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Abstract. Clustering is one of the better known unsupervised learning methods with the aim of
discovering structures in the data. This paper presents a distance-based Sweep-Hyperplane Clus-
tering Algorithm (SHCA), which uses sweep-hyperplanes to quickly locate each point’s approxi-
mate nearest neighbourhood. Furthermore, a new distance-based dynamic model that is based on
2N -tree hierarchical space partitioning, extends SHCA’s capability for finding clusters that are not
well-separated, with arbitrary shape and density. Experimental results on different synthetic and real
multidimensional datasets that are large and noisy demonstrate the effectiveness of the proposed al-
gorithm.
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1. Introduction

Clustering is an often used technique in data mining, by which the unknown relations and
knowledge contained within the datasets can be obtained. In the N -dimensional Euclidean
space RN , it is a process of finding groups (i.e. clusters) of points. Clustering has been
successfully applied in many areas, such as gene research (Jiang et al., 2004), image seg-
mentation (Shi and Malik, 2000), document organisation and filtering (Steinbach et al.,
2000), spatial data analysis (Han et al., 2001). Unsupervised clustering also presents an
alternative to supervised data classification (Kiriş, 2013), when the relations in the data
are unknown and the training set is difficult to obtain. Although, no common definition
of a cluster has been agreed upon, it is widely accepted that the points in the considered
cluster are more similar (i.e. nearer) to each other than the points in the remaining clus-
ters. Over the past decade, many algorithms and approaches have been contributed for
solving the problem of cluster identification. Some clustering methods are specialised for
finding globular clusters, whilst other methods find contiguous (i.e. connected) type of
clusters. Other methods perform density-based clustering by separating regions of high
density from regions with lower densities, and are generally robust to noise and outliers.
The notion of noise represents points that do not have any meaning or structure, whilst the
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outliers are isolated points that are considerably distant from the rest of the data. Meth-
ods designed for finding contiguous clusters can also find globular type of clusters, as
well as clusters of arbitrary shape and size, as long as they are well-separated. Generally,
distance-based clustering methods designed for finding specific types of clusters, use a
static clustering model (Theodoridis and Koutroumbas, 2008), whilst dynamic clustering
models (Karypis et al., 1999) provide the ability for finding arbitrary (i.e. natural) types
of clusters that can have arbitrary sizes, shapes and densities. A dynamic model should
also be capable of detecting not well-separated clusters. Over recent years, the sizes of
datasets have increased exponentially, where datasets can contain millions of points with
the presence of noise and outliers. High performance clustering is required to process
such datasets within reasonable time, whilst quality results are still expected. Generally,
a trade-off exists between finding arbitrary type of clusters, and processing large datasets
within a reasonable time. Most of the known clustering methods are designed around the
former ability. Although some approaches consider the compression of larger datasets,
or using a small representative subset from the data, it is never guaranteed that all the
clusters will be found (Steinbach et al., 2003). Distance-based clustering methods attempt
to locate the nearest neighbour to a given point, and perform clustering being based on
the proximity of the points. Exact nearest neighbour search is infeasible within higher di-
mensional spaces. In most cases, an approximate nearest neighbourhood (ANN) search is
good enough (Nene and Nayar, 1997), because the acquired solution is often exact (Chang
et al., 2002), and is obtained at several magnitudes faster.

This paper proposes a new distance-based Sweep-Hyperplane Clustering Algorithm
(SHCA). The proposed algorithm uses sweeping hyperplanes that provide fast searches
of the ANN for each point in the RN space. The found ANN enables faster local cluster-
ing decisions. SHCA has been extended with a newly proposed distance-based dynamic
model, based on a 2N -tree data structure, in order to find arbitrary type of clusters that do
not have to be well-separated.

The remainder of this paper is structured in five sections. An overview of the better
known clustering methods is given in Section 2. The proposed algorithm and dynamic
model are presented in Section 3. The effectiveness of the algorithm is demonstrated by
the experiments in Section 4. The paper is concluded in Section 5.

2. Related Work

Many approaches have been proposed for distance-based clustering. They can be broadly
divided into partitional, hierarchical, grid-based, graph-based, and model-based cluster-
ing.

Partitional clustering methods use iterative optimisation, where the relocation of differ-
ent points to different clusters (i.e. partitions) is performed. In general, it requires a user
specified number of clusters k; an inappropriate choice of k may yield unexpected re-
sults. The most known algorithm is k-means (MacQueen, 1967) that is based on centre-
based clustering and if directly applied can only find globular clusters (Wu et al., 2008).
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It is significantly sensitive to noise, outliers, and the initialisation of k clusters’ centres.
The method’s time complexity is O(knt), where n is the number of points and t is the
number of iterations. Other partition-based representatives are k-medoids (Kaufman and
Rousseeuw, 2001) and CLARANS (Ng and Han, 2002), which consider a cluster’s centre
as one of the points.

The DBSCAN (Ester et al., 1996) is a density-based clustering method that constructs
core points, where their ǫ-neighbourhoods contain at least MinPts points. The method
then iteratively finds density-reachable points from the core points. DBSCAN is robust
to noise, and can discover arbitrary type of clusters as long the dataset does not contain
large fluctuations in densities. This method has O(n log(n)) time complexity if a suitable
indexing data structure is used. Other popular density-based methods with the same time
complexities are OPTICS (Ankerst et al., 1999) and DENCLUE (Hinneburg and Keim,
2003).

Hierarchical clustering algorithms divide the dataset into multiple clusters (i.e. di-
visive clustering), or merge the dataset elements in a bottom-up manner (i.e. agglom-
erative clustering). The result of such clustering is a hierarchical tree of clusters that
can be visually represented in a tree diagramme-dendrogram. The traditional hierarchical
single-linkage method is capable of detecting well-separated clusters of arbitrary shape,
whilst complete-linkage and average-linkage cannot, and are more suitable for separat-
ing “touching” clusters. Their main drawback is their time complexity (i.e. single-linkage
O(n2), complete-linkage and average-linkage O(n2 log(n)). BIRCH (Zhang et al., 1996),
CURE (Guha et al., 1998), LSH-link (Koga et al., 2007), and adaptive hierarchical clus-
tering (Şerban and Câmpan, 2008) are all examples of hierarchical clustering algorithms.
A sweep-line hierarchical clustering algorithm (Žalik and Žalik, 2009) can detect well-
separated clusters of arbitrary shape within large datasets. However, it is limited to R2

space, and cannot cope with noisy data. It has expected time complexity of O(n log(n)).
CHAMELEON (Karypis et al., 1999) is an agglomerative hierarchical clustering algo-
rithm based on a dynamic model that merges clusters by evaluating the interconnectivity
and closeness between each pair of clusters from the k-nearest neighbour’s graph. It is
suitable for discovering arbitrary type of clusters and has O(n2) time complexity. Simi-
larly, the Mitosis (Yousri et al., 2009) clustering algorithm is based on a dynamic model.
SPARCL (Chaoji et al., 2009) combines partitional and hierarchical clustering by merging
seed clustered partitions in a hierarchical manner.

Spectral clustering is a branch of graph-based clustering. A fully connected weighted
graph is constructed from the dataset, and partitioned using a cut off criterion. Shi and
Malik (2000) approximated the normalised min-cut problem by extracting the eigenvec-
tors from the graph’s Laplacian matrix. The time complexity of this method is O(n3),
which is unsuitable for clustering larger datasets. Many spectral clustering methods have
been developed, where each handles eigenvectors differently (for an overview see Verma
and Meila, 2003).

Grid-based clustering methods hierarchically divide space into a finite number of cells.
The main disadvantage is that the quality of clusters depends on the cells’ coarseness.
Unfortunately, the amount of cells increases exponentially with the number of dimen-
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sions. Known grid-based clustering methods are STING (Wang et al., 1997), WaveCluster
(Sheikholeslami et al., 1998), and CLIQUE (Agrawalet al., 1998).

Model-based clustering attempts to optimise the fitting of a certain mathematical
model over the data (Fraley and Raftery, 1998). It is assumed that the data is composed
of a mixture of probability distributions. One of the better known model-based cluster-
ing methods is based on a mixture of Gaussians, where the EM algorithm is used for the
likelihood function maximisation (Dempster et al., 1977). Although this can be used for
clustering multivariate datasets, EM can converge into local extremes without careful ini-
tialisation (Kavaliauskas and Rudzkis, 2005). Therefore, more advanced solutions were
developed (Rudzkis et al., 2013).

Nowadays, multidimensional datasets are typically large and can contain noise. Good
quality clustering algorithms are computationally expensive and are, therefore, inappro-
priate for fast clustering of larger datasets. Some algorithms have low time complexities
overall, but are inefficient for identifying arbitrary type of clusters, whilst other algorithms
cannot handle multiple dimensions. This paper proposes a new distance-based clustering
method SHCA using a novel dynamic model, which is described in the next section.

3. SHCA: Sweep-Hyperplane Clustering Algorithm

The proposed clustering method SHCA exploits the sweeping paradigm, a widely used
method in computational geometry. Sweepingwas introducedby Shamos and Hoey (1976)
for solving the line-segment intersection problem. The word sweep is used because it can
be imagined that a line in R2, a plane in R3, or a hyperplane in RN (N > 3) space, itera-
tively moves (i.e. sweeps) across the space. It briefly stops when an event occurs, i.e. when
the sweep-line/plane/hyperplane collides with a point. During the stop, the algorithm up-
dates the adequate data structure. The proposed SHCA uses hyperplanes that stop at each
point and enable fast ANN detection. The sweeping paradigm has been already applied
for clustering (Žalik and Žalik, 2009), in order to find well-separated clusters of arbitrary
shape within the R2, where the exact neighbourhood can easily be detected. SHCA gen-
eralises the sweep-based clustering to support higher dimensions.

When considering the distance threshold parameter d for d-nearest neighbourhood
around a given point, the ANN search using sweep-hyperplanes within RN , consists of
the following steps:

1. Sweep-hyperplane s1 iteratively sweeps through the data sorted by the 1-st dimen-
sion and stops at unvisited point q . Initialise i = 1.

2. Sweep-hyperplane s(i+1) sweeps the subspace around si with boundary d (i.e. Si =
[si −d, si +d]), where the data is sorted by an arbitrary (i +1)-th dimension. While
i 6= (N + 1) increases i and repeats the 2nd step.

3. When i = (N + 1), the subspace hypercube I = Si ∩ S(i+1) ∩ · · · ∩ SN , I ∈ RN

corresponds to the intersection of the subspaces around the hyperplanes, which de-
fines the ANN of point q . Points within subspace I are in close proximity, where
the local clustering can be performed (see Fig. 1).
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Fig. 1. Illustration of the ANN around point q using the sweep-hyperplanes approach in R3. Considering the
L2-norm, the proximity around point q is defined with a unit sphere (i.e. d-ANN) within the unit cube (i.e.
L∞-norm proximity) representing the subspace I . The black points are those yet to be clustered. The radius of
the unit sphere is d and the side length of the unit cube is 2d .

4. If all points have been swept, the algorithm terminates, otherwise the steps are re-
peated by moving the hyperplanes ahead, thus visiting the remaining points.

Essentially, the sweep-hyperplanes construct a hypercube I around a given point. The
amount of sweep-hyperplanes increases as the number of dimensions increase, hence
2 sweep-lines are necessary in R2, 3 sweep-planes in R3 (see Fig. 1), and N sweep-
hyperplanes in RN (N > 3) space. SHCA performs the sweeping by using advanc-
ing fronts (AFs) for points’ storage and fast detection of the ANNs. When the sweep-
hyperplane visits a given point, it is virtually projected onto the advancing front AFi ,
where the virtual points are ordered by the i-th dimension. The AF can be imagined as a
form of polyline (see Fig. 3). The projection onto the AF polyline is realised as an inser-
tion of the point into the AF data structure. SHCA uses the skip-list data structure for AF ,
where the details about its implementation are given in Section 3.1.

The overview of SHCA is given in Fig. 2. The method takes as input the data con-
sisting of points in RN space, distance threshold parameter d , and optionally the MinPts

threshold parameter for handling noise. Parameter d defines the maximum distance the
neighbouring points can be separated in order to belong to the same cluster, whilst MinPts

defines the minimum amount of points within ANN to be considered when forming a clus-
ter. By default MinPts = 2 in order to avoid outliers, unless otherwise specified. At first
the data is sorted into an ascending order according to the first dimension N1 (line 2).
After the initial sorting, the incremental sweeping phase begins. The point q is visited
by the sweep-hyperplane of the 1st dimension, where q is inserted into the AF1 (line 4).
The points already included in the AFs are further considered if they are located within
the subspace I , where q represents I ’s centre. This is done in an incremental way; if a
given point p ∈ AFi lies within the subspace Si (line 7), then it is re-projected to AF

for one dimension higher (i.e. insertion into AF(i+1)) (line 8). Otherwise the points out-
side I are removed from AFk with k within the range from i to N (lines 10–11). The
AFN = I contains the d

√
N -ANN of point q . The points located within I guarantee the
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Fig. 2. Pseudocode for SHCA.

exact neighbourhood of q only when using the L∞-norm (i.e. Chebyshev distance met-
ric), which is seldom used for clustering. Therefore, a new dynamic model is considered
in the RN space, in order to find d-ANN within I , where d changes dynamically based
on the relative densities of neighbouring points. This allows detection of clusters of ar-
bitrary shape, size and density, as will be described in Section 3.2. If the size of AFN is
less than MinPts, the points are discarded as potential noise, unless they are in d-ANN of
any other point having more than MinPts neighbours. In the case where no point within
d-ANN belongs to any cluster from the previous sweep iteration, a new cluster is created
(lines 16–18). Otherwise, if at least one of the points belongs to a cluster, then the largest
cluster CM is found. All the non-clustered points and smaller clusters inside cd-ANN are
then merged to CM (lines 20–24).

The SHCA can be categorised as an agglomerative hierarchical clustering algorithm,
because smaller clusters are created at first, and later merged in a bottom-up manner re-
garding to the distances from neighbouring clusters. The reason for the points being sorted
at the beginning is to enable a faster incremental sweeping phase. The high performance
of SHCA lies in the use of advancing fronts implemented with skip list data structure, as
described in the next section.

3.1. Advancing Front

SHCA’s high performance lies in the reduction of the high-dimensional ANN search into
one-dimensional searches on advancing fronts. During the sweeping phase, points within
a given subspace Si are projected to AFi (see Fig. 3(a)). The subspace Si is likely to change
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Fig. 3. Illustration of AFi for a given subspace Si where (a) a new point is being projected to the advancing front
within Si ; (b) the next subspace Si for unvisited point q is swept by the hyperplane si ; (c) the implementation
of 1–3 DSL for the example in (b), where the points within Si are sorted according to i-th dimension. The path
of insertion for the newly projected point is highlighted in red.

when a new unvisited point q is visited by s1. Hence, some older points on AFi might be
removed, as shown in Fig. 3(b), where the point pi = 5.2 is being removed.

The points are ordered on insertion into the AFi in ascending order, by the i-th dimen-
sion. The AF is implemented as a skip list – a self-balanced data structure, introduced by
Pugh (1990). The skip list has the same time complexity as a self-balanced tree (e.g. red-
black tree) but, in practice, it has turned out to be considerably faster. The points inside
the skip list are stored in a sorted single-linked list at the bottom (considered as level 1),
and are accessible from the higher levels’ linked lists. The number of levels is defined by
the height h. The skip list used by SHCA is a deterministic skip list (DSL), proposed by
Munro et al. (1992). The DSL used in SHCA consists of doubly-linked lists that is partic-
ularly efficient for the range search operation in AF, where the points within the vicinity
of the newly visited point inside subspace I have to be found (e.g. similarly as applied for
the fast nearest neighbour search in R2, Zadravec et al., 2008). The notion of A–B DSL
defines that the skip list should have a gap of size [A,B]) between the elements in the list
at a level higher than 1. According to Munro et al. (1992) the suitable values are A = 1

and B = 3. An example of AF structure using 1–3 DSL is shown in Fig. 3(c), where the
path of the insertion for the newly projected point pi = 4.8 is highlighted.
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Fig. 4. Illustrative example in R3 of undesirable scenarios when using (a) too small distance parameter d , where
the black points are not clustered, or (b) too big d ; (c) the XY orthogonal projection of a cross section through
the middle of the data; (d) the dataset inside a 23-tree; (e) the same cross section as in (c), together with the
23-tree partitions and their bounding spheres; (f) the obtained result of SHCA using the dynamic model.

3.2. 2N -Tree Dynamic Model

If the distance threshold parameter d is constant throughout the entire clustering pro-
cess, then clusters with arbitrary densities that are not well-separated will remain unde-
tected. Such a static model is a major weakness of most distance-based clustering algo-
rithms, and was addressed by Karypis et al. (1999) who proposed a dynamic model for
the CHAMELEON clustering algorithm. Clusters may be undetected, because the prox-
imity of e.g. two clusters are smaller than the proximity of the neighbouring points within
one cluster. Such clusters are not well-separated, and are impossible to find with a cluster-
ing method using a static model. Figures 4(a), 4(b) illustrates a characteristic example of
nested clusters. The clearly distinguishable smaller cluster is placed inside a larger cluster.
The distance between the exact neighbouring points of the larger cluster (d3) is greater
than the distance of the neighbouring points in the smaller cluster (d2). The distance be-
tween the two clusters (d1) is greater than d2 and smaller than d3 (see Fig. 4(c)). When d

is small enough to detect the smaller cluster (d > d2 ∧d < d1), the larger cluster cannot be
detected (see Fig. 4(a)). If d is large enough to detect the larger cluster (d > d3 ∧ d > d1),
then the smaller cluster is treated as being part of the larger cluster (see Fig. 4(b)). Without
a dynamic model, a distance-based clustering algorithm will be unable to separate the two
desired clusters.

A new distance-based dynamic model is proposed to be used with the SHCA, which
enables adaption to the visited points together with the sweep-hyperplane movement. The
dynamic model is based on the hierarchical space partitioning. It uses an unbalanced
2N -tree (also denoted hyperoctree in Yau and Srihari, 1983) for N -dimensional spatial
data partitioning. A 2N -tree simply subdivides the space into maximum of 2N equally
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sized and separated subspaces (i.e. hypercubes), called partitions, which are further re-
cursively subdivided. 2N -tree represents a generalisation of quadtree (22-tree) and octree
(23-tree) data structures. 2N -tree is efficient for separating dense regions, because the dis-
tances between the points reflect the density structures (Yousri et al., 2009). The 2N -tree is
constructed before SHCA is performed. The SHCA input parametre changes from d to the
depth of the 2N -tree data structure, which can be accomplished by spatial division until
the tree’s depth is the same as the input threshold α, or by stopping the division, when the
partition contains fewer points than the input threshold β . SHCA considers both thresh-
olds for greater flexibility. The quality of the clustering then depends on parameters α

and β . Generally, less divisions of the 2N -tree (i.e. using low α and high β) enable SHCA
to find larger clusters. In contrast, more divisions of 2N -tree yield more smaller clusters.
Of course, this also highly depends on the distribution of the points, and the underlying
clusters’ densities.

In this way, the densities of the points can be approximated by estimating the depth of
the tree. Hence the densest clusters are encapsulated within the partitions at the lowest lev-
els of the 2N -tree hierarchy. If considering the L2-norm, the distance parameter d is then
dynamically determined by the bounding hypersphere of the considered partition. The
bounding hypersphere’s diameter changes d for each visited point, hence the subspace I

is variably sized around each point. Each point p located in partition P has its own distance
parameter p.d = 2rP , p ∈ P ∧p ∈ I , where rP is the radius of P ’s boundinghypersphere.
Due to the approximation of the clusters’ densities in a 2N -tree, points belonging to the
same cluster may be located within the spatial partitions at different tree levels. In order to
solve this, the smallest distance parameter is considered from the set of the neighbouring
points dM = min{p.d;p ∈ I }. This also efficiently separates two relatively-close clusters
with different densities. The points assigned to the same cluster change their distance pa-
rameter to p.d = dM . This is to ensure a continuous solution for the closer neighbouring
points in different partitions. Clustering using SHCA with the dynamic model can be ob-
served in Figs. 4(d), 4(e), and 4(f), where the desired clusters are found.

3.3. Computational Complexity Analysis

At first, all points are sorted by N1 in O(n log(n)) time. The insertion of n points into
the AFs (i.e. DSLs) for each dimension is done in O(Nn log(n)) (Munro et al., 1992).
The insertion of n points into 2N -tree is realised in O(n log(n)). For the clustering of n

points in RN , SHCA using the dynamic model has a total time complexity of O((N +
2)n log(n)), which is generally expected to be O(n log(n)), since N ≪ n.

4. Experimental Results

The performance of the proposed algorithm is demonstrated on different synthetic and
real multidimensional datasets. SHCA, using the dynamic model, was evaluated by de-
tecting arbitrary, nested, and noisy clusters. The results of the proposed algorithm were
compared with the following clustering algorithms: single-linkage, k-means, DBSCAN,
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Table 1
Clustering algorithms runtimes on different datasets (C = number of known clusters, N = number of

dimensions, n = number of points).

Dataset C N n Clustering runtime [s]

SHCA Single-
linkage

k-Means DB-
SCAN

GM-EM CHAM-
ELEON

Spectral-
SHI

DS1 6 2 1512 0.065 0.036 0.019 0.125 0.112 0.145 36.214

DS2(I) 2 3 5000 0.122 0.613 0.015 1.021 0.072 1.390 610.930

DS2(II) 100 3 5000 0.116 0.596 0.791 1.031 3.685 2.824 624.356

DS3 5 3 11 260 0.835 3.552 0.126 4.247 0.373 5.655 –
Statue Lib. 5 3 106 587 162.744 – 0.626 699.443 2.453 271.767 –
Santa Barb. 28 3 2 097 152 948.189 – 100.195 – 725.832 – –
Iris 3 4 150 0.013 0.003 0.002 0.005 0.017 0.053 0.022

Shuttle 7 9 58 000 92.056 – 3.309 520.881 4.775 189.847 –
Wine 3 13 178 0.017 0.002 0.005 0.008 0.011 0.018 0.030

Gaussian Mixture with EM (GM-EM), CHAMELEON as part of the CLUTO clus-
tering toolkit (http://glaros.dtc.umn.edu/gkhome), and spectral clustering
using normalised cut (Spectral-SHI). The testing environment consisted of a desk-
top computer with Intel i7-950 (3.06 GHz), and memory capacity of 4 GB. The L2-
norm was used in SHCA as the distance metric during the experiments. Four syn-
thetic (DS1, DS2, DS3, and Santa Barbara Cluster) and five real (Statue of Liberty,
Iris, Shuttle, and Wine) datasets were used in the experiments. The real datasets val-
idate the efficiency of the algorithm in practice. DS1 consists of spirals as arbitrary
well-separated contiguous type of clusters. DS2 consists of two interwoven tori (i.e.
DS2(I)), which are constructed from smaller not well-separated clusters (i.e. DS2(II)).
DS3 presents an example of touching (i.e. not well-separated) nested spheres, where
each sphere was a cluster. The more nested a sphere is, the denser it is. The Statue
of Liberty is a publicly available spatial dataset from Microsoft’s Photosynth service
(http://photosynth.net), under the Creative Commons license. Applying clus-
tering on it can be useful for eliminating noise produced from the point-cloud con-
struction process, and for simple segmentation purposes. The Santa Barbara Cluster
is a publicly available cosmological spatial dataset of dark matter simulation, from
The Cosmic Data ArXiv (http://t8web.lanl.gov/people/heitmann). The
dataset consists of a large amount of dark matter particles. The particles have many at-
tributes, but only the position of the particles was considered. With clustering, useful
information could be extracted from the cosmological simulations, such as the largest
known structures (filaments) in the universe. From the UCI Machine Learning Reposi-
tory (http://archive.ics.uci.edu/ml) the following publicly available multi-
dimensional real datasets were used: Iris, Shuttle, and Wine.

The first experiment consisted of clustering all the considered datasets using different
algorithms, whilst evaluating their clustering speeds and accuracy. The datasets’ proper-
ties and the clustering runtime for the used algorithms are shown in Table 1. The number
of clusters for Statue of Liberty and Santa Barbara Cluster datasets was defined manually
by visual inspection.



Sweep-Hyperplane Clustering Algorithm Using Dynamic Model 573

Table 2
SHCA input parameters (α and β) for different datasets, and the average distance parameter d .

Dataset α β Average d

DS1 5 2 0.015

DS2(I) 6 25 0.031

DS2(II) 6 8 0.016

DS3 11 180 0.082

Statue Lib. 8 200 1.417

Santa Barb. 10 250 2.283

Iris 6 4 3.398

Shuttle 10 400 175.691

Wine 6 3 471.122
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Fig. 5. The increase of 2N -tree depth influence on (a) performance and (b) average d when running SHCA over
DS1, DS2, and DS3.

The user-defined input parameters for SHCA are shown in Table 2. The average
dynamically-set distance parameter d is shown for each considered dataset. The depth
of the tree impacts the runtime of the algorithm, which can be seen in Fig. 5(a). As can be
observed, the increase of the tree depth decreases the runtime, since the considered local
neighbourhoods are smaller. This is inversely proportional to the static model (e.g. single-
linkage or SHCA without dynamic model), where the increase of d would also increase
the runtime, as more points would have to be checked at once. A correlation between the
depth of the tree (defined with parameters α and β) and average d can be seen; the deeper
the tree, the smaller the average distance between the points within the obtained clusters
(see Fig. 5(b)). For the experiment in Fig. 5, the α was set to 100, whilst β was gradually
increasing (i.e. decreasing the tree depth).

The calculated accuracies for all considered datasets from the clustering algorithms
are shown in Table 3. The clustering accuracy was verified using Rand (1971), Jaccard
(1901), and Adjusted Rand (Hubert and Arabie, 1985) external cluster validation indices.
Each index is within [0,1] range, and high index’s value indicates very high pair-wise
points’ agreements between the found clusters and the real ones that are known a priori
(i.e. classes). The Rand index can be defined as the ratio of pairs of points that are correctly
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Table 3
Validation indices for different clustering algorithms used on different datasets.

Dataset SHCA Single-
linkage

k-Means DBSCAN GM-EM CHAM-
ELEON

Spectral-
SHI

Rand

DS1 1.000 1.000 0.721 1.000 0.721 1.000 0.689
DS2(I) 1.000 1.000 0.554 1.000 0.499 1.000 0.581
DS2(II) 1.000 0.509 0.984 1.000 0.983 1.000 0.980
DS3 0.976 – 0.747 0.878 0.721 0.983 –
Iris 0.878 0.775 0.878 0.878 0.941 0.870 0.354
Wine 0.728 0.359 0.717 0.674 0.932 0.725 0.363
Shuttle 0.863 – 0.623 0.861 0.678 0.861 –

Jaccard

DS1 1.000 1.000 0.088 1.000 0.088 1.000 0.102
DS2(I) 1.000 1.000 0.384 1.000 0.333 1.000 0.475
DS2(II) 1.000 0.019 0.126 1.000 0.108 1.000 0.052
DS3 0.887 – 0.399 0.397 0.377 0.919 –
Iris 0.642 0.589 0.695 0.641 0.837 0.663 0.322
Wine 0.468 0.330 0.412 0.192 0.818 0.429 0.335
Shuttle 0.812 – 0.498 0.818 0.516 0.819 –

Adjusted rand

DS1 1.000 1.000 0.003 1.000 0.003 1.000 0.002
DS2(I) 1.000 1.000 0.109 1.000 0.004 1.000 0.163
DS2(II) 1.000 0.019 0.217 1.000 0.188 1.000 0.090
DS3 0.925 – 0.417 0.512 0.381 0.947 –
Iris 0.701 0.561 0.729 0.701 0.867 0.702 0.001
Wine 0.415 0.001 0.369 0.154 0.849 0.391 0.006
Shuttle 0.679 – 0.254 0.680 0.404 0.677 –

clustered out of all possible pairs:

TP + TN

TP + FP + FN + TN
, (1)

where TP is the amount of point pairs for true positive cases (a given pair both belongs
to the same cluster as the correct real class), TN for true negatives, FP for false positives,
and FN for false negatives. Jaccard index is similarly defined, but neglects the use of TN .
The Rand index can give a relatively high expected value for any two random groups of
points. The Adjusted Rand adjusts for such scenario by reducing the expected value close
to 0, and is defined as

2(TP ∗ TN − FN ∗ FP)

(TP + FP)(FP + TN) + (TP + FN)(FN + TN)
. (2)

The larger datasets were not tested with all the algorithms due to the runtime and mem-
ory constraints, e.g. DBSCAN and CHAMELEON detect clusters of arbitrary shape in
smaller datasets, whilst due to their time complexities are inefficient for larger datasets
such as Santa Barbara Cluster. Even if a larger dataset is clustered after a longer period
of time, the tuning of the input parameters for a clustering algorithm would be tedious.
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(a) (a)

DS1 DS3DS2 (I) DS2 (II)

(b) (b)

(c) (c)

(d) (d)

(e) (e)

(f) (e)

(g) (g)

Fig. 6. Clustering results of the synthetic datasets (DS1, DS2, and DS3) using (a) SHCA, (b) single-linkage,
(c) k-means, (d) DBSCAN, (e) GM-EM, (f) CHAMELEON, and (g) Spectral-SHI clustering methods. Black
points indicate non-clustered points in (b), (d) for DS3.

Single-linkage can detect arbitrary well-separated clusters, if the distance matrix is cre-
ated in reasonable time. However, the distance matrix’s memory requirement is quadratic,
hence single-linkage is unable to handle larger datasets. K-means is the fastest algorithm;
however it does not detect clusters of arbitrary shape and density. Spectral-SHI cluster-
ing method suffers from high time complexity, and was tested only on the smaller-sized



576 N. Lukač et al.

(c)

(a) (b)

(d)

Fig. 7. Clustering larger datasets using SHCA; (a, c) raw datasets (Statue of Liberty and Santa Barbara Cluster),
and (b, d) the clustering results.

datasets. The clustering results of the DS1, DS2, and DS3 datasets using different algo-
rithms are shown in Fig. 6, whilst the results of using SHCA on larger datasets are shown
in Fig. 7.

It can be observed that SHCA was considerably faster than the CHAMELEON and
DBSCAN when providing similar results. The experiment confirmed that SHCA can suc-
cessfully detect nested clusters of arbitrary shapes, and is also highly capable of handling
larger datasets. Single-linkage was unable to find not well-separated clusters in DS2(II).
DBSCAN did not detect all the spheres in DS3, as the spheres have different densities. For
low dimensional datasets consisting of arbitrary type of clusters, the values of all three in-
dices have high values, when using SHCA or CHAMELEON. For multidimensional real
datasets, SHCA performed as well as CHAMELEON. The GM-EM clustering method
provided similar results as k-means, although more accurate in higher dimensions. The
clustering accuracies of the larger datasets were not evaluated, because the clusters’ classes
were unknown beforehand.

SHCA’s resilience to noise was tested in the second experiment. Three synthetic
datasets were used in this experiment; DS1, DS2 (II), and DS3. Randomly generated spa-
tial Gaussian noise in four different amounts was added to the datasets (see Fig. 8 for DS2
(II)). Fig. 8(b) shows the obtained result, when MinPts was set to 0, where many small
false clusters were produced. When the MinPts was set at 0.001% of the total amount of
points per dataset, the false clusters were efficiently removed as shown in Fig. 8(c). The
amount of noise present was calculated based on signal-to-noise ratio (SNR) that can be
seen in Table 4, as well the change of accuracy in SHCA. The clustering accuracy was
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(a) (b) (c)

(d) (e) (f)

Fig. 8. (a) example of a noisy dataset DS2 (II) with SNR = 1 : 4; (b) SHCA clustering of (a) using MinPts = 0;
(c) SHCA clustering of (a) using MinPts = 0.001n; (d) an example DS2 with SNR = 1 : 8; (e) SHCA clustering
of d) using MinPts = 0; (f) SHCA clustering of d) using MinPts = 0.001n.

Table 4
Accuracy of SHCA for synthetic datasets with the inclusion of different amounts of noise.

SNR 1:2 1:4 1:6 1:8

Rand

DS1 0.971 0.965 0.948 0.947
DS2(II) 0.932 0.904 0.899 0.902
DS3 0.739 0.640 0.607 0.601

Jaccard

DS1 0.955 0.928 0.932 0.935
DS2(II) 0.862 0.864 0.874 0.886
DS3 0.701 0.545 0.408 0.568

Adjusted rand

DS1 0.937 0.930 0.867 0.845
DS2(II) 0.863 0.788 0.732 0.670
DS3 0.350 0.214 0.203 0.175

evaluated by comparing the detected noisy clusters to the predetermined ones using the
same indices as in the first experiment. This experiment confirmed that SHCA can de-
tect clusters reasonably well within noisy environments even when the amount of noise
is eight times greater than the original data. The worst recovery of the original clusters
occurred in noisy DS3, which was probably because the outer spheres with low density
were naturally absorbed into the noise of higher density.

5. Conclusion

A new distance-based agglomerative hierarchical clustering algorithm was proposed
based on the sweeping paradigm. The SHCA uses sweep-hyperplanes to incrementally
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find the ANN of each point in the dataset. This was performed efficiently with advanc-
ing fronts, implemented as deterministic skip-lists. SHCA clustering was combined with
newly proposed dynamic model, based on hierarchical space division using 2N -tree, in or-
der to detect arbitrary clusters. SHCA requires two input parameters that define the 2N -tree
depth, whilst the number of final clusters does not need to be known a priori. Optionally,
MinPts parameter can be used to control the robustness to noise. The experimental results
demonstrated that SHCA with the dynamic model provides clustering results in reason-
able time, with comparable quality to the clustering methods capable of detecting arbitrary
type of clusters, even with a high presence of noise.
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Naujas hiperplokštuma pagrįstas klasterizavimo algoritmas
naudojant dinaminį modelį

Niko Lukač, Borut Žalik, Krista Rizman Žalik

Klasterizavimas – vienas iš populiariausių neprižiūrimojo mokymosi metodų, kurio tikslas atrasti
„užslėptas“ struktūras duomenyse. Šiame straipsnyje aprašomas atstumu pagrįstas klasterizavimo
algoritmas, kuriame artimiausio kaimyno paieškai naudojamos hiperplokštumos. Naujas, atstumu
pagrįstas dinaminis modelis, praplečia SHCA algoritmo galimybes. Atlikti eksperimentiniai tyri-
mai su realiomis ir dirbtinai sugeneruotomis duomenų aibėmis, demonstruoja pasiūlyto algoritmo
pranašumą ir efektyvumą.


