which type or types of awareness each service is needed. Table 5 lists a set

of services to be implemented at superpeers. Figure 1 illustrates the interactions between

the services at a peer and a superpeer, showing both the core services and the awareness

services listed in Tables 3, 4 and 5.

Referring to the user requirements identified in Section 3, we see that these can be met

as follows by the interoperating peer and superpeer services:

Event-Based Awareness Services for P2P Groupware Systems 143

Table 3

Peer awareness services – passive mode (these all call the event notification service).

joinProject (superpeer, project, context, profile, resources, capabilities)

Peer requests to join a project. Needed for: Activity and process awareness.

leaveProject (superpeer, project)

Peer requests to leave a project. For: Activity and process awareness.

acceptTask (superpeer, project, task)

Peer accepts responsibility for a task in a project. For: Activity and process awareness.

relinquishTask (superpeer, project, task)

Peer relinquishes responsibility for a task in a project. For: Activity and process awareness.

notifyAction (superpeer, project, task, action, context, status)

Peer notifies superpeer of an action in relation to a project task (e.g. upload/download/view/ update of a

document, creation/contribution to a forum) as well as their current context (e.g. time, location, environ-

ment, workspace involved) and their current status in relation to the task (e.g. pending acceptance, accepted,

resource request pending, task being undertaken, task completion delayed, task completed). Allows the su-

perpeer to track the state of the project workflow and to provide partial and complete views of this to group

members. For: Activity, process, context and communication awareness.

notifyActionSummary (superpeer, project, summary, context, status)

Peer sends summary information about its actions to the superpeer, e.g. after a period of disconnection from

the network. For: Activity, process, context and communication awareness.

notifyCollaborationStatus (superpeer, project, fromTime, context, status)

Peer notifies superpeer of its status in relation to being available to participate in synchronous collaboration

with other group members. For: Availability awareness.

notifyAvailability (superpeer, project, availabilityMetadata)

Peer notifies superpeer of its availability for working towards a project and the availability of its resources

that are relevant for the project. For: Availability awareness.

Table 4

Peer awareness services – active mode.

requestAvailability (superpeer, project)

Peer requests information from the superpeer about the availability of other group members and their re-

sources. Needed for: Availability awareness.

requestProjectSummary (superpeer, project, fromTime)

Peer requests from the superpeer an overview of the actions occurring within the project after a specified

time. For: Activity and process awareness.

requestTaskSummary (superpeer, project, task, fromTime)

Peer requests from the superpeer an overview of the actions occurring in respect of a specific task of the

project after a specified time. For: Activity and process awareness.

requestPeerSummary (superpeer, project, peer, fromTime)

Peer requests from the superpeer an overview of the actions undertaken by a particular group member on

the project after a specified time. For: Activity and process awareness.

requestAwarenessSummary (superpeer, project, fromTime, awarenessType)

Peer requests from the superpeer a summary of the activity, process, communication, context, or availability

awareness information in respect of the project. More specific similar services can request information as

relating to a specific task, peer, resource etc. For: All awareness types.

144 A. Poulovassilis et al.

Table 5

Superpeer awareness services.

assignProject (project)

Handles the assignment of a new project to the superpeer. The superpeer stores information about the project

and its constituent tasks in its local repository.

provideProjectSummary (peer, project, fromTime)

Sends a global summary of the project to a peer in response to a request it receives from the requestProject-

Summary peer service. A project summary may also be sent to a peer if specific events occur at the peer or

superpeer and specified conditions hold, via appropriate ECA rules hosted at the superpeer (i.e. in “passive”

mode).

provideTaskSummary/providePeerSummary

Behave similarly, in response to the requestTaskSummary/requestPeerSummary peer services. Task/peer

summaries can also be sent to peers in “passive” mode via appropriate ECA rules.

provideAwarenessSummary (peer, project, fromTime, awarenessType)

Sends awareness information to a peer in response to a request from the requestAwarenessSummary peer

service, or in “passive” mode via ECA rules.

provideAvailabilitySummary (peer, project)

Sends availability information to a peer in response to a request from the requestAvailability peer service,

or in “passive” mode via ECA rules.

Other Peer Core Services

Event

Notification

Peer Passive

Awareness Services

Peer Active

Awareness Services

Superpeer Awareness

Services

Event

Handler

ECA Rule

Management

Condition

Evaluator

Action

Scheduler

Other Superpeer Core Services

PEER
SUPER-

PEER

Project

Workflow

Management

Replication &

Consistency

Management

Fig. 1. Interaction between peer and superpeer services for awareness provision.

Event-Based Awareness Services for P2P Groupware Systems 145

• A group’s superpeer has knowledge of the group members, the project tasks and

project workflow, and the responsibilities assigned to each group member through

services joinProject, leaveProject, acceptTask and relinquishTask, thus meeting re-

quirements R1, R4.

• Peers can notify their superpeer regarding their status, their progress on tasks, and the

time, location and environment in which they undertake their project-related actions

through services notifyAction and notifyActionSummary; the superpeer can inform

group members of the group’s progress on tasks and the project as a whole through

services provideProject/Task/PeerSummary; thus meeting requirements R6, R7, R8.

• Peers can communicate with each other to redefine deadlines and reassign tasks

through the messaging and synchronous forum services, thus meeting requirements

R2, R3. Peers that are not online while such changes take place can be updated by the

superpeer when they rejoin the network by the provideAwarenessSummary service.

• Peers can notify their superpeer regarding their own availability and the availability

of their resources through services notifyCollaborationStatus and notifyAvailabil-

ity; the superpeer can propagate this information to other relevant peers through the

provideAvailabilitySummary service; thus meeting requirements R5, R9.

6. Implementation

While there are no specific technical requirements for peers in our model – which could be

PCs, laptops, smart devices etc. – superpeers need to be reliable. We therefore envision the

implementation of superpeers on a Cloud infrastructure– which could be public or private.

The virtualisation of resources in the Cloud can be used to instantiate superpeers whenever

needed in order to ensure high availability. Moreover, Cloud Computing has become a

key computing paradigm for service provisioning and through Cloud-based superpeers

we envisage the provision of awareness as a service (AaaS), to be consumed by peers.

We have implemented a prototype that supports a subset of the services described

earlier, as a proof-of-concept of our approach and also so to undertake an empirical study

investigating its performance and scalability (see Section 7).

The implemented peer services are event notification, repository connection, mes-

saging, resource information and object sharing. The implemented superpeers also sup-

port ECA rule management, rule processing, and routing services. We refer the reader

to O’Hagan (2014) for full implementation details of the prototype and we give here an

overview of its salient features.

In order to run superpeers in the Cloud we needed the flexibility of an infrastructure-

as-a-service (IaaS) Cloud service rather than a higher-level service such as the Platform-

as-a-Service Google App Engine.3 We chose Amazon Elastic Compute Cloud (AWS EC2)

as a cost-effective and well-documented IaaS service.4

In the prototype, the peer and superpeer functionalities are implemented in Java for

reasons of portability and reusability – in particular, we aimed to reuse as much as possi-

3https://developers.google.com/appengine/.
4http://aws.amazon.com/ec2/.

146 A. Poulovassilis et al.

ble classes between the peer and superpeer implementations. We use Apache Jena5 for the

RDF processing, specifically, its RDF/XML serialisation/deserialisation and RDF persis-

tence functionalities. To persist the RDF graphs we use the Jena TDB triplestore.

6.1. Implementation Approach

Our initial approach to building the P2P network functionality was to investigate existing

P2P libraries. We identified JXSE, a Java implementation of the JXTA protocols, as a

promising starting-point.6 The motivation for considering this kind of functionality was

that a major problem for P2P networks is the difficulty of enabling heterogeneous peers to

access a network (Shen et al., 2010). Peers may be located behind firewalls and Network

Address Translation (NAT) gateways, which restrict incoming and outgoing packets in

several ways, making P2P connections difficult. JXTA is an open-source set of P2P pro-

tocols that enable P2P networks to allow access to nodes situated behind NAT gateways

or firewalls. Of additional relevance is the fact that JXTA works by forming an overlay

network with a superpeer architecture, which is the form of network we wanted to create.

However, in early attempts at prototyping with JXTA, we found the JXTA system to be

rather complex. The JXSE project had been discontinued in 2011,7 meaning that there was

no online community to correspond with about the open-source code. This is in contrast

to the other third-party libraries that we used for the prototype; for instance, Jena has a

large and active online community. Also, the latest (and last) version of JXSE had little

supporting documentation due to the project being discontinued.

The performance evaluation that we planned would be run using a superpeer deployed

in the Cloud and a group of peers on a Local Area Network (LAN). Therefore, NAT

traversal capability was not a core requirement for the evaluation study. So, in this first

prototype, we have left it for later iterations to incorporate this functionality. Instead, we

focused on building a system that would support the evaluation and that would be able to

flexibly support the implementation of additional awareness services.

Since the peers’ and superpeers’ data is stored as RDF, the event notifications (sent

from peer to superpeer) describing local peer events are also encoded in RDF. Each con-

nection to each peer is handled by a different Runnable at the superpeer, which creates a

subthread for handling the event stream being received from the peer. When a peer first

connects to a superpeer, the superpeer sends it the network identities of each member of

the peergroup, and the peer subsequently creates continuous connections with the rest of

the peergroup. Therefore, while a member of the peergroup is connected to the superpeer,

it also has a single continuous connection for each member of the peergroup.

A superpeer receiving an event notification passes it to its ECA rule processor. The

processor identifies rules that match the event type of the notification, which is a prop-

erty of the event described by the RDF. Rules may have conditions that are tested on the

contents of the superpeer’s local RDF repository (containing the relevant project-related

5http://jena.apache.org/.
6https://jxse.kenai.com.
7https://kenai.com/projects/jxse/pages/LatestNews.

Event-Based Awareness Services for P2P Groupware Systems 147

data). If the condition is satisfied, then the action specified in the rule is executed locally

or remotely, depending on the type of rule. For this prototype, we built custom ECA rule-

processing capabilities, without the use of a third-party rules engine, so as to easily and

rapidly tailor the prototype to our specific requirements. For instance, the majority of ac-

tions that result from a superpeer’s rule processing are a form of remote procedure call

(RPC) whereby the superpeer sends a message (and perhaps some accompanyingdata) to a

peer and the message specifies an action that should be performed at the remote peer node.

In light of this, the action parts of our ECA rules are templates of RPCs, encoded

in XML. The condition parts of our rules are expressed as unique identifiers for Java

instances of a specific class, called condition handlers, which are indexed at the superpeer.

These condition handler objects are able to query the RDF repository in order to check

that a certain condition holds or to retrieve specific information in order to complete the

RPC template. If a specified condition does not hold, the rule processing sequence is

terminated and no action is executed. Information that may be retrieved by a condition

handler includes the identities of the peers who should execute the action (which may

include the superpeer itself) and the parameters supplied to the RPC template. We have

implemented a rule processor API through which an application programmer is able to

add rules to the rule base and to obtain lists of rules that match particular events.

Although we refer to the actions that result from a superpeer’s rule processing as a form

of RPC, these actions differ from usual RPC calls due to the ‘detached’ coupling mode

between each ECA rule’s condition and its action. For instance, XML-RPC requests are

followed by an XML-RPC response which contains the result of the XML-RPC. This is

not the case in our prototype system: a superpeer may send a message to a peer specifying

a particular action that should be executed at that peer; however, the superpeer does not

expect a response detailing the result of the remote action execution.

6.2. Communication Protocols

We have implemented two different communication protocols between peers and super-

peers. Here we describe these protocols in the example context that we used for the per-

formance evaluation. This context is that a peer makes an update to a document stored

locally; other peers in the peergroup may also hold copies of this document; the system

must now initiate a sequence of steps that lead to all copies of the document in the peer-

group being synchronised in order to reflect the update. We chose this example for the

performance evaluation as it fully exemplifies the general sequence of steps relating to the

‘passive’ delivery of awareness information to a peergroup (see Fig. 1), namely: an event

occurring at a peer; the event being notified by the peer to the superpeer; the superpeer

determining which rules are triggered by the event, evaluating their conditions (if any)

and generating actions to send to relevant peers of the peergroup; and these actions being

executed by these peers. Although we describe the two communication protocols in this

example context, the underlying functionality of these protocols could be used to provide

all other passively delivered awareness services discussed earlier.

In the definitions of the two protocols in Algorithms 1 and 2, SP is a superpeer coordi-

nating a group of peers, {P1, . . . ,Pn}; Pinit is a member of {P1, . . . ,Pn} which performs

148 A. Poulovassilis et al.

Algorithm 1 Protocol 1

1: Pinit sends the message (ev,dat) to SP.

2: SP executes the appropriate ECA rule(s) in order to determine Ptarget.

3: SP sends to each peer in Ptarget a message (in unicast mode) containing instructions

on how to update their copies of doc and the accompanying data for this purpose, dat.

4: Each peer in Ptarget executes the requested update on their local copy of doc using

dat.

Algorithm 2 Protocol 2

1: Pinit sends ev to SP.

2: Same as step 2 in Protocol 1.

3: SP sends to Pinit an action message. This message contains the identities of the mem-

bers of Ptarget and instructions for how Pinit should carry out step 4.

4: Pinit sends a message to each peer in Ptarget (in unicast mode). This message contains

instructions to update their copies of doc and the accompanying data for this purpose,

dat.

5: Same as step 4 in Protocol 1.

an update on its local copy of a document, doc; Pinit produces an RDF description, ev, of

this event and some associated data, dat; specifically, dat is a ‘patch’ that can be applied

to copies of doc in order to update them too; Ptarget is the subset of {P1, . . . ,Pn} that hold

a copy of doc.

As mentioned earlier, the prototype currently does not support NAT traversal and fire-

wall hole-punching. However, the functionality of the communication protocols provides

an alternative in certain circumstances. For instance, if a peer cannot communicate di-

rectly with another peer, it can relay any messages through its superpeer assuming that

both peers have direct connections to the superpeer, which would have to be the case at

some point by virtue of them being members of its peergroup.

Reliable message passing between the superpeer and peers is provided in the prototype,

so that actions are eventually propagated to a peer and executed there when it reconnects

to the network. This is achieved by peers and superpeers storing locally messages and data

that have failed to be sent, due to the intended recipient not being connected to the network.

When the intended recipient reconnects, the stored messages and data are then forwarded.

Messages and data that have not yet been successfully forwarded to their intended recipient

are also persisted in the case that the sender disconnects from the network; the sender can

then resend those messages when it reconnects if the intended recipient is also connected

to the network at that time.

7. Performance Evaluation

Our performance evaluation investigated the following: Given an occurrence of an update

to doc at Pinit , what is the average time t taken for the members of Ptarget to update their

copies of doc?

Event-Based Awareness Services for P2P Groupware Systems 149

We examined the effect of several different variables on the size of t :

• The value of n, i.e. the size of the peergroup.

• The size of Ptarget as a fraction of n.

• The size of the document doc and of the ‘patch’ dat.

• The communication protocol used by the system to propagate the update (i.e. Proto-

col 1 or Protocol 2).

We conducted two evaluations, one with the peers running on a local LAN and a

larger-scale one with the peers running in the Cloud. For both evaluations, the superpeer

maintains a continuous connection to every peer in its peergroup and likewise the peers

maintain a continuous connection to each other. The work required to establish these con-

nections (creating a new Thread and establishing a Socket connection) is done prior to

the running of each experimental instance. In all cases, unicast rather than multicast com-

munication is used. The RDF event notifications are sent as binary strings and the ‘patch’

objects used for dat are sent serialised using ObjectOutputStreams. The ‘patch’ objects

are created using a modified version of the google-diff-match-patch library8: we modified

the source so that the ‘patches’ could be serialised.

7.1. First Evaluation

For the first evaluation, a single peer was run on each of 32 machines connected by a LAN

in one of our institution’s computer labs. Each machine was running Windows 7 on an In-

tel Core i5 3.20 GHz processor with 8 GB RAM. The superpeer was run on an m1.large

AWS EC2 instance with a 64-bit Linux AMI.9 Since logging is an archetypal crosscutting

concern, we used AspectJ to log the timings data.10 Each experimental instance was run

10 times. For each of these runs, the mean time taken for each member of Ptarget to syn-

chronise its copy of doc with Pinit was computed (in milliseconds), as well as the standard

deviation. We refer the reader to (O’Hagan, 2014) for the full set of results.

Figures 2–5 show the behaviour of the two protocols under different conditions. Each

graph plots four lines, representing respectively a Ptarget size of 25%, 50%, 75% and 100%

of n. The x axis shows the number of peers as the size of the peergroup, n, increases (from

8 up to a maximum of 32 in steps of 4). The y axis shows the mean time taken for each

member of Ptarget to synchronise its copy of doc with Pinit (in milliseconds). In all cases

the size of dat is fixed to be 25% of the size of doc.

Figures 2 and 3 relate to a doc size of 100 Kb. A good scalability for both Protocol 1

and Protocol 2 can be observed as n increases. As the size of the peergroup increases,

the average time taken for the members of Ptarget to synchronise their documents remains,

from the user’s perspective, within an acceptable range. It can be seen that this average time

is greater when Protocol 2 is used in comparison to Protocol 1. This is because Protocol 2

requires an extra round of data transfer between machines (peer to superpeer, superpeer

8http://code.google.com/p/google-diff-match-patch/.
9http://aws.amazon.com/ec2/instance-types/.
10http://eclipse.org/aspectj/.

150 A. Poulovassilis et al.

Fig. 2. Lab, Protocol 1, 100 Kb doc.

Fig. 3. Lab, Protocol 2, 100 Kb doc.

to peer, and finally, peer to peer). Additionally, the graphs for Protocol 2 are generally less

smooth than those for Protocol 1. This effect can be attributed to the additional ‘noise’

created by the additional round of data transfer. Figures 4 and 5 relate to a larger doc

size of 1 Mb. Similar scalability and relative performance between the two protocols is

observed as with the doc size of 100 Kb. The average time taken for the members of Ptarget

to synchronise their documents is higher with this larger doc size but still remains, from

the user’s perspective, within an acceptable range. Similar results are obtained with larger

sizes of dat as a proportion of doc for both protocols and both document sizes.

Event-Based Awareness Services for P2P Groupware Systems 151

Fig. 4. Lab, Protocol 1, 1 Mb doc.

Fig. 5. Lab, Protocol 2, 1 Mb doc.

7.2. Second Evaluation

Our second evaluation aimed to explore further the scalability of our approach for larger

peergroups than was possible in the lab, up to a maximum of n = 60 which is pragmatically

at the upper limit for collaborating groups in PBL. For this second evaluation, we have

a single superpeer node and a group of peer nodes all of which are AWS EC2 virtual

machines. We also have an EC2 virtual machine that functions as a server node, supporting

the execution of the experiment but not itself part of the system. The superpeer is run on

an m1.large instance, as before, and the peers on lower-spec t1.micro instances; 64-bit

Linux AMIs are used for both types of instance. The virtual machines are launched from

152 A. Poulovassilis et al.

Fig. 6. Cloud, Protocol 1, 100 Kb doc.

Fig. 7. Cloud, Protocol 2, 100 Kb doc.

the server node using the AWS Java API. Through the API, peers are configured to have

access to Strings of ‘user data’ when they are launching. The user data is a script that

makes various necessary changes to the virtual machine so that it can operate as a peer

node (update the OS, set permissions and classpaths, download the correct JRE version,

etc); the script then downloads required information (binaries and jar dependencies) from

the server; and finally it runs the peer program, connecting to the superpeer.

We examined the effect of same set of variables on the size of t as in the first evaluation.

Figures 6–9 show the behaviour of the two protocols under different conditions. Figures 6

and 7 relate to a doc size of 100 Kb, and Figs. 8 and 9 to a doc size of 1 Mb. We observe

again good scalability for both protocols and both document sizes as n increases. Again the

Event-Based Awareness Services for P2P Groupware Systems 153

Fig. 8. Cloud, Protocol 1, 1 Mb doc.

Fig. 9. Cloud, Protocol 2, 1 Mb doc.

average time taken to synchronise all copies of doc is generally greater when Protocol 2 is

used. Similar results are obtained with larger sizes of dat as a proportion of doc for both

protocols and both document sizes. One outlier is the value for Protocol 1 with a 1 Mb doc

size and n = 8 in Fig. 8. We conjecture this may be due to initialisation effects in using

the AWS as this was the first set of experiments run in the Cloud; but further investigation

is needed to verify this.

Each of the data points plotted in Figs. 2–9 is an average of 10 timings. The average of

the standard deviations (SDs) of the data points in Fig. 2 is 57.1. Likewise, the average SDs

for the data points in Figs. 3–9 are 49.8, 206.6, 165.9, 12.8, 15.0, 22.0, 14.6 respectively.

The consistency and size of these SDs points to the robustness of the experimental results.

154 A. Poulovassilis et al.

As would be predicted theoretically given the parallelisation of the SP to Ptarget inter-

actions in Protocol 1 and the Pinit to Ptarget interactions in Protocol 2, the average time

taken for the members of Ptarget to synchronise their documents remains roughly constant

as n increases. The acceptable performance and scalability of both protocols means that,

even though slower, Protocol 2 is an acceptable alternative to Protocol 1 at times when the

superpeer may be under a high communications load, and applications could switch over

to Protocol 2 at such times allowing the peers to take on some of this communications

burden.

8. Conclusions

The provision of awareness information to group members engaged in collaborative

project-based work enables more efficient sharing of knowledge and more timely sup-

port and decision making. While mature proposals have been reported in the literature

for web-based groupware systems, there has been little work for P2P groupware systems

and proposals have only partially addressed the requirements for awareness provision to

collaborating groups. Furthermore, most previous approaches to awareness provision in

P2P systems have implemented the awareness mechanisms as part of applications.

In contrast, we propose a generic set of primitive awareness functionalities and services

to be provided within the P2P middleware, on top of which specific awareness functional-

ities for groupware applications can be developed. We envisage not only simple awareness

information about group members’ activities, e.g. in the form of notifications, but also sup-

port for group processes, aiming to enhance the group’s abilities to undertake a project

effectively and efficiently.

We have discussed the challenges arising in P2P systems when addressing awareness

provision, have reviewed the user requirements relating to generic awareness functionali-

ties, and have described how our primitive services meet these requirements. Services at

superpeers and peers can be composed to build more complex services, at varying levels

of abstraction, in order to provide the required awareness functionality for a particular P2P

groupware application.

We have developed a prototype implementation supporting a subset of the proposed

services as a proof-of-concept. Using this prototype, we have undertaken a performance

evaluation considering factors such as sizes of peergroups, message sizes, and replication

policies for peers’ data, the results of which points to good performance and scalability of

our approach.

Future work includes investigation of the performance of the prototype under more

dynamic network conditions, where the size and make-up of the group are continuously

changing. This would stress-test the reliable message passing services, possibly identify-

ing areas for improvement when dealing with more realistic network conditions. In the

same vein, we would like to study multi-cast communication and compare the results to

the unicast communication used in this work. An interesting extension of our prototype is

to handle mobile peers using smartphones. This would focus on the advantages of using

Event-Based Awareness Services for P2P Groupware Systems 155

mobile devices, such as greater opportunity to leverage context awareness; and also on

dealing with some of the challenges posed by mobile peers, such as resource constraints

and poor connectivity. Finally, implementation of P2P groupware applications using our

prototype would enable its performance to be evaluated for real workloads.

Acknowledgement. This work has been partially supported by Spanish Research Project

TIN2013-46181-C2-1-R COMMAS (Computational Models and Methods for Massive

Structured Data).

References

Bentley, R., Horstmann, T., Sikkel, K., Trevor, J. (1995). Supporting collaborative information sharing with the

WWW. The BSCW shared workspace system. The World Wide Web Journal, 63–73.

Berman, K.A., Annexstein, F.S. (2003). An educational tool for the 21st century: peer-to-peer computing. In:

Proceedings of Ohio Learning Network Conference.

Bulkowski, A., Nawarecki, E., Duda, A. (2006). Peer-to-peer: an enabling technology for next-generation e-

learning. In: Fourth EDEN Research Workshop, Spain.

Busetta, P., Merzi, M. (2003). Approach to the integration of peer-to-peer systems with active environments. In:

Proceedings Workshop from Objects to Agents (WOA 2003), pp. 42–48.

Chan, L., Karunasekera, S., Harwood, A., Tanin, E. (2007). CAESAR: middleware for complex service-oriented

peer-to-peer applications. In: Proceedings of the 2nd Workshop on Middleware for Service Oriented Com-

puting, at International Middleware Conference (MW4SOC ’07), New York, pp. 12–17.

Dou, W., Wang, J. (2004). P2P-based knowledge grid oriented toward cooperative cognition. In: Proceedings of

the 2nd International Workshop on Knowledge Grid and Grid Intelligence (KGGI04), pp. 63–71.

Fakas, G., Karakostas, B. (2004). A peer to peer architecture for dynamic workflow management using web

services. Information and Software Technology Journal, 46(6), 423–431.

Fenkam, P., Kirda, E., Dustdar, S., Gall, H., Reif, G. (2002). Evaluation of a publish/subscribe system for col-

laborative and mobile working. In: Proceedings of the 11th IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises (WETICE ’02), Washington, DC, USA, pp. 23–

28.

Galatopoullos, D.G., Kalofonos, D.N., Manolakos, E.S. (2008). A P2P SOA enabling group collaboration

through service composition. In: Proceedings of the 5th International Conference on Pervasive Services,

pp. 111–120.

Gutwin, C., Greenberg, S., Roseman, M. (1996). Workspace awareness in real-time distributed groupware:

framework, widgets, and evaluation. In: BCS HCI, pp. 281–298.

Jin, H., Yin, Z., Yang, X., Fang, W., Ma, J., Wang, H., Yin, J. (2004). APPLE: a novel P2P based e-learning

environment. In: Distributed Computing, Lecture Notes in Computer Sciences, Vol. 3326. Springer, Berlin,

pp. 52–62.

Kawashima, T., Ma, J. (2004), TOMSCOPA synchronous P2P collaboration platform over JXTA. In: Proceed-

ings of the International Workshop on Multimedia Network Systems and Applications, pp. 85–90.

Kurmanowytsch, R., Kirda, E., Kerer, C., Dustdar, S. (2003). OMNIX: a topology-independent P2P middleware.

In: Proceedings CAiSE Workshops 2003, Lecture Notes in Computer Sciences, Vol. 75. Springer, Berlin,

pp. 47–56.

Li, Y., Bu, J., Chen, C., Xu, X. (2004). Reliable communication based on P2P architecture on real-time collabo-

rative editing system. In: Proceedings of the 8th International Conference on CSCW in Design, pp. 244–249.

Ma, J., Shizuka, M., Lee, J., Huang, R. (2004). A P2P groupware system with decentralized topology for sup-

porting synchronous collaborations. In: Proceedings International Conference on Cyberworlds, pp. 54–61.

Margaritis, M., Fidas, C., Avouris, N., Komis, V. (2004). A peer-to-peer architecture for synchronous collabo-

ration over low-bandwidth Networks. TechRep 26500, University of Patras, Greece.

Mason, R.T., Ellis, T.J. (2010). A recommendation for the use of service oriented architecture (SOA) to bridge

the LMS to LOR data movement interoperability gap for Education. In: Proceedings of Informing Science

& IT Education Conference (InSITE), pp. 43–56.

156 A. Poulovassilis et al.

Menchaca-Mendez, R., Gutierrez-Arias, E., Favela, J. (2004). Opportunistic interaction in P2P ubiquitous en-

vironments. In: Proceedings CRIWG’04, Lecture Notes in Computer Sciences, Vol. 3198. Springer, Berlin,

349–362.

Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmr, M., Risch, T. (2002). Edutella:

a P2P networking infrastructure based on RDF. In: Proceedings 11th World Wide Web Conference, pp. 604–

615.

O’Hagan, T. (2014). Development of Awareness as a Service (AaaS) in P2P Groupware using Cloud Computing.

Birkbeck College, UK. Available at: http://www.dcs.bbk.ac.uk/research/techreps/2014/bbkcs-14-01.pdf.

Oasis, Y., Abdala, S., Matrawy, A. (2006). A multilayer P2P framework for distributed synchronous collabora-

tion. In: IEEE Internet Computing, pp. 33–41.

Papamarkos, G., Poulovassilis, A., Wood, P.T. (2006). Event-condition-action rules on RDF metadata in P2P

environments. Computer Networks, 50(10), 1513–1532.

Parker, D., Cleary, D. (2005). Building richer JXTA applications with collaborative spaces in a peer-to-peer envi-

ronment. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences, pp. 301b.

Paton, N.W. (1999). Active Rules in Database Systems. Springer, Berlin.

Poulovassilis, A., Xhafa, F. (2013). Building event-based services for awareness in P2P groupware systems.

In: Proceedings of the 8th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

(3PGCIC 2013), pp. 200–207.

Preguiēa, N., Martins, J.L., Domingos, H., Duarte, S. (2005). Integrating synchronous and asynchronous in-

teractions in groupware applications. In: Groupware: Design, Implementation, and Use. Lecture Notes in

Computer Sciences, Vol. 3706. Springer, Berlin, pp. 89–104.

Qu, Ch., Nejdl, W. (2011). Constructing a web-based asynchronous and synchronous collaboration environment

using WebDAV and lotus sametime. In: Proceedings of the 29th Annual ACM SIGUCCS Conference on User

Services, pp. 142–149.

Rossi, S., Busetta, P. (2004). Towards monitoring of group interactions and social roles via overhearing. In: Coop-

erative Information Agents VIII, Lecture Notes in Computer Sciences, Vol. 3191. Springer, Berlin, pp. 47–61.

Shen, X., Yu, H., Buford, J. (Eds). Handbook of Peer-to-Peer Networking, Springer, Berlin.

Simon, B., Miklós, Z., Nejdl, W., Sintek, M., Salvachua, J. (2003). Smart space for learning: a mediation infras-

tructure for learning services. In: Proceedings of the 12th World Wide Web Conference, Hungary.

Xhafa, F., Barolli, L., Caballé, S., Fernandez, R. (2010). Efficient peerGroup management in JXTA-Overlay P2P

system for developing groupware tools. The Journal of Supercomputing, 53(1), 45–65.

Xhafa, F., Poulovassilis, A. (2010). Requirements for distributed event-based awareness in P2P groupware sys-

tems. In: Proceedings AINA-2010 Workshops, Australia, pp. 220–225.

You, Y., Pekkola, S. (2001). Meeting others – supporting situation awareness on the WWW. Decision Support

System, 32(1), 71–82.

Zumbach, J., Hillers, A., Reimann, P. (2003). Supporting distributed problem-based learning: the use of feedback

in online learning. In: Roberts, T. (Ed.), Online Collaborative Learning: Theory and Practice, Idea, 2003.

A. Poulovassilis has an MA in Mathematics from Cambridge University and an MSc and

PhD in Computer Science from Birkbeck, University of London. Her research interests

centre on information management, integration, and personalisation. Since 2003, she has

been Co-Director of the London Knowledge Lab, a multidisciplinary research institution

which aims to explore the future of knowledge and learning with digital technologies.

Event-Based Awareness Services for P2P Groupware Systems 157

F. Xhafa holds a PhD in Computer Science from the Department of Languages and In-

formatics Systems (LSI) of the Technical University of Catalonia (UPC). Currently he is

Professor Titular d’Universitat at LSI/UPC. His research interests include parallel and dis-

tributed algorithms, security, optimisation, networking and distributed computing. More

details can be found at http://www.lsi.upc.edu/ fatos/.

T. O’Hagan has a BA Honours in Philosophy from Warwick University and an MSc in

Computer Science from Birkbeck, University of London. He undertook his dissertation

at the London Knowledge Lab in the area of Awareness-As-A-Service for P2P systems.

Currently he is a software developer in the commercial sector.

Įvykiais pagrįstos pažinimo paslaugos P2P grupinės įrangos
sistemoms

Alex POULOVASSILIS, Fatos XHAFA, Thomas O’HAGAN

P2P sistemos leidžia decentralizuoti taikomąsias grupių ir bendruomenių bendradarbiavimo palai-

kymo programas, kuriose bendradarbiavimas gali apimti duomenų ir procesų dalijimąsi tarp grupės

narių. Tokiose programose stebėjimas ir pažinimas yra kritinės efektyvaus bendravimo funkcijos.

Tačiau, iki šiol yra nedaug tyrimų siekiant tiekti bendro pobūdžio nuo taikomųjų programų nepri-

klausomą pažinimą P2P grupinės įrangos sistemoms. Mes pristatome paskirstytą įvykiais pagrįstą

pažinimo būdą tokioms sistemoms, kuris teikia skirtingas pažinimo formas per sąveikos ir žemo

lygmens pažinimo paslaugų rinkinį. Taip pat pateikiame pasiūlyto būdo empirinio efektingumo ir

išplečiamumo įvertinimo rezultatus.

