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Abstract. In several areas like Global Optimization using branch-and-bound methods, the unit
n-simplex is refined by bisecting the longest edge such that a binary search tree appears. This process
generates simplices belonging to different shape classes. Having less simplex shapes facilitates the
prediction of the further workload from a node in the binary tree, because the same shape leads to
the same sub-tree. Irregular sub-simplices generated in the refinement process may have more than
one longest edge when n > 3. The question is how to choose the longest edge to be bisected such
that the number of shape classes is as small as possible. We develop a Branch-and-Bound (B&B)
algorithm to find the minimum number of classes in the refinement process. The developed B&B
algorithm provides a minimum number of eight classes for a regular 3-simplex. Due to the high
computational cost of solving this combinatorial problem, future research focuses on using high
performance computing to derive the minimum number of shapes in higher dimensions.

Key words: regular simplex, longest edge bisection, branch-and-bound, combinatorial optimization,
simplex shape.

1. Introduction

Global Optimization deals with finding the minimum or maximum value of an objective
function f on a closed set with a non-empty interior. We focus here on the so-called
standard n-simplex defined in the (n + 1)-dimensional space:

S =
{

x ∈ R
n+1

n+1
∑

j=1

xj = 1; xj > 0

}

, (1)

*Corresponding author.
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Branch-and-bound methods (B&B) are widely used to solve Global Optimization
(GO) problems where the solution is required to have a guaranteed accuracy. Solving
problems like non-linear least squares regressions (Žilinskas and Žilinskas, 2013), global
optimization of Lipschitz functions (Paulavičius and Žilinskas, 2014; Paulavičius et al.,
2011), copositivity detection (Žilinskas and Dür, 2011) or blending (Casado et al., 2007;
Casado et al., 2011) make use of this algorithms. The use of simplicial partitioning may
be appropriate and efficient in the refinement of the search space (Žilinskas, 2008).

A B&B performs an exhaustive search for optima based on successive decomposition
of the search space into smaller sub-regions until a given precision is reached. Bounds on
the objective function are calculated for each sub-region, allowing discarding sub-regions
where the global optimum cannot be located.

We focus on the binary tree implicitly generated by the branching (refinement) where
the simplex division is defined by the Longest Edge Bisection rule (LEB) (Adler, 1983;
Horst, 1997; Dickinson, 2014).

Aparicio et al. (2013) investigated the effect of the LEB rule on the number of gen-
erated simplices, their roundness and whether sub-simplices have similar shapes. A new
selection method of the longest edge to be bisected, denoted by LEBα , was presented. The
use of LEBα selection in the refinement of a 3-simplex produces eight shape classes. One
of the goals of this work is to prove that this is the minimum number of shapes that can
be achieved.

In a B&B algorithm, the computational cost associated to a node, i.e. the size of its
sub-tree, is not known beforehand. In order to get a good prediction, it is desirable to have
as few simplex shape classes as possible. If the selected longest edge depends on the shape,
sub-simplices with the same shape generate the same type of sub-trees (branches). This
will help to predict the pending work and may facilitate dynamic work load balancing for
parallel versions of such B&B algorithms (Berenguel et al., 2013; Sanjuan-Estrada et al.,
2011).

The paper is organized as follows. Section 2 describes the simplex refinement process
based on the longest edge bisection. Section 3 defines concepts like simplex shape class
and simplex quality. Section 4 discusses theoretical aspects on simplices having the same
shape. Section 5 shows the B&B algorithm to determine the minimum number of simplex
shape classes. Section 6 discusses the findings.

2. Simplex Refinement Using Longest Edge Bisection

In this research, the set to be refined is a regular n-simplex called S1 scaled to an initial
edge length of 1, where the Euclidean norm is used here to calculate the edge length.

S1 =
{

x ∈ R
n+1

n+1
∑

j=1

xj =
√

2

2
; xj > 0

}

. (2)

An n-simplex is defined by its set of vertices V = {v1, . . . , vn+1}, vj ∈ Rn+1. Figure 1
shows a 2-simplex with edge length of 1. The following notation is used:
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Fig. 1. A regular 2-simplex with edge length 1.

Fig. 2. Longest-edge bisection on a regular 3-simplex.

• ω(S): the size (width) of a simplex S (longest edge), i.e. maxi,j ‖vi − vj‖.
• |V |: the number of vertices.

The longest-edge bisection algorithm is a popular way of iterative refinement in the
finite element method, since it is very simple and can easily be applied in higher dimen-
sions (Hannukainen et al., 2014). It is based on splitting a simplex using the hyperplane
that connects the mid point of the longest edge of a simplex with the opposite vertices, as
illustrated in Fig. 2.

Algorithm 1 provides the Simplex Refinement (SR) algorithm which bisects the initial
simplex iteratively. In principle, the refinement can continue indefinitely, but we describe
the process here (like in B&B) such that there is a stopping criterion; the branching con-
tinues until the size of a node is less than or equal to the desired accuracy ǫ. To study the
resulting binary tree, the index i is used to number the simplices. The set 3 provides the
leaves of the tree corresponding to the simplices that have not been refined yet. Figure 3
illustrates the result of SR on a 2-simplex with termination criterion ω(S) 6 0.5.

For a 2-simplex, selection among the longest edges in SelectLE is not required as the
longest edge is either unique or the choice does not alter the shape of the sub-simplices. To
have the procedure SelectLE well defined, the vertices in V should be numbered. For the
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Algorithm 1 Simplex Refinement algorithm
Procedure SR(S1, ǫ)

1: 3 := {1} ◮ Set of leaf indices; simplices not yet split
2: ns := 1 ◮ Number of simplices
3: while 3 6= ∅ do

4: Extract a simplex i from 3

5: if w(Si) > ǫ then ◮ Final accuracy not reached
6: {j, k} := SelectLE(Si)

7: {S2i, S2i+1} := Bisect(Si, j, k)

8: Store simplices 2i and 2i + 1 in 3.
9: ns := ns + 2.

ω(S1)=1

ω(S2)=1
ω(S3)=1

ω(S4)=0.5 ω(S5)=
√

3
2 ω(S6)=

√

3
2

ω(S7)=0.5

ω(S10)=0.5 ω(S11)=0.5 ω(S12)=0.5 ω(S13)=0.5

S1

S2 S3

S4

S5 S6

S7

S10 S11 S12 S13

Level 1

Level 2

Level 3

Level 4

Fig. 3. Binary tree generated by the SR algorithm on a 2-simplex with ǫ = 0.5.

numbering we follow a rule described in Mitchell (1989). He showed that one can avoid
edge length calculations in a 2-simplex by always bisecting the edge {1,2} and numbering
the new vertex as the last one of the set of vertices in the generated new sub-simplices.
The bisection in Algorithm 2 follows the same numbering of the new vertex.

Figure 2 shows the result of the first bisection for a 3-simplex. It does not matter which
edge is selected first, because all generated sub-simplices are equal. Notice that there exist
three longest edges for the sub-simplices. So, one of the longest edges has to be selected
for bisection.

The number of simplices in the finite binary tree of Algorithm 1 depends on how
fast the size of the simplices decreases when we go deeper into the tree. Aparicio et al.
(2013) studies the number and classes of simplices for n 6 3 when a specific longest
edge selection method, denoted by LEBα , based on the angles between the edges is used
as SelectLE() in Algorithm 1. The question is whether it can be done better, i.e. does
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Algorithm 2 Bisection algorithm
Procedure Bisect(S, j, k)

1: Take the vertices vj and vk of S to generate vnew := vj +vk

2

2: The new simplices Sl and Sr inherit characteristic of the old: Sl := Sr := S

3: Remove vj from V ⊂ Sl ◮ Left shift: vertex indices ∈ {1, . . . , n}
4: Number vnew as vertex n + 1 in V ⊂ Sl

5: Remove vk from V ⊂ Sr ◮ Left shift: vertex indices ∈ {1, . . . , n}
6: Number vnew as vertex n + 1 in V ⊂ Sr

7: return Sl, Sr

a rule exist that generates less classes? We investigate that by solving the combinato-
rial optimization problem arising when several choices for SelectLE() exist. In order to
deal with it, we first define the concept of a simplex shape class and quality measure-
ment.

3. Simplex Shape Classes and Quality Measurement

Definition 1. Two simplices A and B have the same shape if each of the vertices of A

matches with one of B after scaling, translating and an orthogonal matrix operation that
captures rotation and mirroring, see e.g. Plaza and Carey (2002).

Showing that two simplices have the same shape is not easy, because the number of
possible matchings is (n + 1)!. Instead, literature describes various measures aiming at
characterizing the so-called shape, roundness or quality of a simplex. It has been shown
that most of the measures are equivalent (Parthasarathy et al., 1994; Plaza and Carey, 2002;
Dompierre et al., 2005). An example of a description is the following.

Definition 2. (See Dompierre et al., 1998.) A tetrahedron shape measure is a continuous
function that evaluates the quality of a tetrahedron. It must be invariant under translation,
rotation, reflection and uniform scaling of the tetrahedron, maximum for the regular tetra-
hedron and minimum for a degenerate tetrahedron. There should be no local maximum
other than the global maximum for a regular tetrahedron and there should be no local
minimum other than the global minimum for a degenerate tetrahedron.

Aparicio et al. (2013) elaborates this idea by defining a simplex quality index, SQ as
the ratio between the arithmetic and geometric mean of the set of squared angles between
edges of a simplex. Let α1, . . . , αm be the angles between edges of an n-simplex. SQ(S)

is defined as:

SQ(S) = m ·
m

√

α2
1 · α2

2 · . . . · α2
m

α2
1 + α2

2 + ...α2
m

∈ (0,1], (3)
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Fig. 4. Obtaining the angle α between two edges sharing a vertex using the corresponding cosine.

where m is the total number of angles determined by

m = n(n + 1)(n − 1)

2
. (4)

As the length of every single edge linking two vertices in a simplex is known, the angle
α between a pair of edges (vi , vj ) and (vi , vk) that share a vertex vi can be determined
by the corresponding cosine. The value of angle α depicted in Fig. 4 can be obtained by
calculating

α = arccos

( ||vi − vj ||2 + ||vi − vk||2 − ||vj − vk ||2
2||vi − vj ||||vi − vk||

)

. (5)

It can be easily seen that a simplex with very sharp angles has a SQ value close to zero
and SQ(S) = 1 if and only if S is a regular simplex. The idea was elaborated for steering
the selection procedure SelectLE of the edge to be bisected next.

Remark 1. Simplices with the same shape have the same set of angles, so they also have
the same SQ value. That makes having the same SQ value a necessary but not a sufficient
condition for having the same shape.

Remark 2. Two simplices with different SQ values have different shapes. Therefore, no
shape comparison is necessary for a new sub-simplex if there was no simplex with the
same SQ value so far.

Remark 3. The computational cost of SQ calculation and comparison is far less than to
determine if two simplices have the same shape (see Definition 1). This means that one
better compares the SQ value first.

Although one can generate two simplices with different shape and equal SQ value
with little effort, it is an open question if simplices with the same SQ value exist in the
tree generated by the SR algorithm that belong to two different classes. A negative answer
would save testing on similarity when two simplices with the same SQ value are found.
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4. Checking Whether two Simplices Have the Same Shape

There are several ways to check whether simplices fall into the same shape class, according
to Definition 1. Specifically, we will look into checking the definition for n-simplices
considering their analysis not only in n + 1 but also in an n dimensional space.

Consider two n-simplices S and Y with corresponding vertex sets V and W . One can
also write S = conv(V ) and Y = conv(W). In an algorithmic context, V and W are stored
as (ordered) (n + 1) matrices. In order to follow the similarity definition, it is redefined
in Definition 3 in a more exact way using only affine transformations, that is, uniform
scaling, translation, rotation and reflection.

Definition 3. Two simplices S,Y ⊂R
n+1 are shape similar, if there exists a scaling factor

a > 0, a translation vector b ∈ Rn+1 and an orthogonal rotation/reflection matrix R, such
that ∀w ∈ Y , ∃v ∈ S with w = b + aRv.

For the practical check, scaling and translation can be handled by normalizing the
simplices S and Y . One can scale both simplices to have a unit longest edge by dividing
all the edges by the size of the simplex ω(S) and ω(Y ) respectively after centering them
around the origin. Consider V and W as matrices, then scaling and translation leads to
matrices

V̂ = 1

ω(S)

(

V − 1

n + 1
V 11T

)

, Ŵ = 1

ω(Y )

(

W − 1

n + 1
W11T

)

, (6)

where 1 is the all-ones vector. We now show that if simplices Ŝ = conv(V̂ ) and Ŷ =
conv(Ŵ ) are similar, also S and Y are similar.

Proposition 1. Let V and W be two nonsingular (n + 1) × (n + 1) matrices and V̂ and

Ŵ follow from (6). If there exists an orthonormal matrix R such that Ŵ = RV̂ then the

simplices S = conv(V ) and Y = conv(W) are shape similar.

Proof. Consider a = ω(Y )
ω(S)

and b = 1
n+1

W1 − a
n+1

RV 1. It should be shown that ∀w ∈ Y ,
∃v ∈ S such that w = b + aRv. Any w ∈ Y can be written as a convex combination of
its extreme points: w = Wλ with

∑

i λi = 1 and λi > 0, i = 1, . . . , n + 1. Now consider
v = V λ, v̂ = V̂ λ and ŵ = Ŵλ. Then it follows from the condition and

∑

i λi = 1 that

ŵ = Rv̂ ⇒ ω(Y )Ŵλ = ω(Y )RV̂ λ = ω(Y )

ω(S)
R

(

V λ − 1

n + 1
V 1

)

⇒ w = Wλ = ω(Y )Ŵλ + 1

n + 1
W1

= ω(Y )

ω(S)
Rv − ω(Y )

ω(S)
R

1

n + 1
V 1 + 1

n + 1
W1 = aRv + b. �

As in our reasoning we combine the ideas of vertex sets and a matrix representation,
even if Ŵ = RV̂ , we still need to find the right ordering of vertices (permutation) in order
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to show this is true. A second challenge is that matrix R rotates and reflects around the
axis O = {x ∈ R

n+1 | x = α1, α ∈ R} through the origin. The image of R with respect to a
matrix V is therefore in the lower dimensional planeB= {x ∈ Rn+1 |

∑

i xi = 0}. So 1 has
to be an eigenvectorwith eigenvalue1 of R; R1 = 1. The matrices V̂ and Ŵ are singular, as
their columns sum to zero. However, for any nonzero scalar α, Ŵ +α11T = R(V̂ +α11T ),
such that R can be found by

Rn+1 =
(

Ŵ + α11T
)(

V̂ + α11T
)−1

. (7)

Even if Ŝ = conv(V̂ ) and Ŷ = conv(Ŵ) are similar, one still has to find the right matching,
i.e. the order of the vertices {v1, v2, . . . , vn+1} in order to prove it. For any permutation
we can compute matrix Rn+1; if it is orthonormal, the simplices S and Y are similar.

Instead of working in (n + 1)-dimensional space, we can also find the rotation-
reflection in n-dimensional space. Let B = {x ∈ Rn+1 |

∑

i xi = 0} be the linear space
where Ŝ = conv(V̂ ) and Ŷ = conv(Ŵ ) can be found and B a matrix containing a basis
of B. This means that the simplex conv(Ŵ ) is in the space spanned by the columns of B;
conv(Ŵ ) ⊂ 〈B〉. By considering an orthonormal basis, we can move the analysis to the
n-dimensional space.

Proposition 2. Let B be an orthonormal basis of B, V and W be two nonsingular (n +
1)× (n+ 1) matrices and V̂ and Ŵ follow from (6). If an n×n rotation/reflection matrix

R (det(R) = ±1 and RRT = I ) exists such that BT Ŵ = RBT V̂ , then simplices conv(V )

and conv(W) are shape similar.

Proof. Let Z and X be solutions (n × (n + 1) matrices) of Ŵ = BZ and V̂ = BX.
The columns are affinely independent and sum to zero; Z1 = X1 = 0. An n × n rota-
tion/reflection matrix R exists such that Z = RX. According to the definition, conv(Z)

and conv(X) are shape similar in Rn. Multiplication by basis B provides BZ = Ŵ =
BRX = BRBT V̂ . The matrix BRBT is not of full rank; the eigenvalue in the direction 1

is zero. Extending the matrices to full rank via B̂ =
(

B, 1√
n+1

1
)

and R̂ =
(

R

0, . . . , 0

(

0
1

))

provides Ŵ = BRX = B̂R̂B̂T V̂ . Notice that the determinant of R̂ is 1 × det(R). More-
over, R̂, B̂ are orthonormal and of full rank: B̂−1 = B̂T . We have B̂R̂B̂T (B̂R̂B̂T )T =
B̂R̂B̂T (B̂R̂T B̂T ) = I . So, as B̂R̂B̂T is an orthonormal rotation-reflection matrix, ac-
cording to Proposition 1, conv(V ) and conv(W) are shape similar. �

A way to construct a orthogonal basis is as follows. For n = 2 one can write down such
a basis as

B2 =





1√
2





1

−1

0



 ,
1√
6





1

1

−2









and recursively define

Bn =
(

Bn−1

0, . . . ,0

1√
n(n + 1)

(

1

−n

))

.
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For instance

B3 =









1√
2









1

−1

0

0









,
1√
6









1

1

−2

0









,
1√
12









1

1

1

−3

















,

B4 =













1√
2













1

−1

0

0

0













,
1√
6













1

1

−2

0

0













,
1√
12













1

1

1

−3

0













,
1√
20













1

1

1

1

−4

























.

Proposition 2 shows us that one can also define algorithm SR in a lower dimensional
space saving on storage and computational operations. Working with n + 1 vertices in
n-dimensional space, to recover R one can drop one of the vertices and solve similarly
to (7). Alternatively, one can look for a least squares approach following Proposition 3.

Proposition 3. Let Z and X be two n × (n + 1) matrices of rank n. If an n × n ro-

tation/reflection matrix R (det(R) = ±1 and RRT = I ) exists such that Z = RX, then

R = ZXT (XXT )−1.

Proof. If Z = RX then ZXT (XXT )−1 = RXXT
(

XXT
)−1 = R. �

Now moving back to the data in n + 1-dimensional space, if we consider in Proposi-
tion 3 the matrices Z = BT

n Ŵ and X = BT
n V̂ then one can find the n-dimensional rotation

matrix by

Rn = BT
n Ŵ V̂ T Bn

(

BT
n V̂ V̂ T Bn

)−1
. (8)

Instead of focusing on the vertex set in matrix representation, one can also look at the n

edges of the simplex in n-dimensional space connected to the first (or any) vertex.

Proposition 4. Let Z and X be two n × (n + 1) matrices with columns being an affinely

independent set and F and E n × n edge matrices defined by columns fi = zi+1 − z1,

i = 1, . . . , n and ei = xi+1 − x1, i = 1, . . . , n. If nonsingular n × n matrix R exists such

that Z = RX, then F = RE and R = FE−1.

Proof. Follows from writing out fi = zi+1 − z1 = R(xi+1 − x1) = Rei . �

Practically Proposition 4 can be used by choosing two matching vertices of BT Ŵ and
BT V̂ and construct the corresponding edge sets F and E. Computing

Rn = FE−1 (9)
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requires less computational operations than (8). The main concern is to find the correct
order, i.e. the vertex permutation. Taking this into account, one should find the right per-
mutation matrix P , compute either Rn+1 from (7) or Rn from (8) or (9) and check whether
it is orthonormal. As there are (n+1)! different permutation matrices P , in the worst case
R has to be computed and checked (n + 1)! times.

5. Finding Selection Rule with the Minimum Number of Shapes

The question is how to generate the binary tree of the Simplex Refinement (SR) algo-
rithm having the minimum number of simplex shape classes. This question is investigated
by developing the specific B&B algorithm (MinClassB&B) outlined in Algorithm 3. In
the MinClassB&B algorithm, each node corresponds to a tree T rooted at the unit simplex
with the following information:

3(T ): The set of leaves of tree T , those nodes needing further processing.
C(T ): The set of shape classes found in the nodes of tree T .
c(S): The shape of a simplex S.

Algorithm 3 B&B algorithm to determine the Minimum number of Simplex Classes in
the Simplex Refinement process starting from the unit simplex S1.
Procedure MinClassB&B(S1)

1: 3(T1) consists of one leaf, S1 and C(T1) = {c(S1)}
2: Ŵ := {T1} ◮ Set of trees
3: MinNC := ∞ ◮ Minimum Number of Classes already found
4: while Ŵ 6= ∅ do

5: Extract a T from Ŵ

6: if |C(T )|6 MinNC then

7: if 3(T ) = ∅ then

8: MinNC := |C(T )|
9: Store the selection rule SelectLE applied to generate T

10: else

11: Extract a simplex Si from 3(T )

12: for all longest edges (j, k) of Si do

13: Generate new leaves {σ1, σ2} := Bisect(Si , j, k)

14: if c(σ1) = c(σ2) then

15: Remove one of the leaves, e.g. σ2

16: Create a new tree X

17: Leaf set 3(X) := {σl, c(σl) /∈ C(T )} ∪ 3(T ),
18: and shape set C(X) := {C(T )} ∪ {c(σl) /∈ C(T )}
19: Store X in Ŵ

20: Keep track of the chosen edge SelectLE(Si)

21: return MinNC and the selection rule SelectLE to reach it
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Fig. 5. Generation of new leaves in the B&B ToT due to the existence of several longest edges of S2. XC is
rejected because XB has the same S2 descendant shape.

The MinClassB&B algorithm basically builds a tree of binary trees (ToT) with a varying
branching degree as illustrated in Fig. 5. The set of leaves of ToT are stored in Ŵ. The
following concepts of branch-and-bound apply.

• MinNC is a global upper bound on the number of classes. Initially, MinNC can be set
on a value already found in earlier computations, or infinity otherwise. For instance,
an upper bound of eight is already known for a 3-simplex (Aparicio et al., 2013).

• If for a tree T , the number of classes |C(T )| is higher than MinNC, it does not have
to be considered anymore. Branching T further will namely always lead to more
classes.

• When refinement of T does not lead to new classes, the tree can be removed. This
concept is illustrated in Fig. 5.

The global idea is that simplices only have to be stored as leaves in 3(T ), if they provide
a shape that has not been found before.

The set Ŵ initially has just one tree T which consists of a set 3 with one leaf, the initial
unit simplex. The rest of the algorithm follows the general branch-and-bound structure.
Details about which branching is performed first or which tree to be selected first, is left
out. The new shape set C(X) is defined in line 18 where |C(X)| is a lower bound of the
number of shapes in the tree. In order to reduce the complexity of the pseudocode, it is
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Table 1
SelectLE(Si ) in Algorithms 1 and 3 giving the
minimum number of classes for a 3-simplex.

Level SelectLE(Si )

1 {1, 2}
2 {2, 3}
3 {1, 2}
4 {1, 2}, for i even

{1, 3}, for i odd
5 {1, 2}
6 {1, 2}
7 {1, 3}, for i even

{1, 2}, for i odd
8 As level 5
9 As level 6

10 As level 7 . . .

implicit that a leaf of ToT was first stored in Ŵ before it is discovered that it can be rejected,
when its lower bound is greater than the current upper bound (line 6), or T has no leaves
anymore, (line 7). The global upper bound is only updated by the number of shapes of a
tree T without leaves in line 8. Setting an initial bound reduces the computationdrastically.

Computationally, the hard part of Algorithm 3 is the comparison of the shapes of the
new simplices to the existing shape classes in C(T ). Moreover, (in line 14) the algorithm
checks whether the two children have the same shape; in that case one is removed, as
depicted in the T tree of Fig. 5. Additionally, a tree is rejected when its brother tree has
produced the same combination of new simplices. This concept is not explicitly described
in Algorithm 3 but Fig. 5 shows an example.

6. Results

The MinClassB&B algorithm has been run for the unit 2-simplex and the unit 3-simplex.
The 4-simplex case appears computationally very hard due to the large number of possi-
bilities for selecting the longest edge. In the future, we will look into the ability of high
performance computing to reach a solution for n-simplices with n > 3.

The result for the regular 2-simplex shows the existence of three simplices with
different shape as illustrated in Fig. 3. They are generated selecting the longest edge
SelectLE(Si) = {1,2} in the SR process, avoiding edge length calculations.

For the regular 3-simplex, a unique selection rule SelectLE generates the minimum of
eight simplex shapes. This confirms the optimality of the longest edge selection (LEBα)
studied in (Aparicio et al., 2013). Table 1 describes the SelectLE rule for the minimal
shape classes. From level five, the selected LE at each level is repeated every three levels.
Notice that i is the index of the simplex Si which is located at level L = ⌈log2 i⌉ in the
binary tree generated by SR and the vertices of Si are reordered following Algorithm 2.

In order to illustrate the optimal SelectLE rule for the 3-simplex i.e. the LEBα selection
rule, Fig. 6 depicts the resulting SR tree where simplices of an already discovered shape
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S1

S3 = S2

S9 = S8

S17 = S2

S33 = S32

S65 = S8

S129 = S128

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

S256 = S32
S257 = S32

Level 9

S2

S4

S8

S16

S32

S64

S128

S5 = S4

Fig. 6. Binary tree of the SR algorithm without repeating simplices with a shape already found. For a 3-simplex
the SelectLE rule of Table 1 provides the same tree as the LEBα rule.

are not further refined. The LEBα longest edge selection is not unique for a 4-simplex,
thus further investigation is needed.

The behavior of LEBα longest edge selection applied over an existing B&B algorithm
has been tested in (Herrera et al., 2014). The results show that although the LEBα selection
rule is computationally more complex than a rule just selecting the first longest edge, the
wall clock time of the algorithm is reduced considerably due to the reduction in the number
of evaluated simplices.

7. Conclusions

This work studies the process of iteratively bisecting a regular n-simplex using longest
edge bisection. The question is how to select the longest edge to be bisected such that
a minimum number of simplex shape classes are generated. To answer this question, a
Branch-and-Bound algorithm has been developed that implicitly tests all possible choices
for the selection. Numerical results confirm that the eight simplex shape classes for a
3-simplex obtained in (Aparicio et al., 2013) is indeed the minimum number. Numerical
determination of the minimum number of simplex classes in larger dimensions requires
further investigation of using high performance computing in order to get a result in a
reasonable execution time.
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Apie mažiausią simpleksų formų skaičių ilgiausios kraštinės vidurio
dalinime pradedant reguliariuoju n-simpleksu

Guillermo APARICIO, Leocadio G. CASADO, Eligius M.T. HENDRIX,
Boglárka G.-TÓTH, Inmaculada GARCIA

Keliose srityse, kaip pavyzdžiui globaliajame optimizavime naudojant šakų ir rėžių metodus, nau-
dojamas simpleksų dalinamas per ilgiausios kraštinės vidurį, kurį galima vaizduoti dvejetainiu me-
džiu. Dalinimo procesas generuoja skirtingos formos simpleksus. Mažesnis formų skaičius paleng-
vina vėlesnio darbo krūvio prognozavimą dvejetainio medžio mazge, nes tokia pati forma veda
prie tokio pačio pomedžio. Net nereguliarūs 3 ar daugiau matmenų simpleksai gali turėti daugiau
negu vieną ilgiausią kraštinę. Kyla klausimas, kaip parinkti dalinimui kraštinę, kad simpleksų for-
mų skaičius būtų mažiausias. Mes sukūrėme šakų ir rėžių algoritmą rasti mažiausią formų skaičių.
Reguliariam 3 matmenų simpleksui gautas mažiausias formų skaičius yra 8. Didesniam matmenų
skaičiui reikalingi lygiagretieji skaičiavimai dėl didelės skaičiavimų apimties.


