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Abstract. Difference methods in velocity-pressure variables having a num-
ber of important properties are constructed and investigated in this paper for
a two-dimensional Navier-Stokes equation. Power neutral approximations of
convective members and pressure gradients ensure a conservativity and abso-
lute stability of the proposed algorithms. Their stability and convergence are
investigated. The existence and uniqueness of velocity components and pressure
gradients 1s proved.
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Introduction. The construction of effective difference algo-
rithms for solution of the Navier-Stokes system of equations is of
great interest for specialists in the field of numerical methods for a
boundary problem solution. Considering such a system describing
non-squeezing flows there occur computational difficulties caused
in the equation of continuity only by velocity components and the
absence of a direct connection with pressure.

For calculation of non-squeezing flows there are usually used
two approaches. The most widely spread approach describes the
flows by a variable turbulence — current function. It is usually used
in the two-dimensional case and allows to avoid explicit use of a
continuity equation (see, e.g., Rouch, 1980; Anderson et.al., 1990;
Fletcher, 1991). )
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The second approach is connected with the solution of the
movement equation in such a form as it is written. For solution of
the continuity equation different methods are used, e.g., the method
of artificial compressibility (Chorin, 1967), method of markers and
cells (Harlow, Welch, 1965), methods based on e-approximation
(Ladyjenskaya, 1969; Temam, 1968), etc.

The construction of .computational algorithms for this prob-
lem solution is connected with the problems of boundary condi-
tions statement, adequacy of the 1mt1a.l differential problem and.
the utilized model. ‘

In this paper we propose another version of computational so-
lution of the Navier-Stokes system of equations based on the ap-
proximation of movement and continuity equations on the displaced
grids owing to which we manage to get difference Neuman problems
on "oblique” derivatives for definition of P. And for these problems
the conditions for the existence of thelr solutions are carried out
automatically

1. General statement of the problem. Let QM™(0 <
za <), @ = 1,n be an n-dimensional parallelepiped with the
boundary T. In the domain Q" = Q(™x]0,T] with the boundary

S(") I'x]0,T] consider the problem for a system of Navier—Stokes
equations descrlblng viscous non-squeezing flows
8uk 3 uk oP —_
-V Z —-’l?_k’ v>0, k=1,n, (11)
n :
Ouq
—= (1.2)
a_l 3 .

w:th mltla.l and boundary conditions of the form

u(z,0) = ¢i(z), zeQ™, i=Tn, 13)
u(z,t)=0, (z,t)esSP, i=Tn. '

It is necessary to find unknown functions u; = i = 1,7 and pressure
P. Following the widely used in literature designaticns ii is neces-
sary to note that the parameter v in (1.1) is the value g, when Re is



V. Abrashin and S. Lapko 143

the Reynold’s number. The problems of existence and uniqueness
of a problem (1.1) - (1.3) solution were considered in the paper of
Lions (1972), so later on we’ll assume that for problem (1. 1) (1 3)
there exists a sufficiently smooth solution.

2. Noniterative scheme for two-dimensional linearized
problems. Consider system (1.1) - (1.3) when n =2 w1th lineari-
zed convective members:

dup  ~O%wi | Ou Ou, 9P -

—_— —— — = ——— k=12, 2.1
APV R PR PR P 1)
au; + 6u2

—+—==0, v>0, a,b are bounded constants (2.2)
8::1 6::-_» LT

with initial and boundary conditions analogous to (1.3).
In the domain Q(T:’) we introduce two space-time grids

Why = Wy X Wr, w, = {x = (31,‘732]') = (Ih ]h), i=0,Ni.
-7 1! ii‘
——0. ‘2, h 7\"’,]—-—]\,2}.
Tr =wh\whxu77’ w,--—{t_’ —.77'1 ]"O i, "'1"}7

.1 .1
Qnr = X wy, Qp = {-X = (T1i-1/2> T2j-172) = ((E— E)h’ (G- §)h),
i=T,N,, j= 1,N2}.

Decompose the set Q, into two subsets of nodes:
O = QnUGhH Qn= {(“"u—g’ z2j—§)s i=2,Ni~1, j=2,N,— 1},
Gr={(21i-gs 25), =1, j=T Ny i=M, j=T Ny

j=l,i=3 N =1, j=Ns, i=2,N1—1}.
In Q;. also choose two sets of nodes arranged as a chess-board:
Q"'z ;IU ;;,1 Q;;={(31;_%, sz_é)egh, Z+]"1 iseven},
#={(21-1> 2223) €, i+j-1 isodd }  (see Fig. 1).
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Qi @NQLUQY = Qu), G, G}(G}, U G = Gh) are defined in an
analogous. way. - '

» We shall consider our grid domain both in the main Cartesian
system of coordinates O,,,, and in another system of coordinates
01(1(2 obtained from O,,,, by the shift of the centre of coordinates
“to'thé point (2, 2) and by the turn of axis by 45° counterclockwxse

(see Fig. 1).
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Fig. 1. 1—1?’;., 2-Qh,3—Gh.

Replace functions u;, u; and P, entering (2.1), (2.2), by their
net analogues: y;,y» ® u;; 21,22 ® uz in nodes z of the main grid
Tnr and ¢ ® P in nodes. X of the grid Q..

Later on for simplicity of definition we shall use a nonindexed
form of writing in the following way: v is v/, vl — ¢¥1, o~ —

vi= -1, 1 g v—l] (=1h(1) vs-1,1+1 and so on.

Basmg upon the multicomponent methods of alternating direc-
tion type proposed in the papers of Abrashin (1990); Dziuba (1990);
consider the following algorithm for solution of system (2.1), (2.2):

-

Vit ==, + A1), zE€wn,
21t 2"@}:2 +A(2'2), z € wp,
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y2‘1 = -6}—‘1 + A(y2)1 z€ Wh,

Z = ~Gs, + A(22), € uwn, (23)
"z, + 212, =0, X € Qp,
0) (0)
% =% = p1(z), 21 22 wa(z), T € w,
. y1| =y =un| =z =0,
n ™ ™ ™

where A(v) = u'(v,,,‘+v,,,,)—avg —bvg , (vis y; or z3) and derivatives
: 1 3
v;,,v;, are defined so that

o= (G0 1o _ 00 o (.0,

h

[

z€w, or X €Q,

__1,;( (3).(3) 4 o(-8).(3) _ y(1).(-3) _ ,(-3).(- %))

z€w, or X €8y,

(here v is y;,2; or g). The rest difference derivatives are defined as
in the paper of Samarsky (1989).

It is obvious that the difference equation of continuity in (2.3) .
will be also valid for g, z1;. Such an approximation of the equation
of continuity on grid cells @y and pressure gradients on grid cells Qn
with the help of elementary algebraic operations from-the first two
equations and the difference equation of continuity in (2.3) allows
to obtain the following two problems for g:

@ +8eac, = Fly2,2), X €Q},
In = f(y2, 22), \’ € G}, @9
and also '
TG + 35,0, = Flya,22), X €Qy,
&= fr,22), X €Gy, | (2.5)
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where

(s-2)-(-) SOAC))

an is a net analogue of the inner normal derivative of the boundary
G in the system of coordinates 0,{;(; (by G we assume line con-
necting the points of Gj themselves) this derivative has the form -

8P 9P o~ = 0P -~
-a—ﬁ—g = 'a'z: COS(él, nG) + 5’52' COS(Cl,nG),

where the angle (C:,\ﬁc), a = 1,2 is counted from the positive
direction of axis (s counterclockwise, we shall define the inner
normal derivative at angle points as a semisum 6_8% of two in-
terperpendicular gides of a rectangular bound. F has the form
F = (A(¥2))z, + (N(22))s,, X € Qn, and it is easy to obtain f from
the continuity equations at the points X € G, and the correspond-
ing movement equations from (2.3).

" Note that (24), (2.5) are none other than difference analogues
on "oblique” derivatives of some Neiman problem

‘ 8P o°P A
'5217 + _62‘;2' = Qv (Cly(Z) € Q’ (26)

- apP
Big = Jo, (¢1,¢2) €G,

where ) is the domain bounded by the G line.
It is known that the condition providing.the existence (but
not the uniqueness) of the problem (2.6) solution is the following

equality 4
/Q / ¢{¢1d42+ ! fodG =0. (2.7)
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Formulate the lemma.

Lemma 1.1. For difference problems (2.4), (2 5) the followmg
equalities

Zh2F+th 0, : ' ~(~2&8)
Zh2F+zhf 0, ‘(‘2.9)

. Q17 . GII
are valid.

The validity of (2.8), (2.9) may be verified putting directly in
these equalities the expressions for F and f from (2.4), (2.5) and
summing up in all corresponding nodes.

The sum of equalities (2.8), (2.9) is a discrete analogue of in-
tegral condition (2.7). If we take into account that problems (2.4),
(2.5) are some systems of linear algebraic equations of the form
AY) = By, A;Y, = By, where matrices A;, A, are singular and they
have the following spectra of eigenvalues 0 = A\; < A2 < ... < Aq
then fulfilment of (2.8), (2.9) practically means that the right sides
By, By satisfy the solvability conditions of the given systems. The
solutions of the given systems exist to within the constant sum-
mand. Hence it follows the existence of solution to within the
constant summand of difference problems (2.4), (2.5). But from
the construction (2.4), (2.5) it follows that their solutions at the
same time are the solutions of the first two movement equations in
(2.3). So we obtain the existence and uniqueness of the velocity
components and pressure gradients in scheme (2.3). -

Many papers (see, e.g., Molchanov and Nikolenko, 1973; Mol-
chanov, 1968; Marchuk, 1989; Buzbee et al, 1970) are devoted to
the solution of Neuman problem. That is why we shall not dwell on
this problem considering that the solution § of problem (2.4), (2.5)
to within the constant summand may be found in the well-known
way. And a combination of the corresponding pressure gradients
found in (2.4), (2.5) uniquely defines the pressure gradients of prob-
lem (2.3) in the initial system of coordinates. The third and fourth
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equations in (2.3) are five-point difference schemes for definition of
_ %2, 7, taken as an approximate solution to components u;, uz. In the
constructed algorithm (2.3) each difference equation approximates
the corresponding differential equation of problem (2.1), (2.2) with
accuracy of order O(7 + h?).
Let us dwell on the questions of the stabllxty and convergence
of (2.3).

Theorem 2.1. Difference scheme (2.3) is absolutely stable
with respect to initial data and for its solution the estimation

" (n)
v|| yzumwn Gy + 271 T, + AT+ 2T11- T, + ACEDI

< il + 2vllpallfyy + 2THA ()11 + 2T 1A (p2)I1?,  (2.10)

is valid where |[v|},) = llvs,]i} + l[vz, |1} + llv2,)13 + |[v2,113 and |||} is
the grid analogue of L, norm (see Samarsky, 1989; Dzjuba, 1990).

" Proof. After a scalar multiplication of the first equation (2.3)
by —rqiz,, the second — by —rg;,, the third - by r(A(y2)):, the
fourth — by 7(A(22));, sum up the received equalities and then the

sum up in all timq layers j = I,n.

" We'll have ‘
S (vl Gy + vl Do) + 1= Ta + A TP+ 1= T, + AL
j=t :

< A + [A(e2)I. (2.11)

- Applying the difference analogue of imbedding theorem on t to
the first summand in (2.11) we obtain estimation (2.10).

The theorem is proved.

‘Denote w, = ujp = Yo, Vo = Uop — 24, @ = 1,2, r_P;,—q -
the errors of the correspondong approximate solutions obtained
in scheme (2.3). Then for the error function we may receive the

‘following problem: : :
wy = =T, + A(ws) + 91,
vt T =T, + A(v2) + Y2,
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war = —T3, + A(W2) + ¥, (212)
vor = —T3, + A(V2) + ¥4, ‘
wlﬁ] + vl‘!ia = 11’5,

(0) (0)

a-v,,...O wa‘ = Vq
‘Yl'

The errors are the values of order 0(1'+h2) under sufficient smooth-
ness of the solution of the initial differential problem.

Theorem .2.2. If the solution of initial problem (2.1), (2.2) is
sufficiently smooth, then as r,h — 0 a convergence of the solution of
difference problem (2.3) to the solution of the initial problem tal\es
place and for. the error of the method the estimation

Q(wa, v2,7) € C(r‘/2 R (2:13)

is v.alid, where C > 0 is a restricted value which does not depend
on the stepsize of the net, and

(n)
Q= (Il Wyl + vl v2||(1,+2Tu

- @, AR+ o= B+ AEIR)

The proof of this theorem is analogous in many respects to the
proof of the previous one, therefore we omit it.

REMARK 2.1. FoIlowing the Dzjuba paper (1990), with addi-
tional requirement for the smothness of P it is not difficult to obtain
an optimal estimate Q(ws,v2,r) < C(7 + h?).

3. Economical scheme. For solution of problem (2.1), (2.2)
consider also the following difference algorithm

Y1 = =8z, +A1(3e) + Az(ws), z € wh,
21r = ~3, + A1(22) + A2(23), z € wn,
Yo = 3, + M1(B2) + A2(ys), z € wn,
2t = =z, + A1(%2) + Aa(23),  z € wn,
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Yst = =8, +A1(1R) + Aa(3s), z € w, (3.1)
73t = —@z, + A1(22) + A2(Z3), = € wa, '
Vi, + 212, =0, X € Qn,
OO 0 e, 0D pe), ceun
$L=w =a|, =a|, =5 =0

In ™

where
M) =vine —a, s, Aiz) =i, - a2,

1
- Az(ys) = vyaz,e, — byst. y - Ao(23) = v2sz,z; — bz, 2

The ﬁrst two equations and the continuity equation in (3.1)
define two difference Neuman problems of (2.4), (2.5) type for which
there exists a solution. Ha.vmg solved the Neuman problem we’ll
define the pressure gradients uniquely @:,, i = 1,2. The following
-four-equations.in (3.1) are economical three-point schemes from
which difference components of velocity are defined uniquely.

For (3.1) the theorems analogous to theorems 2.1 and 2.2 will
be valid.

' &
Theorem 38/1. Difference scheme (3.1) is absolutely stable
with respect to it{itial data and for its solution the estimation

(n) (n) () )
AT e, I+ 1T i 3 + 011 Ze I + 12 1
(n) (n) (n) (n) (n) (n)
+2T |~ 25, + ACY,) + ACT)IP +2T11- 05, + ACZ) + ACEIP
< el + 2lprea 3 + 201[02e, I + 2vl[pac, I}
+ 4T A(e)|| + AT1IA(22)| 2
is va,iid.

Theorem 8.2. If the solution of problem (2.1), (2.2) is suffi-
ciently smooth, then as r,h — 0 a convergence of the solution of
difference problem (3.1) to the solution of the initial problem takes
place and for the error of the method the estimation

Q(wz, w3, v2, V3, r) < ‘6'1(1-1/2 + hg)
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.1s valid, where C; > 0 is a restricted value which does not depend
on the stepsize and

(n) (n)
= uuw,,,lm VB, 12 + 1Sy 12 + [ F 112

+o1)]- ¢ +A1(wz)+Az((n))“2+2T” F AW AW AT

"For theorem 3.2 the remark analogous to remark 2.1 will be
valid.

4. Iterative scheme for problem (2.1.), (2.2). For prob-
lem (2.1), (2.2) consider a purely implicit absolutely stable scheme

®h= —‘4’1},‘+ A(Y), z€wy,

o= _a}: + A(?)’ T € wh, (4.1)
Yz, + 2z, = 0, X €Q,.,

for the soiution of which we shall use the following iterative process:

kil ) k+1 k
g -y =A( ¥y)-
kL 1 g
T (zx—z)- (21)—%,,
k41 k+1 )
1 yz V) =A( 9)- {5, (4.2)
-~ kil l:-l;l
W 22—2) A( Z)- g5,
k+1 '
+Hz';zl=0.

.In (4.1), (4.2) all the approximations are the same as in (2.3)
and initial and boundary conditions are defined in an analogous

way. The first two equations in (4.2) are the five-point schemes for
' k41

k+ :
definition y,, z,. The following three equations define difference
Neuman problems

k41 k41 k41 k4 ,
q(x(1+ q(:(:—F( yla 1), XGQ;,,

e (4.3)
q ( 3'1’ 21) X € Gy,
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B+l k4l k41 B+1 Y
q(l(x+ q(z(z ( yl’ 1)’ X € Qh, (4.4)

+1
( yp 1)’ Xe G;llv
for which there exist solutxons, as shown above. Solving problems

(4.3), (4.4) we find k.é:l . As a zero iteration on the upper layer we
may take the solution received on the previous layer. For solution
of the zero iteration for ¢ on the first time layer it is necessary to
solve the following Neuman problems

: 9(,(, + q(,.;, = F(p1n,p2), X € @},
= f(¢1n,928), X € G},

’:quﬁ + qf:(: = F(So”" 592})); Xe Q hs
a5 = f(p1n,9028), X €Gy.

The iterative process should be continued untill the chosen con-
dition of termination is satisfied by several consequent iterations.
* As a criterion of iterative process termination we may take, for ex-
ample, the condition of closeness of the neighbouring iterations or

some analogue of the relative error.
k1 k41 E+1 k4l
Introduce thﬁ following notatlon Pa = Ya =Y, Ja = Za —
k+1 k41 B+l

-~

zZ, a=1,2, d; :f 79 -¢ d =- d1 Then the errors of iterative
process will satidfy the following problem

k41 E+1 k E+1 E+1 k
P1=TA(P1)+Td£1, 91=7'A(91 )+fdf,,

k+1 k+1 k+1 k+1 E+1
P o= rA( p1 )+ Tdsy,, g ,=7A(G1 ) +7ds,, (4.5)

k41 k+1
p 2% +92:ig = 0
~If in the movement equations there are no convective members,
i.e., A(v) = v(ve,z, +V5,2,), then for (4.2) the followmg theorem will
be valid.

‘Theorem 4.1. A convergence of iterative process (4.2) to the
solution of implicit scheme (4.1) takes place and the following re-
curcive inequali®y helds _

TE41 g2

» Q'<eQ, (4.6)
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where ¢=i7hp, D=1-2tA">0, x>0,

V. k v, k E k k E
= —II ity + —II 91 1By + llA(py )+ dz, |17 + T1IA(9)+ ds, |12

Inequality- (4. 6) means the convergence of iterative process
(4.2) to the solution of implicit scheme (4.1) with the rate of geo-
metrical progression with ratio ¢. At small v, for example » < 0.5,
having taken x = 1, r = h, we’ll receive that the rate of iterative
process will be defined by the value ¢ = 1/(1 + A(1 — 2v)).

If in (4.1), (4.2) operators A have linearized convective mem-
bers, then the following theorem will be valid.

Theorem 4.2. Iterative process (4.2) converges to the solution
of implicit scheme (4.1) with the speed of geometrical progression
with ratio ¢; < 1 and the following recurrent inequality holds

k+1

¢<w@ | (47

where ¢ = Tkp-.

D, = min{l —87h*~2y, 1 - (4+a + bz)zrh—--l/z} >0,

k
k E k k
and Q%= || p, P+ 1l 91 11>+ hv/2(l] P, ”?1) + || 9 “31)) +h
E k
(IAG)+ dz, |2+ |lA9;)+ dz, ||?) is such as in the previous the-
orem.

From (4.7) we see that the strict condition necessary for ¢, < 1
is 7 < 2h**1(4 +a® + b%)2.

- 5. Nonlinear problem. Write down the problem (1.1)=(1. 3)
when n = 2 in the divergent form

3u;, & u 2.0, oP _
Z Zl 5;;(11«- ug) = —5}—;’ k= 1)2: (51)

6111 0u2 ) ]
8—21 + — oz, =0, . (5.2)

with the initial and boundary conditions analogous to (1.3).
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Put in accordance to problem (5.1), (5.2) the following diffe-
rence scheme:

= "i‘i; + L(i]‘) - Kl(y’i) - K(z,9), z € wp,
2=z, + L(Z) - K1(y,7) - K(2,2), z€ws,. (53)
!It,+ze,—0 , X € Qy,
where L(v) = v(vz,z, + vz,2,) and convective members are approm—
mated in the following way:

(-l)s .
= S, D
I&;(u v) = (uv) ( : 5 )zl’
é)._a(—( %)(%)+—(-—§)( %))
= .;.(u,u)w(-l)(x)_,.2,,_,.2,,(-1) 4 w0 4 y(-Dil= 1))

‘ (=1)
Ka(u,0) = (un)s, = (@9, -(—-3“—2-——)

7D = - (#@HCH 4 7DD
YT ( +a ) |
= %(u(l)v + U(l)’(-l) + 21‘ + 2.“,(—1) + u(__l)’ + u("'l)y(—l)) -
From the giwen approximation the following equalities

\y, l(ya y))+(yv %(Z, g)) = Oa (E, Kl(ya 2))"'(?9 K?(zvz)) = 07 (ga ail)+
z, q,,) 0 arise. They provide the stability of conservative scheme
(5.3). Analogous schemes were considered in Fryazinov’s (1991)
paper and they are called energetically neutral because the net
"approximation of convective members in them does not make a
contribution into the energy balance.

For solution of implicit scheme (5.3) on the base of algonthm
(2. 3) we propose the followmg iterative process:

1( yl—y) L( yl) Ki(y, yl) Ko(z, yl) qz,,

,_1( ?1 ~z)= L( ?1)—K1(y, 2,)—I<2(z ?1)— af,,

1 ktl L k41 k4 1 .
T ( Y, — L( yl) Kl(ya yl)_? 2(za yl) qz,’ (54)
k+1 k41
1 2~ = L( z1)"K1(y’ 21)_Ké(z* zl)- 9z,

k+l k+1
y2$1+ zzt -0
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Scheme (5.4) refers to the family of algorithms given above.
The last three equations in (5.4) define difference Néuman problems
of type (4.3), (4.4) for which there exist solutions with the accuracy
up to the constant summand. ‘

For errors of the given iteljative process the problem

E+1 [ 231 E+1

p=T A1+Td,,, gl_'r A, +rd,,,
41 k41 B4l gy k41 E+1
Pr=T Aj+T dy, g,=7 Ayt d,,
k41 E+1

P2z, + g2z, "‘0

will be valid, where

E+1 k41 k41 k41
Aq=y( Pz, ot Pu},z,) (v P1)zx (z P22
k+1 E+1 E41 k41

A=y 912,2,F 91233,) (v 91)47: -(z gl)t:
For (5.4) the following theorem is valid.

Theorem 5.1. Satisfying the conditions |jyllc € M,
llzllc € M, where M is a positive limited constant, iterative process
(5.4) converges to the solution of scheme (5.3) and the following
reccurent inequality holds

k+1 k+1

Q*< 0 @7, ‘ (5.5)

L= 1
where g = TFRvD,

Dy = min {1 ~ 8rh*2y, 1~ (44 8M2)2rh"“1 /2} >0, x >0,

k E ! E E
and Qz’ H pn 12 + H 91 2+ mv/2(l o 1y + 11 90 Gy +

rh(| Ay + da, 112+ 11 Ag + ds, I12).

It follows from (5.5) that the most strict condltlon on the step-
size providing ¢» < 1 is 7 < 2A*+1(4 + M2)2,

‘From the iterative scheme (5.4) and the theorem of convergence
it is obvious that with the growth of k the right sides of the first
and the third as well as of the second and the fourth difference
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equatlons become equal what means y1 and y2 coincide, as well
D41 k41

as z; and "z,

REMARK 5.1. For solution of problem (5.3) we may use an
iterative process which for each fixed iteration is an economical
scheme for the velocity component:

‘e

k41 k41 k41 E E k
-1( V1—y)=v ?15,,, = (¥ Yz +V Uaz,z, —(2 V)22~ Tz,
-1 k41 k+1 k+1 k k

(z 4 - H=v zll‘lz; - (y H )21 +V 232,32, —(2 22)z,— ng’
1 +1 kAl A kA ktl E
T Y=Y =V Yyp, — (¥ yl)e, +V Yozoe, — (2 Y)za— Tz,
-1 k+1 + 3 k41 k41 © E
(Z-2)=v zu,n (¥ z)s +v zzz: = (2 2z~ T,
- k+1 k41 k41 k4 k+1 k41
(¥a—¥)=v Yy, — (¥ ¥))z, +v yzz,,, (z o)z~ Tz,

LEA B4l k41 B4l k41 k41
( "3—z) =V Zizm (y )x; +v zzfzz: (z .52)52— 9z,
k+1 k+1
Yaz, + 73z, =0.

Tterative prdcess (5.6) is 1mplemented analogously to (3.1),
(4.2).

REMARK 5.2! For solution of problem (5.1), (5.2) we may use
a purely implicit energetically neutral scheme which differs from
(5.3) only in that the convective members in it are taken only from
the upper layer. For implementation of this implicit scheme we
may propose the following iterative process

s k41 ok k4l ok k41 k
(Y, —y) = L( ¥,) - Ki(¥;, ¥,)— K222, ¥,)— s,

N N S N N
T (zl—z)z'L( 21)‘1\'1(.'/2» 1)—K2(22, 1)_q.‘i‘33

k41 k k+1 k+1
(Y, — L( y1) Kl(yZa yl) Ka(22, ¥))— s,
+1 ko k4l k4l
T_l( Z9— z) L( zl) Kl(yz, “‘1) - A2(227 a‘)_ s,
k+1 k+1

-'lzr,+ 22:, =0,
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_which belongs to the same family of algorithms given above and

for which the convergence theorem analogous to theorem 5.1 will
be valid. '
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