
INFORMATICA, 2015, Vol. 26, No. 1, 51–65 51
 2015 Vilnius University

DOI: http://dx.doi.org/10.15388/Informatica.2015.38

An Algorithm for Key-Dependent S-Box

Generation in Block Cipher System

Kazys KAZLAUSKAS∗, Gytis VAICEKAUSKAS,
Robertas SMALIUKAS
Institute of Informatics and Mathematics, Vilnius University

Akademijos 4, LT-08663 Vilnius, Lithuania

e-mail: kazys.kazlauskas@mii.vu.lt, gytis.vaicekauskas@mii.vu.lt, robertas.smaliukas@mii.vu.lt

Received: August 2013; accepted: August 2014

Abstract. A nonlinear substitution operation of bytes is the main strength factor of the Advanced

Encryption Standard (AES) and other modern cipher systems. In this paper we have presented a new

simple algorithm to generate key-dependent S-boxes and inverse S-boxes for block cipher systems.

The quality of this algorithm was tested by using NIST tests, and changing only one bit of the

secret key to generate new key-dependent S-boxes. The fact that the S-boxes are key-dependent

and unknown is the main strength of the algorithm, since the linear and differential cryptanalysis

require known S-boxes. In the second section of the paper, we analyze S-boxes. In the third section

we describe the key-dependent S-boxes and inverse S-boxes generation algorithm. Afterwards, we

experimentally investigate the quality of the generated key-dependent S-boxes. Comparison results

suggest that the key-dependent S-boxes have good performance and can be applied to AES.

Key words: block cipher systems, key-dependent S-boxes, generation algorithm, experimental

results.

1. Introduction

The growing number of communication users has led to increasing demand for security

measures to protect data transmitted over open channels (Chen et al., 2008; Li et al., 2007;

Sakalauskas, 2005). Cryptography is the best method for data protection against active and

passive fraud. A cipher system is a set of reversible transformations from the set M of a

plaintext into the set C of a cipher text. Each transformation depends on a secret key and

the ciphering algorithm. In the block cipher system, the plaintext is divided into blocks

and the ciphering is carried out for the whole block (El-Ramly et al., 2001).

Two general principles of block ciphers are confusion and diffusion. Confusion is

transformation that changes the dependence of the statistics of the cipher text on the statis-

tics of the plaintext. Diffusion is spreading of the influence of one plaintext bit to many

cipher text bits with the intention to hide the statistical structure of the plaintext. In most

cipher systems the confusion and diffusion are achieved by means of round repetition. Re-

peating a single round contributes to the cipher’s simplicity (Masuda et al., 2006). Modern

*Corresponding author.



52 K. Kazlauskas et al.

block ciphers consist of four transformations: substitution, permutation, mixing, and key-

adding (Schneier, 1996a; Menezes et al., 1997).

Cryptographic objects are private key algorithms, public key algorithms and pseudo-

random generators. Block ciphers usually transform the 128 or 256 bits string of the plain-

text to a string of the same length ciphertext under control of the secret key. The private

key cryptography, such as DES (Data Encryption Standard, 2001), 3DES, and Advanced

Encryption Standard (2001) (AES), uses the same key for the sender and for the receiver

to encrypt the plaintext and to decrypt the ciphertext. The private key cryptography is

more suitable for the encryption of a large amount of data. The public key cryptography,

such as the Rivest–Shamir–Adleman (RSA) or Elliptic Curve algorithms, uses different

keys for encryption and decryption. The AES algorithm defined by the National Institute

of Standards and Technology of the United States has been accepted to replace DES. AES

overpasses DES in an improved security because of larger key sizes. AES is suitable for

8 bit microprocessor platforms and 32 bit processors (Su et al., 2003).

Block cipher systems depend on the S-boxes, which are fixed and have no relation

with the secret key. So only a changeable parameter is the secret key. The only nonlinear

component of AES is S-boxes, so they are an important source of cryptographic strength.

Research of the S-box design has focused on determination of S-box properties which

yield cryptographically strong ciphers, with the aim of selecting a small number of good

S-boxes for use in a block cipher DES and CAST (Menezes et al., 1997). Some results have

demonstrated that a randomly chosen S-box of sufficient size will have several of these

desirable properties with a high probability (Keliher, 2003). In Mahmoud et al. (2013)

a dynamic AES-128 with a key-dependent S-box is designed and implemented. The pa-

per of Juremi et al. (2012) presents a new AES-like design for key-dependent AES using

the S-box rotation method. An approach for designing a key-dependent S-box defined over

GF(24) in AES is presented in El-Sheikh et al. (2012). A key-dependent S-box of AES

algorithm using a variable mapping technique is analyzed in Mohammad et al. (2009).

A key-dependent S-box generation algorithm in AES block cipher system is proposed in

the paper of Kazlauskas and Kazlauskas (2009). Hamdy et al. (2011) have proposed a

customized version of the AES block cipher in which the key-dependent S-box genera-

tion algorithm is used. A proposal for key-dependent AES is also analyzed in the paper

of Fahmy et al. (2005). In the paper of Hosseinkhani et al. (2012), the dynamic S-box

is generated in the AES cipher system using the secret key. Other systems, using key-

dependent S-boxes were proposed in the past, the most well-known of which is Blowfish

(Schneier, 1996a, 1996b) and Khufu (Merkle, 1991). Each of these two systems uses the

cryptosystem itself to generate the S-boxes.

This paper outlines the work of the authors’ investigation into the design of a new

pseudo-randomly generated key-dependent S-boxes. Modeling results show, that the pro-

posed algorithm has a good cryptographic strength, with an additional benefit that the

algorithm is resistant to the linear and differential cryptanalysis, which requires that the

S-boxes be known. In the second section, we briefly analyze substitution S-boxes. The

third section of the paper describes proposed key-dependent S-box and inverse S-box gen-

eration algorithm. Afterwards, we discuss the experimental results and give conclusions.



An Algorithm for Key-Dependent S-Box Generation in Block Cipher System 53

2. Substitution S-Boxes

The essential part of every block cipher is an S-box. To secure the cipher against these at-

tacks, the nonlinearity of the S-box should satisfy the maximum input-output correlation,

and the difference propagation probability should be minimum.

There are two ways to fight against the linear and differential cryptanalysis. The first

one is to create S-boxes with low linear and differential probabilities. The other is to design

the round transformation so that only trails with many active S-boxes would occur. The

round transformation must be designed in such a way that differential steps with few active

S-boxes would be followed by differential steps with many active S-boxes (Masuda et al.,

2006).

Substitution is a nonlinear transformation that performs confusion of bits. A nonlin-

ear transformation is essential for every modern encryption algorithm and is proved to

be a strong cryptographic primitive against the linear and differential cryptanalysis. Non-

linear transformations are implemented as lookup tables (S-boxes). An S-box with p in-

put bits and q output bits is denoted as p→ q . The DES uses eight 6→ 4 S-boxes.

S-boxes are designed for software implementation on 8-bit processors. The block ciphers

with 8→ 8 S-boxes are SAFER, SHARK, and AES. For processors with 32-bit or 64-bit

words, S-boxes with more output bits provide a high efficiency. The Snefru, Blowfish,

CAST, and SQUARE use 8→ 32 S-boxes. The S-boxes can be selected at random as in

Snefru, and can be computed using a chaotic map, or have some mathematical structure

over a finite Galois field. Examples of the last approach are SAFER, SHARK, and AES.

S-boxes that depend on the key values are slower, but more secure than the key independent

ones (Schneier, 1996b). The use of the key independent chaotic S-boxes are analyzed in

Jakimovski and Kocarev (2001), in which the S-box is constructed with a transformation

F((X+K) mod M), where K is the key (Masuda et al., 2006).

In AES, the S-box generate two transformations in the Galois fields GF(2) and

GF(28). The S-box is a nonlinear transformation where each byte of the state is replaced

by another byte using the substitution table. The first transformation is: an S-box finds the

multiplication inverse of the byte in the field GF(28). Since it is an algebraic expression,

it is possible to mount algebraic attacks. Hence, it is followed by an affine transformation.

The affine transformation is chosen in order to make the SubBytes a complex algebraic

expression while preserving the nonlinearity property. Both S-box transformations can be

expressed in a matrix form as Hsiao et al. (2005, 2006)

S′ =M • S−1 +C, (1)

where the sign • is multiplication and the sign+ is addition in the field GF(28). The 8×1

vector S′ denotes the bits of the output byte after the S-box transformations. The inverse S-

box transformation can be get by multiplying both sides of Eq. (1) by M−1 and it performs

the inverse affine transformation followed by the multiplicative inverse in GF(28):

S−1 =M−1 • S′ +M−1 •C. (2)



54 K. Kazlauskas et al.

The S-box elements (bytes) b must be invertible, i.e., invSbox(Sbox(b))= b; must have

no fixed elements, i.e., Sbox(b) = b; must have no complementary fixed elements, i.e.,

Sbox(b) = b̄, where b̄ is bitwise complement of b; Sbox must be not self inverse, i.e.,

Sbox(b) 6= invSbox(b).

The object of this proposal is a cipher using key-dependent S-boxes. The fact that

S-boxes are unknown is one of the main strength of the cipher system, since both linear

and differential cryptanalysis require the known S-boxes. If the S-boxes are generated

from the key in sufficiently random fashion, each S-box has a high probability of being

complete, possessing a fairly high nonlinearity. It is not apparent that the pseudorandom

nature of the S-boxes introduces any weakness into the system. Ideal randomness of an

S-box cannot be achieved. Ideal randomness is not mathematically possible because of the

following reasons: the value of all elements in the S-box difference table should be even,

since a⊕ b= b⊕ a. Since the S-box is bijective, the input difference of 0 will lead to an

output difference of 0. So the element, corresponding to row = 0 and column = 0 in the

difference table, will be 2
n and all other elements in row = 0 and column = 0 will be 0

(Sakthivel, 2001).

3. Algorithm for Generation of Key-Dependent S-Boxes

Input: 1. The secret key key(i), i = 1, . . . , l is the vector of l integer numbers (bytes)

from the interval [0,255].

2. The initial substitution box Sbox(i), i = 0,1, . . . ,255 is the vector of different

integer numbers (bytes) from the interval [0,255].

Output: 1. The key-dependent substitution box Sboxm(i), i = 0,1, . . . ,255 is the vector

of the different integer numbers (bytes) from the interval [0,255].

2. The key-dependent inverse substitution box invSboxm(i), i = 0,1, . . . ,255 is

the vector of different integer numbers (bytes) from the interval [0,255].

% Compute the initial value j , which depends on all the secret key’s values key(i),

i = 1,2, . . . , l from the interval [0,255]:

1: j←
l

∑

i=1

key(i) mod 256

2: for all i = 0,1, . . . ,255 do

% Compute the index j which depends on the values of the initial substitution box S-box

and on the values of the secret key:

3: k←
(

Sbox(i)+ Sbox(j)
)

mod l

4: j← (j + key(k)) mod 256



An Algorithm for Key-Dependent S-Box Generation in Block Cipher System 55

% Replace the values Sbox(i) by the values Sbox(j), and the values Sbox(j) by the values

Sbox(i):

5: p← Sbox(i)

6: Sbox(i)← Sbox(j)

7: Sbox(j)← p

8: end for

% Write the key-dependent substitution box values to Sboxm:

9: Sboxm← Sbox

% Compute the key-dependent inverse substitution box values invSboxm:

10: for all i = 0,1, . . . ,255 do

11: invSboxm(Sboxm(i))← i

12: end for

Remarks.

1. The initial substitution box Sbox0 may be the AES substitution table rearranged

according to the rows to the 256-size vector or the ordered numbers 0,1, . . . ,255, or these

numbers mixed in any order. In all these cases the sender and the receiver must know these

boxes.

2. The length l of the secret key must be 16, 24, or 32 bytes as it is in AES, or the

secret key may have any length.

There are six cases of applying the proposed algorithm.

Define: ϕ – the proposed algorithm; f – the AES round keys generation function; F –

the AES ciphering algorithm; key – the secret key; Sbox0 – the initial substitution box;

Sboxmj – the j th key-dependent substitution box; ciphertextj – the result of ciphering

round j ; ciphertextn = ciphertext; rk – the round keys; rk0 = key, rkj , j = 1,2, . . . , n –

the j th round key; n – the number of ciphering rounds (in AES n= 10, 12, or 14).

Case 1: The algorithm generates a key-dependent substitution box Sboxm0 for the

given secret key key and for the initial substitution box Sbox0:

1. Sboxm0 = ϕ(key,Sbox0)

2. rk = f (key,Sboxm0)

3. ciphertext= F(rk,Sboxm0)

(3)

Case 2: In each ciphering round j we generate and use the substitution box Sboxmj ,

which depends on the round key rkj and on the modified key-dependent initial substitution



56 K. Kazlauskas et al.

box Sboxm0:

1. Sboxm0 = ϕ(key,Sbox0)

2. rk = f (key,Sboxm0)

3. for all j = 1, . . . , n do

Sboxmj = ϕ(rkj ,Sboxm0)

ciphertextj = F(rkj ,Sboxmj )

end

(4)

Case 3: In each ciphering round j we generate and use the key-dependent substitution

box Sboxmj , which depends on the secret key key and on the key-dependent substitution

box Sboxmj−1:

1. Sboxm0 = ϕ(key,Sbox0)

2. rk = f (key,Sboxm0)

3. for all j = 1, . . . , n do

Sboxmj = ϕ(key,Sboxmj−1)

ciphertextj = F(rkj ,Sboxmj )

end

(5)

Case 4: In each ciphering round j we generate and use the key-dependent substitution

box Sboxmj , which depends on the round key rkj and on the key-dependent substitution

box Sboxmj−1:

1. Sboxm0 = ϕ(key,Sbox0)

2. rk = f (key,Sboxm0)

3. for all j = 1, . . . , n do

Sboxmj = ϕ(rkj ,Sboxmj−1)

ciphertextj = F(rkj ,Sboxmj )

end

(6)

Case 5: In each ciphering round j we generate and use key-dependent substitution box

Sboxmj , which depends on the secret key key and on the key-dependent substitution box

Sboxmj−1. In addition, round keys rk depend on the secret key key and the key-dependent

substitution box Sboxmj :

1. Sboxm0 = ϕ(key,Sbox0)

2. for all j = 1, . . . , n do

Sboxmj = ϕ(key,Sboxmj−1)

rk = f (key,Sboxmj )

ciphertextj = F(rkj ,Sboxmj )

end

(7)



An Algorithm for Key-Dependent S-Box Generation in Block Cipher System 57

Case 6: In each ciphering round j we generate and use key-dependent substitution box

Sboxmj , which depends on the round key rkj and on the key-dependent substitution box

Sboxmj−1. In addition, round keys rk depend on the secret key key and the key-dependent

substitution box Sboxmj :

1. Sboxm0 = ϕ(key,Sbox0)

2. rk = f (key,Sboxm0

3. for all j = 1, . . . , n do

Sboxmj = ϕ(rkj ,Sboxmj−1)

rk = f (key,Sboxmj )

ciphertextj = F(rkj ,Sboxmj )

end

(8)

The substitution boxes Sbox(i), Sboxm(i), and the inverse substitution boxes

invSbox(i), invSboxm(i), i = 0,1, . . . ,255 are 256-size vectors of the different integer

numbers (bytes) from the interval [0,255]. The indexes i of these vectors are the integer

numbers (bytes) from the interval [0,255]. In the encryption process, the indexes i of the

vector Sbox (or Sboxm) are replaced by the corresponding values of the vector Sbox (or

Sboxm). In the decryption process, the indexes of the vector invSbox (or invSboxm) are

replaced by the corresponding values of the vector invSbox (or invSboxm). In the decryp-

tion process we can use the vector Sbox (or Sboxm). In such case, the values (bytes) of the

vector Sbox (or Sboxm) are replaced by the corresponding indexes (bytes) of the vector

Sbox (or Sboxm). It is not recommended to apply the Sbox (or Sboxm) in the decryption

process, because the values of the Sbox (or Sboxm) are mixed (not ordered in an increasing

order), and it is not easy to find the corresponding byte in the vector Sbox (or Sboxm).

4. Experimental Results and Discussion

We introduce the independency measure “ratio” of the S-box elements x as follows:

ratio= std(corr(τ )), (9)

where corr(τ ) is the correlation function of the normalized S-box elements y:

y =
x −mean(x)

std(x)
,

in which mean is an arithmetic mean and std is a standard deviation.

In Eq. (9) corr(0)= 0. The normalized ratio of (9) is:

ratio= ratio/(N − 1), (10)

where N is the length of the integer numbers. For AES S-box N = 256.



58 K. Kazlauskas et al.

The normalized ratio depends on the interval length of the integer numbers. The AES

S-box elements are integers from the interval [0,255]. If we analyze only the interval

[0,255] (16× 16 S-box), and suppose that the Matlab function randperm permutes the

integer numbers “ideally”, the normalized ratio is equal to 0.0443904± 0.0032, and can

be used as an “ideal” ratio for the random 16× 16 S-box. So, we use the normalized ratio

as the independency measure of the integer numbers from the finite interval. Theoretically,

in case the interval of the integer numbers is infinitely long, the normalized ratio for the

independent integer numbers is equal to zero.

Experiment 1. The aim is to verify the proposed S-box and inverse S-box generation

algorithm. Consider the 128 bit length secret key in the hexadecimal form:

key= {17,D5,4C,30,D6,68,C2,38,49,D9,22,5B,12,55,65,20}. (11)

We have generated the key-dependent S-box Sboxm and an inverse key-dependent S-box

invSboxm, using the algorithm described in the paper (Case 1). The initial S-box was

the AES S-box. The key-dependent S-box Sboxm is given in Table 1, and the inverse key-

dependent S-box invSboxm is given in Table 2. The normalized ratio of Sboxm elements is

equal to 0.0432548and is approximately equal to the “ideal” normalized ratio= 0.044390

for independent numbers generated by using the MATLAB function randperm. The S-box

consists of all possible permuted 256 values from interval [0,255]. During the encryption

each byte is replaced by the corresponding byte from Table 1. For example, byte 91 is

replaced by byte EB. During the decryption process the byte EB is replaced by byte 91

(see Table 2).

Table 1

Key-dependent S-box Sboxm elements in hexadecimal form.

The initial S-box is AES S-box. The key is as in (11).

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 28 F9 B4 66 2F BD D2 9F AD 61 0F CB E9 12 13 A8

1 65 93 BC 14 97 07 E4 71 7C F3 E8 48 F1 FA 33 7A

2 58 2D 0A 4D 56 89 9B 06 3F 7B 78 6F 86 4E 40 6A

3 23 19 87 ED B6 C8 A6 5B A2 73 1D 9D 20 D1 0B E6

4 C2 D5 76 44 5C 9A 17 F7 A3 4F 6D 32 47 A4 8F 27

5 29 50 DA 1F B8 E7 3E 52 5F B1 BF 1A 30 A1 DC 3A

6 6E 5E 42 91 D8 C3 51 EC 1E 1C 10 C4 9C 41 2B 7D

7 8E 03 11 45 4A 68 22 0E FE F8 77 D6 08 D4 CA 62

8 F0 63 83 80 3B 55 AE DB E2 FB D9 15 C5 E5 F2 CC

9 54 EB 16 2C B7 CD C9 DD E0 B0 DE 24 1B 99 39 3C

A 01 AF 8A 36 64 57 7E 26 C0 AC 6C 35 EE 7F AB 9E

B E3 37 B9 85 18 70 6B 8D 4B 04 95 8B 72 BB 00 09

C 96 EF 69 0D FC 90 D0 46 0C 53 82 BA 98 F6 79 74

D AA B5 D3 CF C1 02 FD E1 F4 05 EA 81 F5 5D B3 21

E 25 88 49 DF 67 2A 3D 84 92 B2 C7 8C BE 75 C6 94

F 31 43 5A 59 2E 60 38 FF A5 CE D7 A9 A7 A0 4C 34



An Algorithm for Key-Dependent S-Box Generation in Block Cipher System 59

Table 2

Key-dependent inverse S-box invSboxm elements in hexadecimal form.

The initial S-box is AES S-box. The key is as in (11).

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 BE A0 D5 71 B9 D9 27 15 7C BF 22 3E C8 C3 77 0A

1 6A 72 0D 0E 13 8B 92 46 B4 31 5B 9C 69 3A 68 53

2 3C DF 76 30 9B E0 A7 4F 00 50 E5 6E 93 21 F4 04

3 5C F0 4B 1E FF AB A3 B1 F6 9E 5F 84 9F E6 56 28

4 2E 6D 62 F1 43 73 C7 4C 1B E2 74 B8 FE 23 2D 49

5 51 66 57 C9 90 85 24 A5 20 F3 F2 37 44 DD 61 58

6 F5 09 7F 81 A4 10 03 E4 75 C2 2F B6 AA 4A 60 2B

7 B5 17 BC 39 CF ED 42 7A 2A CE 1F 29 18 6F A6 AD

8 83 DB CA 82 E7 B3 2C 32 E1 25 A2 BB EB B7 70 4E

9 C5 63 E8 11 EF BA C0 14 CC 9D 45 26 6C 3B AF 07

A FD 5D 38 48 4D F8 36 FC 0F FB D0 AE A9 08 86 A1

B 99 59 E9 DE 02 D1 34 94 54 B2 CB BD 12 05 EC 5A

C A8 D4 40 65 6B 8C EE EA 35 96 7E 0B 8F 95 F9 D3

D C6 3D 06 D2 7D 41 7B FA 64 8A 52 87 5E 97 9A E3

E 98 D7 88 B0 16 8D 3F 55 1A 0C DA 91 67 33 AC C1

F 80 1C 8E 19 D8 DC CD 47 79 01 1D 89 C4 D6 78 F7

Experiment 2. We have randomly generated 1000 keys and calculated 1000 key-

dependent S-boxes Sboxm, using the algorithm described in the paper (Case 1). The ini-

tial S-box was the AES S-box. The average of the normalized “ratio” of the 1000 key-

dependent S-boxes Sboxm elements is equal to 0.0440± 0.0030, while the normalized

“ratio” of the AES S-box elements is 0.0433, i.e., they are approximately equal.

Averaged and normalized elements of 1000 key-dependent S-boxes Sboxm via S-box

elements positions in the S-box, and averaged and normalized correlation function of 1000

key-dependent S-boxes are given in Fig. 1.

Experiment 3. One of the criteria to evaluate the quality of the block cipher is its suitabil-

ity as a random number generator. That is, the evaluation of the cipher text using statistical

tests should not provide any means by which we could computationally get them from the

plaintext.

The following tests are based on NIST Special Publication 800-22rev1a (NIST, 2010),

using statistical test suite, called sts-2.1.1. First tested ciphertext was generated using AES

(Rijndael) algorithm with standard S-box, hereinafter referred as “Standard algorithm”.

Other tested ciphertext was generated using AES (Rijndael) algorithm with proposedmod-

ification (Case 1), hereinafter referred as “Modified algorithm”. The evaluation reported

in the paper focused on 128-bit keys. The 160 different types files were encrypted using

Standard and Modified algorithms. The encrypted files were used as inputs to the 15 tests

of NIST statistical suite. A total of 316408915 128-bit blocks were stored, processed and

tested.

Both algorithms used identical plaintexts. This way ciphertext randomness can be

checked with recommendations of Special Publication 800-22rev1a and also with each

other. In this paper P values of 15 tests are presented, thus letting see which cipher text

is more random (under assumption of randomness). The total number of tested sequences



60 K. Kazlauskas et al.

N
o
rm

al
iz

ed
S
-b

ox
es

el
em

en
ts

0 50 100 150 200 250 300
-2

-1

0

1

2

(a) S-box elements positions

C
o
rr

el
at

io
n

o
f

th
e

n
o
rm

al
iz

ed
S
-b

ox
es

0 100 200 300 400 500 600
-100

0

100

200

300

(b) Delay

Fig. 1. (a) Averaged and normalized elements of 1000 key-dependent S-boxes Sboxm via the positions of S-box

elements in the S-box. (b) Averaged and normalized correlation function of the 1000 key-dependent S-boxes.

The initial S-box is the AES S-box.

is 160, therefore results are statistically meaningful (NIST, 2010, Section 4.2.2). The av-

eraged P values of the statistical tests for both algorithms are shown in Table 3. Note that

both algorithms passed all NIST statistical tests.

Results show that tested ciphertext sequences are random and number of ones is close

to the number of ones in a truly random sequence (Frequency test). The numbers of ones

and zeros in ciphertext blocks are also close to the numbers of ones and zeros of ran-

dom sequence (Block Frequency test). Most of other tests also show that tested ciphertext

sequences are close to the random sequence (under assumption of randomness).

Some tests show bigger deviation from the results of truly random sequence. How-

ever, deeper analysis of all results shows that ciphertexts still are concluded as random.

For example, the differences between fn and Expected Value (L) in the Universal test are

smaller than 0.01, therefore ciphertexts are not significantly compressible and this con-

firms randomness. Delta values of Serial test are not very large and it means that significant

uniformity of ciphertexts was not detected.

As the results of the above tests show, both algorithms create ciphertexts that can be

considered as random sequences. Comparing P values of ciphertexts of the Standard and

Modified algorithms, we can see that more P values are closer to 1/2 in the ciphertext of

Modified algorithm (24 out of 46 P values of successful tests).

Of course, ciphertext strictly depends on the plaintext and the key, because AES algo-

rithm is submissive to avalanche effect and slightly different plaintext will provide very

different ciphertext, but that should not have significant impact on current results. Having

this in mind we can conclude, that proposed modification of the S-box does not make AES

algorithm worse, has no significant influence to the compression or other properties of the

ciphertext, therefore it can be used in applications.



An Algorithm for Key-Dependent S-Box Generation in Block Cipher System 61

Table 3

P values of standard and modified algorithms.

Test Standard algorithm Modified algorithm

Frequency 0.52834± 0.01432 0.47617± 0.01352

Block frequency (m = 128) 0.54619± 0.01045 0.51347± 0.01428

Cusum-forward 0.53145± 0.00892 0.50481± 0.00943

Cusum-reverse 0.54097± 0.09524 0.49964± 0.09981

Runs 0.55198± 0.01115 0.44960± 0.01428

Long runs of ones 0.49216± 0.01054 0.50826± 0.01083

Rank 0.55835± 0.01087 0.47945± 0.01204

Spectral DFT 0.53624± 0.01427 0.45818± 0.01273

Non-overlapping templates (m= 4, B = 0001) 0.51077± 0.01524 0.46769± 0.01476

Non-overlapping templates (m= 4, B = 0011) 0.56063± 0.01648 0.45510± 0.01376

Non-overlapping templates (m= 4, B = 0111) 0.44588± 0.00845 0.44123± 0.00978

Non-overlapping templates (m= 4, B = 1000) 0.51411± 0.01172 0.46740± 0.01524

Non-overlapping templates (m= 4, B = 1100) 0.53061± 0.01624 0.46760± 0.01045

Non-overlapping templates (m= 4, B = 1110) 0.44306± 0.01092 0.44605± 0.01046

Overlapping templates (m= 9) 0.51050± 0.01167 0.49989± 0.01098

Universal 0.37861± 0.02045 0.50909± 0.01951

Approximate entropy (m= 10) 0.46386± 0.01842 0.46264± 0.01764

Random excursions (x =−4) 0.52142± 0.02018 0.51764± 0.02046

Random excursions (x =−3) 0.46244± 0.00986 0.43157± 0.01059

Random excursions (x =−2) 0.50661± 0.01056 0.47415± 0.01523

Random excursions (x =−1) 0.49193± 0.01432 0.57688± 0.01057

Random excursions (x =+1) 0.47158± 0.01750 0.52323± 0.01645

Random excursions (x =+2) 0.49051± 0.01341 0.51197± 0.01567

Random excursions (x =+3) 0.47581± 0.01732 0.50464± 0.01084

Random excursions (x =+4) 0.46657± 0.01795 0.44687± 0.01345

Random excursions variant (x =−9) 0.43187± 0.01604 0.45687± 0.01548

Random excursions variant (x =−8) 0.47602± 0.01376 0.45758± 0.01273

Random excursions variant (x =−7) 0.53423± 0.01065 0.51023± 0.01270

Random excursions variant (x =−6) 0.53684± 0.01048 0.51136± 0.01486

Random excursions variant (x =−5) 0.52567± 0.01491 0.44602± 0.01507

Random excursions variant (x =−4) 0.50906± 0.02004 0.43051± 0.01976

Random excursions variant (x =−3) 0.54154± 0.01371 0.41361± 0.01504

Random excursions variant (x =−2) 0.49632± 0.01585 0.40622± 0.01349

Random excursions variant (x =−1) 0.46422± 0.01767 0.46862± 0.01465

Random excursions variant (x =+1) 0.43194± 0.01249 0.48396± 0.01182

Random excursions variant (x =+2) 0.40270± 0.01582 0.44936± 0.01620

Random excursions variant (x =+3) 0.46795± 0.01274 0.45846± 0.01473

Random excursions variant (x =+4) 0.46380± 0.01433 0.47897± 0.01627

Random excursions variant (x =+5) 0.46886± 0.01143 0.49087± 0.01842

Random excursions variant (x =+6) 0.46846± 0.01345 0.49787± 0.01167

Random excursions variant (x =+7) 0.49613± 0.01511 0.48448± 0.01279

Random excursions variant (x =+8) 0.55272± 0.01045 0.49668± 0.01192

Random excursions variant (x =+9) 0.54552± 0.01246 0.51593± 0.01164

Linear complexity (M = 500) 0.49691± 0.01281 0.51203± 0.01179

Serial (m= 16, ∇92
m) 0.27827± 0.00974 0.17501± 0.00892

Serial (m= 16, ∇292
m) 0.36925± 0.00835 0.28943± 0.00904



62 K. Kazlauskas et al.

Experiment 4.

1. For randomly generated 1000 keys we have calculated 1000 key-dependent S-boxes

Sboxm (Case 1). The probability that the value in any key-dependent S-box Sboxm

position will be equal to the value in the same position of the AES S-box is 0.004.

On average, 1.017 values are equal in the same positions of the AES S-box and

key-dependent 1000 S-boxes Sboxm.

2. To generate S-boxes, we have used key (11), and the initial S-box (AES S-box).

Then by randomly changing one bit of the key, we have generated 1000 key-

dependent S-boxes Sboxm, and calculated equal elements in the same positions of

these S-boxes. On average 3 values are equal in the same positions of the AES S-box

and the key-dependent 1000 S-boxes.

3. The average correlation coefficient between the AES S-box and 1000 key-dependent

S-boxes is 0.0443, i.e., key-dependent S-boxes elements, generated according to

the proposed algorithm, practically do not correlate with the AES S-box elements.

It follows that the key-dependent S-box generation process is sufficiently ran-

dom.

4. The avalanche effect property is an important property of an encryption algo-

rithm. It was established that avalanche effect due to one bit change in plaintext

is (50±3.42)%, which means that it is difficult to make predictions on the plaintext

being given only the ciphertext. The AES and proposed algorithm have nearly the

same avalanche effect.

5. Due to one bit change in the secret key, the avalanche effect of the proposed algo-

rithm is (50 ± 3.62)%, which means that it is difficult to predict on the plaintext

given only the ciphertext. That reflects the immunity of the proposed algorithm to

linear and differential cryptanalysis.

6. The calculation time of 1000 key-dependent S-boxes Sboxm and 1000 key-

dependent inverse S-boxes invSboxm with computer AMD Athlon(tm) 64× 2 Dual

Core Processor 2.59 GHz, 1.87 Gb of RAM is 0.11 s, i.e., the additional time is not

significant.

When a permutation uses all elements of the substitution table the permutation

perm(256,256) indicates the number of arrangements that can be formed by selecting

256 elements from a set of 256 elements. In that case perm(256,256) is equal to the prod-

uct of integers from 256 to 1 (Korn and Korn, 1961)

perm(256,256)= 256 ∗ 255 ∗ · · · ∗ 3 ∗ 2 ∗ 1= 256! (12)

So the probability that the cryptanalyst might restore the initial S-box is equal to 1/256!

Using our algorithm, we can get up to 256! different substitution values instead of 256

values as in AES algorithm which increase the encryption complexity and complicate

the cryptanalysis process. The results show that this is achieved with negligible extra de-

lay.



An Algorithm for Key-Dependent S-Box Generation in Block Cipher System 63

5. Conclusion

One of the criteria to evaluate the quality of the block cipher is its suitability as a random

number generator. That is, the evaluation of the ciphertext using statistical tests should

not provide any means by which we could computationally get them from the plaintext.

Modeling results show that tested ciphertext sequences are random and number of ones

is close to the number of ones in a truly random sequence (Frequency test). The numbers

of ones and zeros in ciphertext blocks are also close to the number of random sequence

(Block Frequency test). Most of other tests also show that tested ciphertext sequences are

close to the random sequence (under assumption of randomness). It has been established

that for any change of the secret key, the structure of the key-dependent S-box will be

changed essentially. The key-dependent S-boxes make block cipher algorithm resistant

to linear and differential cryptanalysis. This algorithm will help to generate more secure

block ciphers and will increase the security of the block cipher systems. The main advan-

tage of such algorithm is that the huge number of S-boxes can be generated by changing

secret key. The additional time needed to generate key-dependentS-boxes is negligible. As

compared with algorithm in the paper Kazlauskas and Kazlauskas (2009), this algorithm

generates S-boxes about eight times faster.

Acknowledgements. The authors are gratefully acknowledge the helpful comments of the

reviewers.

References

Advanced Encryption Standard (AES) (2001). Federal Information Processing Standards Publication 197,

November 26.

Chen, T.H., Horng, G., Yang, Ch.S. (2008). Public key autentification schemes for local area networks. Infor-

matica, 19(1), 3–16.

Data Encryption Standard (DES) (1977). National Bureau of Standards FIPS Publication 46.

El-Ramly, S.H., El-Garf, T., Soliman, A.H. (2001). Dynamic generation of S-boxes in block cipher systems. In:

Eighteenth National Radio Science Conference, March 27–29, Mansoura University, Egypt, pp. 389–397.

El-Sheikh, H.M., El-Mohsen, O.A., Zekry, A. (2012). A new approach for designing key- dependent S-box

defined over GF in AES. International Journal of Computer Theory and Engineering, 4(2), 158–164.

Fahmy, A., Shaarawy, M., El-Hadad, K., Salama, G., Hassanain, K. (2005). A proposal for a key-dependent

AES. In: 3th International Conference: Sciences of Electronic, Technologies of Information and Telecom-

munications, March 27–31, Tunisia.

Hamdy, N., Shehata, K., Eldemerdash, H. (2011). Design and implementation of encryption unit based on cus-

tomized AES algorithm. International Journal of Video & Image Processing and Network Security, 11(1),

33–40.

Hosseinkhani, R., Javadi, H.S. (2012). Using cipher key to generate dynamic S-box in AES cipher system.

International Journal of Computer Science and Security, 6(1), 19–28.

Hsiao, S.F., Chen, M.C., Tsai, M.Y., Lin, C.C. (2005). System on chip implementation of the whole advanced

encryption standard processor using reduced XOR-based sum-of-product operations. IEEE Proceedings,

Information Security, 152(1), 21–30.

Hsiao, S.F., Chen, M.C., Tu, C.S. (2006). Memory-free low-cost designs of advanced encryption standard using

common subexpression elimination for subfunctions in transformations. IEEE Transactions on Circuits and

Systems I: Regular Papers, 53(3), 615–626.

Jakimovski, G., Kocarev, L. (2001). Chaos and cryptography: block encryption ciphers based on chaotic maps.

IEEE Transactions on Circuits and Systems, Part I, 48(2), 163–169.



64 K. Kazlauskas et al.

Juremi, J., Mahmod, R., Sulaiman, S., Ramli, J. (2012). Enhancing advanced encryption standard S-box gener-

ation based on round key. International Journal of Cyber-Security and Digital Forensics, 1(3), 183–188.

Kazlauskas, K., Kazlauskas, J. (2009). Key-dependent S-box generation in AES block cipher system. Informat-

ica, 20(1), 23–34.

Keliher, L. (2003). Linear cryptanalysis of substitution-permutation networks. PhD thesis, Queen’s University,

Kingston, Canada.

Korn, G.A., Korn, T.M. (1961). Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New

York/Toronto/London.

Li, Ch.M., Hwang, T., Lee, N.Y. (2007). Security flow in simple generalized group-oriented cryptosystem using

ElGamal cryptosystem. Informatica, 18(1), 61–66.

Mahmoud, E.M., El Hafez, A.B., Elgarf, T.A., Zekry, A. (2013). Dynamic AES-128 with key-dependent S-box.

International Journal of Engineering Research and Applications, 3(1), 1662–1670.

Masuda, N., Jakimovski, G., Aihara, K., Kocarev, L. (2006). Chaotic block ciphers: from theory to practical

algorithms. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(6), 1341–1352.

Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A. (1997). Handbook of Applied Cryptography. CRC Press,

Boca Raton.

Merkle, R. (1991). Fast software encryption functions. In: Advances in Cryptology: Proceedings of CRYPTO’90.

Springer-Verlag, Berlin, pp. 476–501.

Mohammad, F. Y., Rohiem, A.E., Elbayoumy, A.D. (2009). A novel S-box of AES algorithm using variable

mapping technique. In: 13th International Conference on Aerospace Sciences & Aviation Technology, May

2009, Cairo, Egypt, 1/9–10/9.

NIST Special Publication 800-22 revision 1a (April 2010). Technology Administration, US Department of Com-

merce.

Sakalauskas, E. (2005). On digital signature scheme in semimodule over semiring. Informatica, 16(3), 383–394.

Sakthivel, G. (2001). Differential cryptanalysis of substitution permutation networks and Rijndael-like ciphers.

Master’s project report, Rochester Institute of Technology.

Schneier, B. (1996a). Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley, New York.

Schneier, B. (1996b). Description of a new variable-length key, 64-bit block cipher. In: Proceedings of Fast

Software Encryption: Second International Workshop, Leuven, Belgium, December 1994. Springer-Verlag,

pp. 191–204.

Su, C.P., Lin, T.F., Huang, C.T., Wu, C.W. (2003). A high-throughput low-cost AES processor. IEEE Commu-

nications Magazine, 41(12), 86–91.

K. Kazlauskas received a PhD degree from Kaunas Polytechnic Institute and a doctor

habilitus degree from Institute of Mathematics and Informatics and Vytautas Magnus Uni-

versity. He is principal researcher of the Recognition Process Department at the Vilnius

University Institute of Mathematics and Informatics, and a professor at the Informatics

Department of Lithuanian University of Educational Sciences. His research interests in-

clude applied cryptography and digital signal processing.

G. Vaicekauskas received a MSc degree of Informatics from Lithuanian University of

Educational Sciences in 2013. Now he is a doctoral student at the Process Recognition

Department of the Institute of Mathematics and Informatics,Vilnius University,Lithuania.

His research interest is applied cryptography.

R. Smaliukas received a MSc degree of Informatics from Lithuanian University of Ed-

ucational Sciences in 2014. Now he is a doctoral student at the Process Recognition De-

partment of the Institute of Mathematics and Informatics, Vilnius University, Lithuania.

His research interest is applied cryptography.



An Algorithm for Key-Dependent S-Box Generation in Block Cipher System 65

Blokinių šifravimo sistemų S-lentelių priklausomų nuo rakto
generavimo algoritmas

Kazys KAZLAUSKAS, Gytis VAICEKAUSKAS, Robertas SMALIUKAS

AES ir kitų šiuolaikinių šifravimo algoritmų atsparumas labai priklauso nuo netiesinės baitų pakei-

timo operacijos. Pasiūlytas naujas paprastas algoritmas, generuojantis priklausomas nuo slaptojo

rakto baitų pakeitimo lenteles (S-lenteles), skirtas blokinėms šifravimo sistemoms. Algoritmo ko-

kybė patikrinta naudojant NIST testus, keičiant vieną slaptojo rakto bitą. Straipsnio antrame posky-

ryje analizuojamos S-lentelės, trečiame – aprašomas algoritmas, o ketvirtame – eksperimentiškai

tikrinama sugeneruotų lentelių kokybė.


