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Abstract. Wavelet analysis is a powerful tool with modern applications as diverse as: image process-
ing, signal processing, data compression, data mining, speech recognition, computer graphics, etc.
The aim of this paper is to introduce the concept of atomic decomposition of fuzzy normed linear
spaces, which play a key role in the development of fuzzy wavelet theory. Atomic decompositions
appeared in applications to signal processing and sampling theory among other areas.

First we give a general definition of fuzzy normed linear spaces and we obtain decomposition
theorems for fuzzy norms into a family of semi-norms, within more general settings. The results
are both for Bag–Samanta fuzzy norms and for Katsaras fuzzy norms. As a consequence, we obtain
locally convex topologies induced by this types of fuzzy norms.

The results established in this paper, constitute a foundation for the development of fuzzy operator
theory and fuzzy wavelet theory within this more general frame.

Key words: fuzzy wavelet, atomic decomposition, fuzzy metric space, fuzzy norm, fuzzy normed
linear space (FNLS).

1. Introduction

Wavelet analysis is a powerful tool with modern applications as diverse as: image pro-
cessing, signal processing, data compression, data mining, speech recognition, computer
graphics, etc. (Prasad and Iyengar, 1997; Daubechies, 1990; Mallat, 2008; Tomic and Ser-
sic, 2013; DeVore et al., 1992). Wavelet transform is a tool that divides up functions, data,
operators into different frequency components and then studies each component. Complex
information such as speech, images and music can be decomposed into elementary forms
and subsequently reconstructed with high precision. Wavelet transform of a function is a
improved version of Fourier transform (Sifuzzaman et al., 2009).

*Corresponding author.
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The concept of wavelet was introducedby J. Morlet. He considered wavelets as a family
of functions constructed from translations and dilations of a single function called “mother
wavelet” ψ . They are defined by

ψa,b(x)=
1

√
|a|
ψ

(

x − b

a

)

, a, b ∈ R, a 6= 0.

Immediately,A. Grossmann studied inverse formula for the wavelet transform.A math-
ematical study of wavelet transforms and their applications was made in paper Grossmann
and Morlet (1984).

If a function f ∈L2(R), then the series
∑

j,k∈Z〈f,ψj,k〉ψj,k(x) is called the wavelet

series of f and 〈f,ψj,k〉 = dj,k =
∫∞
−∞ f (x)ψj,k(x) dx is called the wavelet coefficients

of f .
Unlike the Haar functions, which form an orthogonal basis, Morlet wavelets are not

orthogonal and form frames. Frames are sets of function which are not necessarily orthog-
onal and which are not linearly independent. Frames for Hilbert spaces were introduced in
Duffin and Schaeffer (1952) and up to now they have developed very much in connection
to wavelet theory.

A frame for a Hilbert spaceH is a family of vector {yi}i∈N∗ inH , for which the norms
‖x‖H and ‖{〈x, yi〉}‖l2 are equivalent, i.e. there exists A,B > 0 such that

A‖x‖2 6
∑

i∈N∗

∣

∣〈x, yi〉
∣

∣

2
6 B‖x‖2, ∀x ∈H.

A is called lower frame bound and B is called upper frame bound. If we define Sx =
{〈x, yi〉}, then S∗S =

∑

i∈N∗〈x, yi〉yi is a continuous invertible mappingofH into itself. If
we denote by zi = (S∗S)−1yi , we obtain the reconstruction formulax =

∑

i∈N∗〈x, zi〉yi =
∑

i∈N∗〈x, yi〉zi .
The notion of fuzzy wavelets already exists, but differently introduced from what we

have in mind, which is based on atomic decompositions of fuzzy normed linear spaces.
Thus, paper (Huang and Zeng, 2009) developed a fuzzy wavelet algorithm based on fuzzy
transforms and wavelets, but they were used separately. Fuzzy wavelet networks (Ho et al.,
2001) introduced a fuzzy model into the wavelet neural network to improve the accuracy
of function approximation.

In papers of Perfilieva (2006), Di Martino and Sessa (2007), Di Martino et al. (2008)
the authors use the certain fuzzy operator constructed on C[a, b] by some partition like
(A1,A2, . . . ,An) for compression of images. The authors define a fuzzy transform which
associates a suitable n-dimensional vector to a continuous functionf on the interval [a, b].
The advantage of the inverse formula of the fuzzy transform is a single approximate repre-
sentation of the original function. In addition, the inverse fuzzy transform has nice filtering
properties. Based on this fuzzy transform, paper of Beg (2013) developed another concept
of fuzzy wavelet.

Atomic decomposition are used to represent an arbitrary element x of a Banach
space X as a series expansion involving a fixed countable (xi)i of elements in that space
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such that the coefficients of the expansion of x depend in a linear and continuous way
on x . The general theory of atomic decompositions was developed in papers Feichtinger
and Gröchenig (1989a, 1989b). In these papers, the authors obtain atomic decompositions
for a large class of Banach spaces.

After L. Zadeh introduced in his classical paper (Zadeh, 1965) the concept of fuzzy
set, many authors have tried to develop the classical results within this new frame. An
important problem was finding an adequate definition of a fuzzy normed space.

In studying fuzzy topological spaces, Katsaras (1984) first introduced the notion of
fuzzy norm on a linear space. Since then many mathematicians have introduced several no-
tions of fuzzy norm from different points of view. Thus, Felbin (1992) introduced an idea
of fuzzy norm on a linear space by assigning a fuzzy real number to each element of lin-
ear space. Following Cheng and Mordenson (1994), T. Bag and S.K. Samanta introduced
another concept of fuzzy norm, in paper Bag and Samanta (2003), and obtained a decom-
position theorem of fuzzy norms into a family of crisp norms. In paper Bag and Samanta
(2005), T. Bag and S.K. Samanta introduced different types of continuities and bounded-
ness for linear operators and they established the principles of fuzzy functional analysis.
A comparative study concerning T. Bag and S.K. Samanta’s definitions, of A.K. Katsaras
and that of C. Felbin was made in 2008, in the paper Bag and Samanta (2008). T. Bag
and S.K. Samanta’s definition has proven to be the most suitable one, it can be worked
with, the easiest and it can be used in most diverse and various developments. But, ac-
cording to T. Bag and S.K. Samanta a fuzzy norm is fuzzy set which satisfies five axioms.
In order to obtain the above mentioned results, T. Bag and S.K. Samanta impose another
two axioms on the fuzzy norm. Regarded together the 7 axioms are very strong and they
narrow a lot the family of fuzzy normed spaces. Thus we can say that a clear definition
regarding the fuzzy norm has not been reached, but after T. Bag and S.K. Samanta, almost
all authors have had as a starting point their definition and, at the same time, they have
tried to simplify and improve it: Saadati and Vaezpour, 2005; Miheţ, 2009; Goleţ, 2010;
Alegre and Romaguera, 2010; Katsaras, 2013.

The concept of fuzzy metric space was introduced by Kramosil and Michálek (1975)
and many notions and results belonging to classical metric spaces could be extended and
generalized in the context of fuzzy metric spaces. To some extent, the existence of an
equivalence between the probabilistic metric spaces and fuzzy metric spaces, makes it to
be impossible to speak about fuzzy normed linear spaces without making reference to the
concept of probabilistic normed spaces introduced by A.N. Šerstnev (1962, 1963). In a
probabilistic approach the norm of a vector is a probabilistic distribution while the fuzzy
norm is a fuzzy set. Although there is a good connection between the fuzzy norm and
the probabilistic one, the area of applicability of the two notions is different and this is a
reason enough to develop the theory of fuzzy normed linear spaces independently.

Following the ideas of T. Bag and S.K. Samanta, in this paper, we obtain decomposi-
tion theorems for fuzzy norms into a family of semi-norms, in more general settings. The
results are both for Bag-Samanta fuzzy norms and for Katsaras fuzzy norms. As a con-
sequence, we obtain locally convex topologies induced by this types of fuzzy norms. We
introduce the concept of atomic decomposition of fuzzy normed linear spaces, which play
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a key role in the development of fuzzy wavelet theory. The results established in this paper,
constitute a foundation for the development of fuzzy operator theory and fuzzy wavelet
theory in this more general frame.

2. Preliminaries

Definition 1. (See Schweizer and Sklar, 1960.) A binary operation

∗ : [0,1] × [0,1] → [0,1]

is called triangular norm (t-norm) if it satisfies the following condition:

1. a ∗ b = b ∗ a, ∀a, b ∈ [0,1];
2. a ∗ 1 = a, ∀a ∈ [0,1];
3. (a ∗ b) ∗ c= a ∗ (b ∗ c), ∀a, b, c ∈ [0,1];
4. If a 6 c and b6 d , with a, b, c, d ∈ [0,1], then a ∗ b6 c ∗ d .

Example 1. Three basic examples of continuous t-norms are ∧, ·, ∗L, which are defined
by a ∧ b = min{a, b}, a · b = ab (usual multiplication in [0,1]) and a ∗L b = max{a +
b− 1,0} (the Lukasiewicz t-norm).

Definition 2. (See Zadeh, 1965.) LetX be a nonempty set. A fuzzy set inX is a function
µ :X→ [0,1].

Remark 1. The classical union and intersection of ordinary subsets ofX can be extended
by the following formulas, proposed by L. Zadeh:

(

∨

i∈I
µI

)

(x)= sup
{

µi(x) : i ∈ I
}

,
(

∧

i∈I
µI

)

(x)= inf
{

µi(x) : i ∈ I
}

.

Definition 3. (See Kramosil and Michálek, 1975.) The triple (X,M,∗) is said to be a
fuzzy metric space if X is an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy
metric, i.e. a fuzzy set in X×X× [0,∞) which satisfies the following conditions:

(M1) M(x,y,0)= 0, ∀x, y ∈X;
(M2) [M(x,y, t)= 1, ∀t > 0] if and only if x = y;
(M3) M(x,y, t)=M(y,x, t), ∀x, y ∈X, ∀t > 0;
(M4) M(x, z, t + s)>M(x,y, t) ∗M(y, z, s), ∀x, y, z ∈X, ∀t, s > 0;
(M5) ∀x, y ∈X, M(x,y, ·) : [0,∞)→ [0,1] is left continuous and

limt→∞M(x,y, t)= 1.

Remark 2. In the definition of fuzzy metric space, I. Kramosil and J. Michálek have
imposed another condition: “M(x,y, ·) is nondecreasing, for all x, y ∈ X”. Cho et al.
(2006) showed that this affirmation derives from the other axioms.
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Indeed, for 0< t < s, we have

M(x,y, s)>M(x,x, s − t) ∗M(x,y, t)= 1 ∗M(x,y, t)=M(x,y, t).

Example 2. (See George and Veeramani, 1994.) Let (X,d) be a metric space. Let

Md :X×X× [0,∞), Md (x, y, t)=
{

t
t+d(x,y) if t > 0,

0 if t = 0.

Then (X,Md ,∧) is a fuzzy metric space. Md is called standard fuzzy metric.

Theorem 1. (See George and Veeramani, 1994.) Let (X,M,∗) be a fuzzy metric space.

For x ∈X, r ∈ (0,1), t > 0 we define the open ball

B(x, r, t) :=
{

y ∈X :M(x,y, t) > 1 − r
}

.

Let

TM :=
{

T ⊂X : x ∈ T iff (∃)t > 0, r ∈ (0,1) : B(x, r, t)⊆ T
}

.

Then TM is a topology on X.

Proposition 1. (See George and Veeramani, 1994.) Let (X,d) be a metric space andMd

be the corresponding standard fuzzy metric on X. Then the topology Td induced by the

metric d and the topology TMd induced by the standard fuzzy metric Md are the same.

Definition 4. Let (X,M,∗) be a fuzzy metric space and (xn) be a sequence in X. The
sequence (xn) is said to be convergent if there exists x ∈ X such that M(xn, x, t) = 1,
∀t > 0. In this case, x is called the limit of the sequence (xn) and we note limn→∞ xn = x ,
or xn → x .

Remark 3. Let (X,M,∗) be a fuzzy metric space. A sequence (xn) is convergent to x if
and only if (xn) is convergent to x in topology TM .

Indeed,

xn → x in topology TM

⇔ (∀)r ∈ (0,1), (∀)t > 0, (∃)n0 ∈N : xn ∈B(x, r, t), (∀)n> n0

⇔ (∀)r ∈ (0,1), (∀)t > 0, (∃)n0 ∈N :M(xn, x, t) > 1 − r, (∀)n> n0

⇔ lim
n→∞

M(xn, x, t)= 1, (∀)t > 0.

Definition 5. A topological vector space X will be called fuzzy metrizable if the topo-
logy is generated by a fuzzy metric which is translation-invariant, i.e.M(x+z, y+z, t)=
M(x,y, t), (∀)x, y, z ∈X, (∀)t > 0.
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Theorem 2. (See Gregori and Romaguera, 2000.) A topological vector space X is fuzzy

metrizable if and only if it is metrizable.

3. Bag–Samanta Fuzzy Norm

Definition 6. Let X be a vector space over a field K and ∗ be a continuous t-norm.
A fuzzy set N in X× [0,∞) is called a fuzzy norm on X if it satisfies:

(N1) N(x,0)= 0, (∀)x ∈X;
(N2) [N(x, t)= 1, (∀)t > 0] if and only if x = 0;
(N3) N(λx, t)=N(x, t

|λ|), (∀)x ∈X, (∀)t > 0, (∀)λ ∈K∗;
(N4) N(x + y, t + s)>N(x, t) ∗N(y, s), (∀)x, y ∈X, (∀)t, s > 0;
(N5) (∀)x ∈X, N(x, ·) is left continuous and limt→∞N(x, t)= 1.

The triple (X,N,∗) will be called fuzzy normed linear space (briefly FNLS).

Remark 4.
(a) Bag and Samanta (2003, 2005) gave a similar definition for ∗ = ∧, but in order to

obtain some important results they assume that the fuzzy norm satisfies also the following
conditions:

(N6) N(x, t) > 0, (∀)t > 0 ⇒ x = 0;
(N7) (∀)x 6= 0, N(x, ·) is a continuous function and strictly increasing on the subset

{t : 0<N(x, t) < 1} of R.

The results obtained by T. Bag and S.K. Samanta can be found in this more general set-
tings.

(b) Goleţ (2010), Alegre and Romaguera (2010) gave also this definition in the context
of real vector spaces.

Remark 5. N(x, ·) is nondecreasing, (∀)x ∈X.

Theorem 3. If (X,N,∗) is a FNLS, then

M :X×X× [0,∞)→ [0,1], M(x, y, t)=N(x − y, t)

is a fuzzy metric on X, which is called the fuzzy metric induced by the fuzzy norm N.

Moreover, we have:

1. M is a translation-invariant fuzzy metric;
2. M(λx,λy, t)=M(x,y, t

|λ| ), (∀)x ∈X, (∀)t > 0, (∀)λ ∈K∗.

Proof. (M1)M(x,y,0)=N(x − y,0)= 0;
(M2) [M(x,y, t) = 1, (∀)t > 0] ⇔ [N(x − y, t) = 1, (∀)t > 0] ⇔ x − y = 0 ⇔

x = y;
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(M3)

M(x,y, t) = N(x − y, t)=N
(

(−1)(y − x), t
)

= N

(

y − x,
t

| − 1|

)

=N(y − x, t)=M(y,x, t);

(M4)

M(x, z, t + s) = N(x − z, t + s)=N
(

(x − y)+ (y − z), t + s
)

> N(x − y, t) ∗N(y − z, s)=M(x,y, t) ∗M(y, z, s);

(M5) It is obvious.
Now we verify properties (1), (2).

(1) M(x + z, y + z, t)=N((x + z)− (y + z), t)=N(x − y, t)=M(x,y, t);
(2) M(λx,λy, t)=N(λx − λy, t)=N(x − y, t

|λ| )=M(x,y, t
|λ| ).

�

Corollary 1. Let (X,N,∗) be a FNLS. For x ∈ X, r ∈ (0,1), t > 0 we define the open

ball

B(x, r, t) :=
{

y ∈X :N(x − y, t) > 1 − r
}

.

Then

TN :=
{

T ⊂X : x ∈ T iff (∃)t > 0, r ∈ (0,1) : B(x, r, t)⊆ T
}

is a topology on X.

Moreover, if the t-norm ∗ satisfies supx∈(0,1) x ∗ x = 1, then (X,TN ) is Hausdorff.

Proof. The first part results from the previous theorem and Theorem 1. Let x, y ∈ X,
x 6= y. Using (N2), there exists t > 0: N(x − y, t) < 1. Let r = N(x − y, t). As
supx∈(0,1) x ∗ x = 1, we can find r1 ∈ (0,1) : r1 ∗ r1 > r . We have

B

(

x,1 − r1,
t

2

)

∩B
(

y,1 − r1,
t

2

)

= ∅.

Indeed, if we suppose that there exists z ∈ B(x,1 − r1,
t
2
) ∩ B(y,1 − r1,

t
2
), we obtain

that

N

(

x − z,
t

2

)

> r1, N

(

y − z,
t

2

)

> r1.

Thus

r =N(x − y, t)>N

(

x − z,
t

2

)

∗N
(

z− y,
t

2

)

> r1 ∗ r1 > r,

which is a contradiction. �
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Remark 6. Previous result was obtained by Sadeqi and Kia (2009), in 2009, using (N7).

Theorem 4. Let (X,N,∗) be a FNLS. Then (X,TN ) is a metrizable topological vector

space.

Proof. First we have to show that the mappings

(1) (x, y) 7→ x + y,

(2) (λ, x) 7→ λ · x

are continuous.
(1) Let xn → x, yn → y . We have

N
(

(xn + yn)− (x + y), t
)

>N

(

xn − x,
t

2

)

∗N
(

yn − y,
t

2

)

→ 1.

Thus xn + yn → x + y .
(2) Let xn → x , λn → λ. We have

N(λnxn − λx, t) = N
(

λn(xn − x)+ x(λn − λ), t
)

> N

(

λn(xn − x),
t

2

)

∗N
(

x(λn − λ),
t

2

)

= N

(

xn − x,
t

2|λn|

)

∗N
(

x,
t

2|λn − λ|

)

→ 1.

This implies that λnxn → λx .
Therefore (X,TN ) is a topological vector space. From Theorem 3 we have that X is

fuzzy metrizable. Theorem 2 tells us that X is metrizable. �

Theorem 5. Let (X,N,∧) be a FNLS. Let

pα(x) := inf
{

t > 0 :N(x, t) > α
}

, α ∈ (0,1).

Then P = {pα}α∈(0,1) is an ascending family of semi-norms on X.

Proof. (1) As N(0, t)= 1, (∀)t > 0, we obtain that

pα(0)= inf
{

t > 0 :N(0, t) > α} = 0.

(2) pα(λx)= |λ|pα(x), (∀)x ∈X, (∀)λ ∈ K.
First we note that, for λ= 0, the previous equality is obvious. For λ 6= 0, we have

pα(λx) = inf
{

t > 0 :N(λx, t) > α
}

= inf

{

t > 0 :N
(

x,
t

|λ|

)

> α

}

= inf

{

t|λ|> 0 :N
(

x,
t|λ|
|λ|

)

> α

}

= |λ| inf
{

t > 0 :N(x, t) > α
}

= |λ|pα(x).



Atomic Decompositions of Fuzzy Normed Linear Spaces for Wavelet Applications 651

(3)

pα(x)+ pα(y) = inf
{

t > 0 :N(x, t) > α
}

+ inf
{

s > 0 :N(y, s) > α
}

= inf
{

t + s > 0 :N(x, t) > α, N(y, s) > α
}

= inf
{

t + s > 0 :N(x, t)∧N(y, s) > α
}

> inf
{

t + s > 0 :N(x + y, t + s) > α
}

= pα(x + y).

It remains to be proven that P = {pα}α∈(0,1) is an ascending family. Let α1 6 α2. Then

{

t > 0 :N(x, t) > α2

}

⊆
{

t > 0 :N(x, t) > α1

}

.

Thus inf{t > 0 : N(x, t) > α2} > inf{t > 0 : N(x, t) > α1}, namely pα2
(x) > pα1

(x),
(∀)x ∈X. �

Remark 7. T. Bag and S.K. Samanta defined

pα(x) := inf
{

t > 0 :N(x, t)> α
}

, α ∈ (0,1).

They assume that the fuzzy norm satisfies (N6) and they obtained thatP = {pα}α∈(0,1)
is an ascending family of norms onX. For future development it is enough to have a family
of semi-norms on X, which corresponds to the fuzzy norm N .

Corollary 2. Let (X,N,∧) be a FNLS. Then there exists on X a least fine topology,

denoted by TP , compatible with the structure of linear space of X, with respect to which

each semi-norm pα is continuous. With this topology X becomes a locally convex space.

A fundamental system of neighborhoods of 0 is

CP =
{

B(pα, t) : α ∈ (0,1), t > 0
}

,

where B(pα, t)= {x ∈X : pα(x) < t}.

Proposition 2. The locally convex topology TP is Hausdorff.

Proof. We need to show that the family of semi-norms P is sufficient, i.e. (∀)x ∈ X,
x 6= 0, (∃)pα ∈ P such that pα(x) 6= 0. Let x ∈ X, x 6= 0. We suppose that pα(x) = 0,
(∀)α ∈ (0,1). Then inf{t > 0 : N(x, t) > α} = 0, for all α ∈ (0,1). Thus N(x, t) > α,
(∀)α ∈ (0,1), (∀)t > 0. Hence N(x, t) = 1, (∀)t > 0. Therefore, from (N2), we have
x = 0, which is a contradiction. �

Theorem 6. Let (X,N,∧) be a FNLS and

pα(x) := inf
{

t > 0 :N(x, t) > α
}

, α ∈ (0,1).

Then, for x ∈X, s > 0, α ∈ (0,1), we have: pα(x) < s if and only if N(x, s) > α.
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Proof. “⇒” We must show that s ∈ {t > 0 : N(x, t) > α}. We suppose that s 6∈ {t > 0 :
N(x, t) > α}. Then there exists t0 ∈ {t > 0 :N(x, t) > α} such that t0 < s. (Contrary, s 6
t , (∀)t ∈ {t > 0 :N(x, t) > α}. Hence s 6 inf{t > 0 :N(x, t) > α}, i.e. s 6 pα(x), which
is a contradiction.) As t0 ∈ {t > 0 :N(x, t) > α}, t0 < s and N(x, ·) is nondecreasing, we
obtain that α <N(x, t0)6N(x, s). Hence N(x, s) > α, which leads to a contradiction.

“⇐” As N(x, s) > α, we obtain that s ∈ {t > 0 : N(x, t) > α}. Thus pα(x)6 s. We
suppose that pα(x)= s. As N(x, ·) is left continuous in s, we have limt→s,t<sN(x, t)=
N(x, s). Thus there exists t0 < s such that N(x, t0) > α. (Contrary, N(x, t)6 α, for all
t 6 s. Therefore limt→s,t<sN(x, t) 6 α. Hence N(x, s) 6 α, which is a contradiction.)
But t0 < s andN(x, t0) > α are in contradictionwith the fact that s = inf{t > 0 :N(x, t) >
α}. Hence pα(x) 6= s. Thus pα(x) < s. �

Remark 8. T. Bag and S.K. Samanta, using (N6) and (N7), proved that for x ∈X, x 6= 0,
s > 0, α ∈ (0,1), we have: pα(x)= s if and only if N(x, s)= α. This is a strong result,
which is not true if the conditions (N6) and (N7) does not hold. But we do not need this
result, the previous theorem being enough.

Corollary 3. Let (X,N,∧) be a FNLS. Then TN = TP .

Proof. In topology TN a fundamental system of neighborhoodsof 0 is S(0)= {B(0, r, t) :
r ∈ (0,1), t > 0}. In topology TP a fundamental system of neighborhoods of 0 is CP =
{B(pα, t) : α ∈ (0,1), t > 0}, whereB(pα, t)= {x ∈X : pα(x) < t}. The former theorem
shows us that the two systems are identical. Thus TN = TP . �

Corollary 4. Let (X,N,∧) be a FNLS. Then X is a Hausdorff metrizable locally convex

space.

Remark 9. There exists another proof of this result, made by Cho et al. (2006), in the
context of real random normed spaces of Šerstnev.

Definition 7. An ascending family {pα}α∈(0,1) of semi-norms on a linear space X is
called right continuous if for any decreasing sequence (αn) in (0,1), αn → α ∈ (0,1), we
have pαn(x)→ pα(x), (∀)x ∈X.

Theorem 7. Let (X,N,∧) be a FNLS and

pα(x) := inf
{

t > 0 :N(x, t) > α
}

, α ∈ (0,1).

Then P = {pα}α∈(0,1) is right continuous.

Proof. Let x ∈ X and (αn) a decreasing sequence in (0,1), αn → α ∈ (0,1). Let s >
pα(x). ThenN(x, s) > α. As (αn) a decreasing sequence and αn → α, there exists n0 ∈N

such that αn < N(x, s), (∀)n > n0. Therefore pαn(x) < s, (∀)n > n0. Thus pαn(x) →
pα(x). �
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Theorem 8. Let {qα}α∈(0,1) be a sufficient and ascending family of semi-norms on the

linear space X. Let N ′ :X× [0,∞)→ [0,1], defined by

N ′(x, t) =
{

sup{α ∈ (0,1) : qα(x) < t} if t > 0,

0 if t = 0 or {α ∈ (0,1) : qα(x) < t} = ∅.

Then (X,N ′,∧) is a FNLS.

Proof. We note firstly that N ′(x, ·) is nondecreasing. Indeed, for t1 < t2, we have

{

α ∈ (0,1) : qα(x) < t1
}

⊆
{

α ∈ (0,1) : qα(x) < t2
}

.

Thus

sup
{

α ∈ (0,1) : qα(x) < t1
}

6 sup
{

α ∈ (0,1) : qα(x) < t2
}

.

Hence N ′(x, t1)6N ′(x, t2).
(N1) N ′(x,0)= 0, (∀)x ∈X is obvious.
(N2) If x = 0, then qα(x) = 0, (∀)α ∈ (0,1). Hence, for all α ∈ (0,1), we

have qα(x) < t , (∀)t > 0. Thus sup{α ∈ (0,1) : qα(x) < t} = 1, (∀)t > 0. Therefore
N ′(x, t)= 1, (∀)t > 0.

Conversely, if N ′(x, t) = 1, (∀)t > 0, then sup{α ∈ (0,1) : qα(x) < t} = 1, for all
t > 0. Hence, for all α ∈ (0,1), we have qα(x) < t , (∀)t > 0. Thus, for all α ∈ (0,1),
we have qα(x)= 0. As the family of semi-norms {qα}α∈(0,1) is sufficient, we obtain that
x = 0.

(N3) If t = 0, then N ′(λx, t)= 0 =N ′(x, t
|λ| ). For t > 0, we have

N ′(λx, t) = sup
{

α ∈ (0,1) : qα(λx) < t
}

= sup
{

α ∈ (0,1) : |λ|qα(x) < t
}

= sup

{

α ∈ (0,1) : qα(x) <
t

|λ|

}

=N ′
(

x,
t

|λ|

)

.

(N4) The inequality N ′(x + y, t + s) > N ′(x, t) ∧ N ′(y, s) is obvious for t = 0 or
s = 0. For t > 0, s > 0, we suppose that N ′(x + y, t + s) < N ′(x, t) ∧ N ′(y, s). Then
there exists α0 ∈ (0,1) such that

N ′(x + y, t + s) < α0 <N
′(x, t)∧N ′(y, s).

As N ′(x, t) > α0, there exists β1 ∈ {α ∈ (0,1) : qα(x) < t} such that β1 > α0. (Contrary,
for all β ∈ {α ∈ (0,1) : qα(x) < t}, we have β 6 α0. Hence sup{α ∈ (0,1) : qα(x) < t} 6
α0, which is a contradiction.) As N ′(y, s) > α0, there exists β2 ∈ {α ∈ (0,1) : qα(y) < s}
such that β2 > α0. Let β0 = min{β1, β2}. Then β0 > α0 and qβ0

(y) 6 qβ2
(y) < s,

qβ0
(x)6 qβ1

(x) < t . Thus qβ0
(x + y)6 qβ0

(x)+ qβ0
(y) < t + s. Therefore

β0 ∈
{

α ∈ (0,1) : qα(x + y) < t + s
}

.
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Thus sup{α ∈ (0,1) : qα(x + y) < t + s} > β0 > α0, which is in contradiction with the
fact that N ′(x + y, t + s) < α0. Hence N ′(x + y, t + s)>N ′(x, t)∧N ′(y, s).

(N5) We prove that limt→∞N ′(x, t)= 1. Let α0 ∈ (0,1) arbitrary. We show that there
exists t0 > 0 such that N ′(x, t) > α0, (∀)t > t0. As N(x, ·) is nondecreasing, it will be
enough to show that there exists t0 > 0 such that N ′(x, t0) > α0. Let t0 > qα1

(x), where
α1 = 1+α0

2
∈ (α0,1). Then

N ′(x, t0)= sup
{

α ∈ (0,1) : qα(x) < t0
}

> α1 > α0.

We prove now that N ′(x, ·) is left continuous in t > 0.

Case 1. N ′(x, t) = 0. Thus, for all s 6 t , as N ′(x, s) 6 N ′(x, t), we have N ′(x, s) = 0.
Therefore

lim
s→t,s<t

N ′(x, s)= 0 =N ′(x, t).

Case 2.N ′(x, t) > 0. Let α0 arbitrary, such that 0< α0 <N
′(x, t). Let (tn) be a sequence

such that tn → t , tn < t . We prove that there exists n0 ∈N such thatN ′(x, tn) > α0, (∀)n>
n0. (As α0 ∈ (0,N ′(x, t)) is arbitrary, we will obtain that limn→∞N ′(x, tn)=N ′(x, t).)
If 0 < α0 < N

′(x, t), then there exists β0 ∈ {α ∈ (0,1) : qα(x) < t} such that β0 > α0.
(Contrary, for all

β ∈
{

α ∈ (0,1) : qα(x) < t
}

,

we have β 6 α0. Then sup{α ∈ (0,1) : qα(x) < t} 6 α0, i.e. N ′(x, t) 6 α0, which is a
contradiction.) As qβ0

(x) < t and tn → t , tn < t , there exists n0 ∈ N such that for all
n> n0, we have tn > qβ0

(x). Thus

N ′(x, tn)= sup
{

α ∈ (0,1) : qα(x) < tn
}

> β0 > α0, (∀)n> n0.

�

Theorem 9. Let (X,N,∧) be a FNLS and

pα(x) := inf
{

t > 0 :N(x, t) > α
}

, α ∈ (0,1).

Let N ′ :X× [0,∞)→ [0,1], defined by

N ′(x, t)=
{

sup{α ∈ (0,1) : pα(x) < t} if t > 0,

0 if t = 0 or {α ∈ (0,1) : pα(x) < t} = ∅.

Then

1. P = {pα}α∈(0,1) is a right continuous and ascending family of semi-norms on X;
2. (X,N ′,∧) is a FNLS;
3. N ′ =N .
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Proof. 1. It results from Theorems 5 and 7.
2. It results from Theorem 8.
3. For t = 0, we have N ′(x, t)= 0 =N(x, t). For t > 0, we have

N ′(x, t)= sup
{

α ∈ (0,1) : pα(x) < t
}

= sup
{

α ∈ (0,1) :N(x, t) > α
}

6N(x, t).

We suppose that N ′(x, t) < N(x, t). Then there exists α0 ∈ (0,1) such that N ′(x, t) <
α0 <N(x, t). But α0 <N(x, t) implies that pα0

(x) < t . Thus

sup
{

α ∈ (0,1) : pα(x) < t
}

> α0,

i.e. N ′(x, t)> α0, which is a contradiction. Hence N ′(x, t)=N(x, t). �

Theorem 10. LetX be a linear space and {qα}α∈(0,1) be a sufficient and ascending family

of semi-norms on X. Let N ′ :X× [0,∞)→ [0,1], defined by

N ′(x, t)=
{

sup{α ∈ (0,1) : qα(x) < t} if t > 0,

0 if t = 0 or {α ∈ (0,1) : qα(x) < t} = ∅.

Let pα :X→ [0,∞) defined by

pα(x) := inf
{

t > 0 :N ′(x, t) > α
}

, α ∈ (0,1).

Then

1. (X,N ′,∧) is a FNLS;
2. P = {pα}α∈(0,1) is a right continuous and ascending family of semi-norms on X;
3. pα = qα , (∀)α ∈ (0,1) if and only if {qα}α∈(0,1) is right continuous.

Proof. 1. It results from Theorem 8.
2. It results from Theorem 5 and Theorem 7.
3. “⇒” Is obvious.

“⇐” We suppose that there exists α0 ∈ (0,1) such that pα0
6= qα0

. Then there exists
x ∈X such that pα0

(x) < qα0
(x) or pα0

(x) > qα0
(x).

Case A. pα0
(x) < qα0

(x). Let s > 0 such that pα0
(x) < s < qα0

(x). As pα0
(x) < s, we

have N ′(x, s) > α0. We suppose that α0 < sup{α ∈ (0,1) : qα(x)<s}. Then there ex-
ists β ∈ {α ∈ (0,1) : qα(x) < s} : α0 < β . (Contrary, α0 > β , for all β ∈ {α ∈ (0,1) :
qα(x)< s}. Thus α0 > sup{α ∈ (0,1) : qα(x) < s}, which contradicts our assumption.) As
β ∈ {α ∈ (0,1) : qα(x) < s} : α0 < β , we have qα0

(x)6 qβ(x) < s, which contradicts the
fact that qα0

(x) > s. Thus α0 > sup{α ∈ (0,1) : qα(x) < s}, namely α0 >N
′(x, t), which

is a contradiction.

Case B. qα0
(x) < pα0

(x). Let β ∈ (α0,1). We will show that pα0
(x) 6 qβ(x). We sup-

pose that pα0
(x) > qβ(x). Let s > 0 : qβ(x) < s < pα0

(x). As qβ(x) < s, we have
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N ′(x, s) > β > α0. Thus pα0
(x) < s, which is a contradiction. Hence pα0

(x) 6 qβ(x),
(∀)β ∈ (α0,1). Thus pα0

(x)6 limβ→α0,β>α0
qβ(x). Therefore pα0

(x)6 qα0
(x), which is

a contradiction. �

4. Katsaras Fuzzy Norm

Let X be vector space over K (where K is R or C).

Definition 8. (See Katsaras and Liu, 1977.) Let µ1,µ2, . . . ,µn be fuzzy sets in X. The
sum of fuzzy sets µ1,µ2, . . . ,µn is denoted by µ1 +µ2 + · · · +µn and it is defined by:

(µ1 +µ2 + · · · +µn)(x)= sup
x1+x2+···+xn=x

[

µ1(x1)∧µ2(x2)∧ · · · ∧µn(xn)
]

.

If λ ∈K and µ is a fuzzy set in X, the fuzzy set λµ is defined by:

(λµ)(x)=











µ
(

x
λ

)

if λ 6= 0

0 if λ= 0, x 6= 0,

∨{µ(y) : y ∈X} if λ= 0, x = 0.

Definition 9. (See Katsaras and Liu, 1977.) A fuzzy set ρ in X is said to be:

1. convex if tρ + (1 − t)ρ ⊆ ρ, (∀)t ∈ [0,1];
2. balanced if λρ ⊆ ρ, (∀)λ ∈ K, |λ| 6 1;
3. absorbing if

∨

t>0 tρ = 1;
4. absolutely convex if it is both convex and balanced.

Proposition 3. (See Katsaras and Liu, 1977.) Let ρ be a fuzzy set in X. Then:

1. ρ is convex if and only if

ρ
(

tx + (1 − t)y
)

> ρ(x)∧ ρ(y), (∀)x, y ∈X, (∀)t ∈ [0,1];

2. ρ is balanced if and only if ρ(λx)> ρ(x), (∀)x ∈X, (∀)λ ∈K, |λ|6 1.

Definition 10. (See Katsaras, 1984.) A fuzzy semi-norm on X is a fuzzy set ρ in X
which is absolutely convex and absorbing.

Proposition 4. (See Krishna and Sarma, 1991.) Let ρ be a fuzzy semi-norm on X. Let

pα(x) := inf{t > 0 : ρ( x
t
) > α}, α ∈ (0,1). Then P = {pα}α∈(0,1) is an ascending family

of semi-norms on X.

Definition 11. A fuzzy semi-norm ρ on X will be called Katsaras fuzzy norm if
ρ( x

t
)= 1, (∀)t > 0 implies x = 0.
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Remark 10. (a) It is easy to see that

[

ρ

(

x

t

)

= 1, (∀)t > 0 ⇒ x = 0

]

⇔
[

inf
t>0
ρ

(

x

t

)

< 1, for x 6= 0

]

.

(b) Our condition [ρ( x
t
)= 1, (∀)t > 0 ⇒ x = 0] is much weaker than that imposed

by Katsaras (1984),

[

inf
t>0
ρ

(

x

t

)

= 0, for x 6= 0

]

.

Proposition 5. Let ρ be a fuzzy semi-norm and

pα(x) := inf

{

t > 0 : ρ
(

x

t

)

> α

}

, α ∈ (0,1).

Then the family of semi-norms P = {pα}α∈(0,1) is sufficient if and only if ρ is a Katsaras

fuzzy norm.

Proof. “⇒” We must prove that ρ is a Katsaras fuzzy norm. We suppose that there exists
x 6= 0, such that ρ( x

t
)= 1, (∀)t > 0. Thus

pα(x)= inf

{

t > 0 : ρ
(

x

t

)

> α

}

= 0, (∀)α ∈ (0,1),

which contradicts the fact that the family of semi-norms P = {pα}α∈(0,1) is sufficient.
“⇐” Let x ∈ X, x 6= 0. We will prove that there exists pα ∈ P such that pα(x) 6= 0.

We suppose that pα(x)= 0, (∀)α ∈ (0,1). Thus

inf

{

t > 0 : ρ
(

x

t

)

> α} = 0, (∀)α ∈ (0,1).

Hence ρ( x
t
) > α, (∀)α ∈ (0,1), (∀)t > 0. (Contrary, (∃)α0 ∈ (0,1), (∃)t0 > 0 such that

ρ( x
t0
)6 α0. Then, for 0< t 6 t0, as ρ is absorbing, we obtain that ρ( x

t
)6 ρ( x

t0
). There-

fore, for all t ∈ (0, t0], we have ρ( x
t
)6 α0. Thus

inf

{

t > 0 : ρ
(

x

t

)

> α0

}

> t0 > 0,

which is a contradiction.) As ρ( x
t
) > α, (∀)α ∈ (0,1), (∀)t > 0, we obtain that ρ( x

t
)= 1,

(∀)t > 0. As ρ is a Katsaras fuzzy norm, we have x = 0, which is a contradiction. �

Theorem 11. Let ρ be a Katsaras fuzzy norm and

pα(x) := inf

{

t > 0 : ρ
(

x

t

)

> α

}

, α ∈ (0,1).
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Let N ′ :X× [0,∞)→ [0,1], defined by

N ′(x, t)=
{

sup{α ∈ (0,1) : pα(x) < t} if t > 0,

0 if t = 0 or {α ∈ (0,1) : pα(x) < t} = ∅.

Then (X,N ′,∧) is a FNLS.

Proof. Propositions 4, 5 and Theorem 8 imply the desired result. �

Proposition 6. (See Bag and Samanta, 2008.) Let (X,N,∧) be a FNLS and ρ : X →
[0,1], ρ(x)=N(x,1). Then ρ is a Katsaras fuzzy norm.

Theorem 12. Let (X,N,∧) be a FNLS and ρ :X→ [0,1], ρ(x)=N(x,1). Let

qα(x) := inf

{

t > 0 : ρ
(

x

t

)

> α

}

, α ∈ (0,1).

Let N ′ :X× [0,∞)→ [0,1], defined by

N ′(x, t)=
{

sup{α ∈ (0,1) : qα(x) < t} if t > 0,

0 if t = 0 or {α ∈ (0,1) : qα(x) < t} = ∅.

Then:

1. ρ is a Katsaras fuzzy norm;
2. P = {qα}α∈(0,1) is a sufficient and ascending family of semi-norms on X;
3. (X,N ′,∧) is a FNLS;
4. N ′ =N .

Proof. (1) It follows from Proposition 6.
(2) It follows from Propositions 4 and 5.
(3) It follows from Theorem 11.
(4) As qα(x) := inf{t > 0 : N( x

t
,1) > α} = inf{t > 0 : N(x, t) > α}, Theorem 9 im-

plies the desired result. �

5. Atomic Decompositions

In this section we present some results which will be developed in a future paper, after we
have made a systematic study of bounded linear operators between fuzzy normed linear
spaces and the notion of fuzzy dual space has been introduced.

Let (X,N,∧) be a FNLS. Let X′ be the topological dual of X and σ(X′,X) be the
weak*-topology on X′. If (Y,N ′,∧) is a FNLS and T : X → Y is a continuous linear
operator, its adjoint is denoted by T ′ : Y ′ →X′ and it is defined by T ′(g)(x)= g(T (x)),
(∀)x ∈X, (∀)g ∈ Y ′.
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Definition 12. A FNLS (X,N,∧) has an atomic decomposition if there exists {fi}i∈N ⊂
X′ and {xi}i∈N ⊂X such that

x =
∞
∑

i=1

fi(x)xi, (∀)x ∈X.

The pair ({fi}i∈N, {xi}i∈N) will be called atomic decomposition of (X,N,∧).

Proposition 7. Let (X,N,∧) be a FNLS and P :X→X be a continuous linear projec-

tion. If ({fi}i∈N, {xi}i∈N) is an atomic decomposition ofX then ({P ′(fi)}i∈N, {P(xi)}i∈N)
is an atomic decomposition of P(X).

In particular, ifX is isomorphic to a complemented subspace of a FNLS with an atomic

decomposition, then X has an atomic decomposition.

Proof. As P ′(fi)(y)= fi(P (y))= fi(y), (∀)y ∈ P(X), (∀)i ∈N, we obtain that

y = P(y)= P

( ∞
∑

i=1

fi(y)xI

)

=
∞
∑

i=1

fi(y)P (xi)=
∞
∑

i=1

P ′(fi)(y)P (xi).

Thus ({P ′(fi)}i∈N, {P(xi)}i∈N) is an atomic decomposition of P(X). �

Theorem 13. Let ({fi}i∈N, {xi}i∈N) be an atomic decomposition of the complete FNLS

(X,N,∧). Then there exists (Xd ,N
′,∧) an associated complete FNLS of scalar-valued

sequences indexed by N such that:

1. {fi(x)}i∈N ∈Xd , (∀)x ∈X;
2. there exist constants A,B > 0 such that

N

(

x,
s

A

)

6N ′({fi(x)}i∈N, s
)

6N(x, sB), (∀)x ∈X, (∀)s > 0;

3. X is isomorphic to a complemented subspace of Xd .

Proof. Let

Xd =
{

{λi}i∈N ∈K
N :

∞
∑

i=1

λixi is convergent in X

}

.

As
∑∞
i=1 fi(x)xi is convergent to x , we obtain that {fi(x)}i∈N ∈Xd , (∀)x ∈X.

Xd is a complete FNLS with the fuzzy norm

N ′({λi}i∈N, s
)

= sup
16n<∞

N

(

n
∑

i=1

λixi, s

)

.



660 S. Nădăban, I. Dzitac

Let T : X → Xd , T (x) = {fi(x)}i∈N. Using Uniform boundedness principle we obtain
that T is bounded, namely (∃)A > 0 such that

N ′(T (x), s)>N

(

x,
s

A

)

, (∀)x ∈X, (∀)s > 0.

Thus

N ′({fi(x)}i∈N, s
)

>N

(

x,
s

A

)

, (∀)x ∈X, (∀)s > 0.

Let S :Xd →X, S({λi}i∈N)=
∑∞
i=1 λixi . Then S is linear and continuous. Thus (∃)B >

0 :N(
∑∞
i=1 λixi, s)>N

′({λi}i∈N, sB ), (∀){λi}i∈N ∈Xd , (∀)s > 0. In particular, for λi =
fi(x), we have

N ′
(

{fi(x)}i∈N,
s

B

)

6N(x, s), (∀)x ∈X, (∀)s > 0.

Thus

N ′({fi(x)}i∈N, s
)

6N(x, sB), (∀)x ∈X, (∀)s > 0.

We remark that T is an isomorphism from X into its range R(T ) ⊂ Xd and T ◦ S is a
projection ofXd ontoR(T ). ThenX is isomorphic to a complemented subspace ofXd . �

6. Conclusions and Future Works

In this paper we have introduced the concept of atomic decomposition of fuzzy normed
linear spaces. We have build a fertile ground to study, in further papers, the fuzzy wavelet
theory. Also, the atomic decomposition will be used in applications to signal processing
and sampling theory.

Certainly, we will make a systematic study of bounded linear operators in fuzzy
normed linear spaces. We intend to obtain versions of theorems: the Open mapping theo-
rem, the Closed graph theorem and the Uniform boundedness principle.

The results obtained in this paper leave to be foreseen that there are solutions to the
problems afore mentioned. The development of fuzzy operator theory in this new context
can be proven to be a powerful tool for fuzzy wavelet theory.
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Fuzzy normuotų tiesinių erdvių dekompozicijos vilnelių taikymams

Sorin NĂDĂBAN, Ioan DZITAC

Vilnelių analizė yra galingas įrankis šiuolaikiniuose taikymuose, tokiuose kaip vaizdų ir signalų
apdorojimas, duomenų suspaudimas, duomenų tyryba, kalbos atpažinimas, kompiuterinė grafika.
Šio straipsnio tikslas yra įvesti fuzzy normuotų tiesinių erdvių atominės dekompozicijos sampratą,
kuri vaidina esminį vaidmenį kuriant fuzzy bangelių teoriją. Straipsnyje pateiktas fuzzy normuotų
tiesinių erdvių apibrėžimas, suformuluotos teoremos dekompozicijai fuzzy normų į bendresnio pa-
vidalo semi-normų šeimą. Straipsnyje gauti rezultatai yra pagrindas vystant bendresnio pobūdžio
fuzzy operatorių teoriją ir fuzzy bangelių teoriją.


