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Abstract. With respect to interval-valued hesitant fuzzy multi-attribute decision making, this study
first presents a new ranking method for interval-valued hesitant fuzzy elements. In order to obtain
the comprehensive values of alternatives, two induced generalized interval-valued hesitant fuzzy
hybrid operators based on the Shapley function are defined, which globally consider the importance
of elements and their ordered positions as well as reflect the interactions between them. If the weight
information is incompletely known, models for the optimal weight vectors on the attribute set and
on the ordered set are respectively established. Furthermore, an approach to interval-valued hesitant
fuzzy multi-attribute decision making with incomplete weight information and interactive charac-
teristics is developed. Finally, an illustrative example is provided to show the concrete application
of the proposed procedure.

Key words: multi-attribute decision making, interval-valued hesitant fuzzy set, hybrid operator,
Shapley function.

1. Introduction

Multi-attribute decision making is one of the most common human activities (Balezen-
tis et al., 2008; Chakraborty and Zavadskas, 2014; Hasheni et al., 2014; Staujkic et al.,
2012, 2014; Zeng et al., 2013). As Torra (2010) noted, when the experts make a de-
cision, they are usually hesitant and irresolute for one thing or another which makes it
difficult to reach a final agreement. Consequently, the difficulty of establishing the mem-
bership degree is not because we have a margin of error, or some possibility distribution
on the possibility values, but because we have several possible values. Hesitant fuzzy
sets (HFSs) (Torra, 2010), as an extension of Zadeh’s fuzzy sets, permit the member-
ship having a set of possible values, which can well deal with inherent hesitancy and
uncertainty in the human decision-making process. In order to discuss simply, Xia and
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Xu (2011) gave the concept of hesitant fuzzy elements (HFEs). Based on the relation-
ship between HFEs and Atanassov’s intuitionistic fuzzy values (AIFVs) (Atanassov, 1986;
Atanassov and Gargov, 1989), Xia and Xu (2011) defined some operations on HFEs. The
aggregation operators on HFSs are studied in the literature (Wei, 2012; Xia and Xu, 2011;
Xia et al., 2013; Zhu et al., 2012a). In order to deal with the situation where the ele-
ments in a set are correlative, some Choquet integral operators are defined (Meng et al.,
2013a, 2014a, 2014b; Meng and Tang, 2013; Meng and Zhang, 2014; Wei et al., 2012a,
2012b; Yu et al., 2011; Zhu et al., 2012a). More researches about HFSs can be found
in the literature (Xu and Yager, 2006; Xu and Xia, 2011a, 2011b; Zhang and Wei, 2013;
Zhu et al., 2012b).

However, in many real life situations where due to insufficiency in information avail-
ability, it may not be easy to identify exact values. Recently, Chen et al. (2013) introduced
the concept of interval-valued hesitant fuzzy sets (IVHFSs), which are characterized by
several possible interval values in [0,1] rather than real numbers. Such a generalization
further facilitates effectively representing inherent imprecision and uncertainty in the hu-
man decision-making process. By extending the operational laws on HFSs (Xia and Xu,
2011), Chen et al. (2013) defined some operational laws on IVFHSs and presented some
aggregation operators. Based on Einstein operations, Wei and Zhao (2012) defined some
interval-valued hesitant fuzzy Einstein aggregation operators, whilst Chen et al. (2012)
studied the correlation coefficients of IVFHSs and applied it to clustering analysis.

The purpose of this paper is to investigate interval-valuedhesitant fuzzy multi-attribute
decision making. A new ranking method to interval-valued hesitant fuzzy elements
(IVHFEs) is introduced, which can distinguish more situations than that given by Chen
et al. (2013). Then, two aggregation operators called the induced generalized interval-
valued hesitant fuzzy hybrid Shapley weighted averaging (IG-IVHFHSWA) operator and
the induced generalized interval-valued hesitant fuzzy hybrid Shapley geometric mean
(IG-IVHFHSGM) operator are defined, which can be seen as an extension of some oper-
ators based on additive measures. In order to simplify the complexity of solving a fuzzy
measure, we further define the induced generalized interval-valued hesitant fuzzy hybrid
λ-Shapley weighted averaging (IG-IVHFHλSWA) operator and the induced generalized
interval-valued hesitant fuzzy hybrid λ-Shapley geometric mean (IG-IVHFHλSGM) op-
erator. In many practical situations, because of various reasons, such as time pressure and
the expert’s limited expertise about the problem domain, the weight information is usu-
ally incompletely known. Based on the Shapley function, models for the optimal weight
vectors on the attribute set and on the ordered set are established, respectively. Then, an
approach to interval-valued hesitant fuzzy multi-attribute decision making with incom-
plete weight information and interactive characteristics is developed. In order to do these,
the rest parts of this paper are organized as follows:

In Section 2, some basic concepts related to IVHFSs and some interval-valued hesi-
tant fuzzy aggregation operators are briefly reviewed. In Section 3, the IG-IVHFHSWA
and IG-IVHFHSGM operators are defined. Meanwhile, some important cases are exam-
ined. In order to reduce the complexity of solving a fuzzy measure, we further define
the IG-IVHFHλSWA and IG-IVHFHλSGM operators. In Section 4, we first establish
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models for the optimal weight vectors on the attribute set and on the ordered set. Then, an
approach to interval-valued hesitant fuzzy multi-attribute decision making is developed,
which considers the interactions between attributes and their ordered positions. In Sec-
tion 5, an illustrative example is provided to show the effectiveness and practicality of the
developed procedure.

2. Some Basic Concepts

2.1. Interval-Valued Hesitant Fuzzy Sets

In order to deal with the situation where the membership degree of an element has sev-
eral possible values, Torra (2010) introduced the concept of hesitant fuzzy sets. Recently,
Chen et al. (2013) further presented the concept of interval-valued hesitant fuzzy sets.
Such a generalization further facilitates effectively representing inherent imprecision and
uncertainty in the human decision-making process.

Definition 1. (See Chen et al., 2013.) Let X = {x1, x2, . . . , xn} be a finite set, an interval-
valued hesitant fuzzy set (IVHFS) Ā in X is in terms of a function that when applied to X

returns a subset of D[0,1], denoted by

Ā =
{〈

xi, h̄Ā(xi)
〉 ∣

∣xi ∈ X
}

,

where h̄Ā(xi) is a set of all possible interval-valued membership degrees of the element
xi ∈ X to the set Ā with D[0,1] being the set of all closed subintervals in [0,1]. For con-
venience, Chen et al. (2013) called h̄ = h̄Ā(xi) an interval-valued hesitant fuzzy element
(IVHFE) and H̄ the set of all IVHFEs.

If all possible interval-valued membership degrees of each element xi ∈ X degenerate
to real numbers, then we get a HFS given by Torra (2010).

Similar to the operations on HFEs (Xia and Xu, 2011), Chen et al. (2013) defined the
following operational laws on IVHFEs. Let h, h1 and h2 be any three IVHFEs in H̄ , then

(1) h̄κ =
⋃

r̄=[r l ,ru]∈h̄{[r
l κ , ruκ ]}, κ > 0,

(2) κh̄ =
⋃

r̄=[r l ,ru]∈h̄{[1 − (1 − r l )κ ,1 − (1 − ru)κ ]}, κ > 0,

(3) h̄1 ⊕ h̄2 =
⋃

r̄1=[r l
1
,ru

1
]∈h̄1,r̄2=[r l

2
,ru

2
]∈h̄2

{[r l
1
+ r l

2
− r l

1
r l

2
, ru

1
+ ru

2
− ru

1
ru

2
]},

(4) h̄1 ⊗ h̄2 =
⋃

r̄1=[r l
1
,ru

1
]∈h̄1,r̄2=[r l

2
,ru

2
]∈h̄2

{[r l
1
r l

2
, ru

1
ru

2
]}.

2.2. Two Generalized Interval-Valued Hesitant Fuzzy Hybrid Operators

As we know, there are mainly three kinds of aggregation operators: the weighted average
operator (Merigó, 2012; Torra, 1997; Xu and Yager, 2006; Zhang and Liu, 2010), the or-
dered weighted average operator (Chiclana et al., 2000; Merigó and Gil-Lafuente, 2011;
Merigó and Wei, 2011; Wei et al., 2012a, 2012b; Yager, 1988; Zeng et al., 2012;
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Zhou and Chen, 2014) and the hybrid aggregation operator (Xu, 2002; Xu and Da, 2003a,
2003b). These aggregation operators are all based on the assumption that the elements in
a set are independent. The weighted average operator only considers the importance of
elements, while the ordered weighted average operator only gives the importance of their
ordered positions. Since the hybrid aggregation operator reflects these two aspects, many
researchers dedicate aggregation to the study of the hybrid operator (Lin and Jiang, 2014;
Meng et al., 2013b, 2014c, 2014d; Wei et al., 2012a, 2012b; Xu, 2004a, 2004b; Zhou and
Chen, 2011).

Let h̄1, h̄2, . . . , h̄n be a collection of IVHFEs, let w = (w1,w2, . . . ,wn)
T be the weight

vector on {h̄i}i=1,2,...,n with wi ∈ [0,1],
∑n

i=1
wi = 1, and let ω = (ω1,ω2, . . . ,ωn) be the

associated weight vector on the ordered set N = {1,2, . . . , n} with
∑n

i=1
ωi = 1, ωi > 0.

Similar to the hybrid aggregation operators (Xu, 2002; Xu and Da, 2003a, 2003b; Zhou
and Chen, 2011), Chen et al. (2013) defined the following generalized interval-valued
hesitant fuzzy hybrid operators:

(1) The generalized interval-valued hesitant fuzzy hybrid averaging (GIVHFHA) ope-
rator

GIVHFHA(h̄1, h̄2, . . . , h̄n)

=

( n
⊕

j=1

ωj z̄
κ
(j)

)1/κ

=
⋃

ᾱ(1)∈z̄(1),ᾱ(2)∈z̄(2),...,ᾱ(n)∈z̄(n)

[(

1 −

n
∏

j=1

(

1 −
(

αl
(j)

)κ)ωj

)1/κ

,

(

1 −

n
∏

j=1

(

1 −
(

αu
(j)

)κ)ωj

)1/κ]

,

where κ > 0, (·) is a permutation on the weighted IVHFEs nwi h̄i (i = 1,2, . . . , n) with
z̄(j) = nw(j)h̄(j) being the j th largest value of nwi h̄i (i = 1,2, . . . , n), and n is the bal-
ancing coefficient.

(2) The generalized interval-valued hesitant fuzzy hybrid geometric (GIVHFHG) ope-
rator

GIVHFHG(h̄1, h̄2, . . . , h̄n)

=
1

κ

(

n
⊗

j=1

(

κz̄(j)

)ωj

)

=
⋃

ᾱ(1)∈z̄(1),ᾱ(2)∈z̄(2),...,ᾱ(n)

∈ z̄(n)

[

1 −

(

1 −

n
∏

j=1

(

1 −
(

1 − αl
(j)

)κ)ωj

)1/κ

,

1 −

(

1 −

n
∏

j=1

(

1 −
(

1 − αu
(j)

)κ)ωj

)1/κ]

,
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where κ > 0, (·) is a permutation on the weighted IVHFEs h̄
nwi

i (i = 1,2, . . . , n) with

z̄(j) = h̄
nw(j)

(j) being the j th largest value of h̄
nwi

i (i = 1,2, . . . , n), and n is the balancing
coefficient.

Remark 1. If wi = 1/n (i = 1,2, . . . , n), then the GIVHFHA operator degenerates to the
interval-valued hesitant fuzzy ordered weighted averaging (IVHFOWA) operator (Chen
et al., 2013), and the GIVHFHG operator degenerates to interval-valued hesitant fuzzy
ordered weighted geometric (IVHFOWG) operator (Chen et al., 2013). However, the
GIVHFHA and GIVHFHG operators are both based on the assumption that the elements
in a set are independent.

3. Some New Interval-Valued Hesitant Fuzzy Hybrid Aggregation Operators

In some situations, the assumption that the elements in a set are independent does not
hold. We give the following example: “We are to evaluate a set of different brands of cars
in relation to three subjects: {security, service, price}, we want to give more importance
to security than to service or price, but on the other hand we want to give some advantage
to cars that are good in security and in any of service and price”. In order to deal with the
situations where the elements in a set are correlative and their importance is different, the
fuzzy measure introduced by Sugeno (1974) seems to well cope with this issue. First, we
introduce an improvement ranking method to IVHFEs.

3.1. A New Ranking Method to IVHFEs

Some basic operations on interval numbers, let ā = [al, au] and b̄ = [bl, bu] be any two
interval numbers with al 6 au, bl 6 bu and al, bl > 0, then

(i) ā + b̄ = [al + bl, au + bu],
(ii) κā = [κal, κau], κ > 0,
(iii) āκ = [(al)

κ
, (au)κ ], κ > 0.

Let ā = [al, au] and b̄ = [bl, bu] be any two interval numbers, their order relationship
is given by the following possible degree formula (Xu and Da, 2003a, 2003b):

p(ā > b̄) = max

{

1 − max

(

bu − al

d(ā) + d(b̄)
0,

)

,0

}

. (1)

If 0 6 p(ā > b̄) < 0.5, then ā < b̄; if p(ā > b̄) = 0.5, then ā = b̄; if 0.5 < p (ā > b̄)6 1,
then ā > b̄.

Similar to the score function of HFEs (Xia and Xu, 2011), Chen et al. (2013) gave the
following definition for the score function of IVHFEs

Definition 2. (See Chen et al., 2013.) For an IVHFE h̄, S(h̄) =
∑

r̄=[r l,ru]∈h̄[
r l

#h̄
, ru

#h̄
] is

called the score function of h̄ with #h̄ being the number of the interval values in h̄, and
S(h̄) is an interval value in [0,1].
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Based on above possible degree formula on interval numbers, Chen et al. (2013) gave
the following order relationship between IVHFEs. Let h̄1 and h̄2 be any two IVHFEs, if
S(h̄1) > S(h̄2), then h̄1 > h̄2; if S(h̄1) = S(h̄2), then h̄1 = h̄2.

In some cases, the score function fails to distinguish between two distinct IVHFEs.
For example, let h̄1 = {[0.1,0.8], [0.3,0.6]} and h̄2 = {[0.2,0.3], [0.6,0.7]}, then their
scores are [0.2,0.7] and [0.4,0.5]. From Eq. (1), it has p(S(h̄1) > S(h̄2)) = p(S(h̄2) >

S(h̄1)) = 0.5, therefore h̄1 = h̄2. But they are obviously different. In order to increase the
identification of IVHFEs, we introduce an improvement method. First, we introduce the
averaging deviation function, for any IVHFE h̄, expressed by

D(h̄) =
1

#h̄

∑

r̄=[r l ,ru]∈h̄

((

r l − S(h̄)l
)2

+
(

ru − S(h̄)u
)2)

, (2)

where S(h̄) = [S(h̄)
l
, S(h̄)

u
] is the score function of h̄, #h̄ is the number of the interval

values in h̄. For any two IVHFEs h̄1 and h̄2, their order relationship is defined by

If S(h̄1) < S(h̄2), then h̄1 < h̄2.

If S(h̄1) = S(h̄2), then

{

D(h̄1) > D(h̄2), h̄1 < h̄2,

D(h̄1) = D(h̄2), h̄1 = h̄2

where S(h̄1) < S(h̄2) if and only if (S(h̄1)
l + S(h̄1)

u)/2 < (S(h̄2)
l + S(h̄2)

u)/2 or
(S(h̄1)

l + S(h̄1)
u)/2 = (S(h̄2)

l + S(h̄2)
u)/2 and (S(h̄1)

l − S(h̄1)
u)/2 > (S(h̄2)

l −

S(h̄2)
u)/2, and S(h̄1) = S(h̄2) if and only if (S(h̄1)

l +S(h̄1)
u)/2 = (S(h̄2)

l +S(h̄2)
u)/2

and (S(h̄1)
l − S(h̄1)

u)/2 = (S(h̄2)
l − S(h̄2)

u)/2.
In the above example, if we adopt the improvement method to rank h̄1 = {[0.1,0.8],

[0.3,0.6]} and h̄2 = {[0.2,0.3], [0.6,0.7]}, then h̄1 < h̄2 for S(h̄1) < S(h̄2). Furthermore,
if h̄1 = {[0.4,0.5]} and h̄2 = {[0.2,0.3], [0.6,0.7]}, then h̄1 > h̄2 for S(h̄1) = S(h̄2) and
D(h̄1) < D(h̄2).

3.2. The IG-IVHFHSWA and IG-IVHFHSGM Operators

In a similar way to Meng et al. (2013b, 2014c, 2014d), the section defines two interval-
valued hesitant fuzzy aggregation operators using the Shapley value with respect to fuzzy
measures, which consider the importance of elements and their ordered positions as well
as reflect the interactions between them. If there are no interactions, then they respectively
degenerate to the hybrid weighted aggregation operators based on additive measures.

Definition 3. (See Sugeno, 1974.) A fuzzy measure on finite set N = {1,2, . . . , n} is a
set function µ : P(N) → [0,1] satisfying

(1) µ(∅) = 0, µ(N) = 1,
(2) If A,B ∈ P(N) and A ⊆ B , then µ(A)6 µ(B),

where P(N) is the power set of N .
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In game theory, the Shapley function (Shapley, 1953) provides us a reasonable pay-
off index, which satisfies some important properties, such as efficiency, symmetry, and
additivity, expressed by

ϕi(µ,N) =
∑

S⊆N\i

(n − s − 1)!s!

n!

(

µ(S ∪ i) − µ(S)
)

∀i ∈ N, (3)

where µ is a fuzzy measure on finite set N , s and n denote the cardinalities of S and N ,
respectively.

From the definition of fuzzy measures, it is not difficult to know that ϕi(µ,N) > 0

for any element i ∈ N , and
∑n

i=1
ϕi(µ,N) = 1 by efficiency, which means that

{ϕi(µ,N)}i∈N is a weight vector. Furthermore, it is an expect value of the marginal con-
tributions between the element i and any subset in N \ i . When there are correlations
between elements in a set, we define the following operators.

Definition 4. An IG-IVHFHSWA operator of dimension n is a mapping IG-IVHFHSWA:
H̄ n → H̄ defined on the set of second arguments of two tuples 〈u1, h̄1〉, 〈u2, h̄2〉, . . . ,

〈un, h̄n〉 with a set of order-inducing variables ui (i = 1,2, . . . , n) and a parameter κ such
that κ ∈ (0,+∞), denoted by

IG-IVHFHSWAµ,v

(

〈u1, h̄1〉, 〈u2, h̄2〉, . . . , 〈un, h̄n〉
)

=

(

n
⊕

j=1

ϕj (µ,N)z̄κ
(j)

)1/κ

,

where (·) is a permutation on ui (i = 1,2, . . . , n) with u(j) being the j th largest value
of ui (i = 1,2, . . . , n), z̄i = nϕh̄i

(v, Q̄)h̄i with ϕh̄i
(v, Q̄) being the Shapley value with

respect to the fuzzy measure v on Q̄ = {h̄j }j=1,...,n for h̄j (j = 1,2, . . . , n), ϕj (µ,N) is
the Shapley value with respect to the fuzzy measure µ on the ordered set N = {1,2, . . . , n}

for the j th position, and n is the balancing coefficient.

Theorem 1. Let 〈u1, h̄1〉, 〈u2, h̄2〉, . . . , 〈un, h̄n〉 be a set of two tuples with a set of order-

inducing variables ui (i = 1,2, . . . , n) and barhi(i = 1,2, . . . , n) being a collection of

IVHFEs in H̄ , let µ be a fuzzy measure on the order set N = {1,2, . . . , n}, and let v be the

fuzzy measure on Q̄ = {h̄j }j=1,...,n. Then their aggregated value using the IG-IVHFHSWA

operator is also an IVHFE, denoted by

IG-IVHFHSWAµ,v

(

〈u1, h̄1〉, 〈u2, h̄2〉, . . . , 〈un, h̄n〉
)

=
⋃

r̄(1)∈h̄(1),r̄(2)∈h̄(2),...,r̄(n)∈h̄(n)

[(

1 −

n
∏

j=1

(

1 −
(

1 −
(

1 − r l
(j)

)nϕh̄(j)
(v,Q̄))κ)ϕj (µ,N)

)1/κ

(

1 −

n
∏

j=1

(

1 −
(

1 −
(

1 − ru
(j)

)nϕh̄(j)
(v,Q̄))κ)ϕj (µ,N)

)1/κ]

.
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From the operational laws on IVHFEs (Chen et al., 2013), it is not difficult to get the
conclusion.

Remark 2. If µ and v are both additive, then the IG-IVHFHSWA operator degenerates
to the induced generalized interval-valued hesitant fuzzy hybrid averaging (IG-IVHFHA)
operator. Furthermore, if ui = uj for all i, j = 1,2, . . . , n with i 6= j , then we get the
GIVHFHA operator (Chen et al., 2013).

In a similar way to the IG-IVHFHSWA operator, we introduce the IG-IVHFHSGM
operator as follows:

Definition 5. An IG-IVHFHSGM operator of dimension n is a mapping IG-IVHFHSGM:
H̄ n → H̄ defined on the set of second arguments of two tuples 〈u1, h̄1〉, 〈u2, h̄2〉, . . . ,

〈un, h̄n〉 with a set of order-inducing variables ui (i = 1,2, . . . , n) and a parameter κ such
that κ ∈ (0,+∞), denoted by

IG-IVHFHSGMµ,v

(

〈u1, h̄1〉, 〈u2, h̄2〉, . . . , 〈un, h̄n〉
)

=
1

κ

(

n
⊗

j=1

(

κz̄(j)

)ϕj (µ,N)

)

,

where (·) is a permutation on ui (i = 1,2, . . . , n) with u(j) being the j th largest value of ui

(i = 1,2, . . . , n), z̄i = h̄
nϕh̄i

(v,Q̄)

i with ϕh̄i
(v, Q̄) being the Shapley value with respect to

the fuzzy measure v on Q̄ = {h̄j }j=1,...,n for h̄j (j = 1,2, . . . , n), ϕj (µ,N) is the Shapley
value with respect to the fuzzy measure µ on the ordered set N = {1,2, . . . , n} for the j th
position, and n is the balancing coefficient.

Theorem 2. Let 〈u1, h̄1〉, 〈u2, h̄2〉, . . . , 〈un, h̄n〉 be a set of two tuples with a set of order-

inducing variables ui (i = 1,2, . . . , n) and h̄i (i = 1,2, . . . , n) being a collection of

IVHFEs in H̄ , let µ be a fuzzy measure on the order set N = {1,2, . . . , n}, and let v be the

fuzzy measure on Q̄ = {h̄j }j=1,...,n. Then their aggregated value using the IG-IVHFHSG

operator is also an IVHFE, denoted by

IG-IVHFHSGMµ,v

(

〈u1, h̄1〉, 〈u2, h̄2〉, . . . , 〈un, h̄n〉
)

=
⋃

r̄(1)∈h̄(1),r̄(2)∈h̄(2),...,r̄(n)∈h̄(n)

[

1 −

(

1 −

n
∏

j=1

(

1 −
(

1 −
(

r l
(j)

)nϕh̄(j)
(v,Q̄))κ)ϕj (µ,N)

)1/κ

,

1 −

(

1 −

n
∏

j=1

(

1 −
(

1 −
(

ru
(j)

)nϕh̄(j)
(v,Q̄))κ)ϕj (µ,N)

)1/κ]

.

Remark 3. If µ and v are both additive, then the IG-IVHFHSGM operator degenerates
to the induced generalized interval-valued hesitant fuzzy hybrid geometric (IG-IVHFHG)
operator. Furthermore, if ui = uj for all i, j = 1,2, . . . , n with i 6= j , then we get the
GIVHFHG operator (Chen et al., 2013).
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From Definitions 4 and 5, we know that the IG-IVHFHSWA and IG-IVHFHSGM
operators do not only consider the importance of elements and their ordered positions but
also reflect the interactions between them. However, the fuzzy measure is defined on the
power set, which makes the problem exponentially complex. Thus, it is not easy to obtain
a fuzzy measure on a set when it is large. In order to reflect the interactions between
elements and simplify the complexity of solving a fuzzy measure, we further define two
interval-valued hesitant fuzzy hybrid aggregation operators using the λ-fuzzy measures
(Sugeno, 1974).

For a finite set N , the λ fuzzy measure gλ can be equivalently expressed by

gλ(A) =

{

1

λ

(∏

i∈A[1 + λgλ(i)] − 1
)

if λ 6= 0,
∑

i∈A gλ(i) if λ = 0,
(4)

where λ > −1, and A,B ⊆ N with A ∩ B = ∅ .
From µ(N) = 1, we know that λ is determined by
∏

i∈N

[

1 + λgλ(i)
]

= 1 + λ. (5)

So when each gλ(i) is given, we can obtain the value of λ. From Eq. (4), for the set N

with n elements we only need n values to get the fuzzy measure on N . Furthermore, if
∑n

i=1
gλ(i) = 1, then λ = 0.

Next, we introduce an equivalent form of the Shapley function with respect to the
λ-fuzzy measure, which will simplify the calculation of the Shapley value.

Theorem 3. Let gλ : P(N) → [0,1] be a λ-fuzzy measure, and ϕ(gλ,N) be the Shapley

function as given in Eq. (3) for gλ. Then,

ϕi(gλ,N) =
∑

i∈S⊆N

1

s

∏

j∈S

λs−1gλ(j), ∀i ∈ N. (6)

Proof. From Eqs. (3) and (4), it has

ϕi(gλ,N) =
∑

S⊆N\i

(n − s − 1)!s!

n!

(

gλ(S ∪ i) − gλ(S)
)

=
∑

S⊆N\i

(n − s − 1)!s!

n!
gλ(i)

∏

j∈S

(

1 + λgλ(j)
)

for any i ∈ N. (7)

When n = 1,2, by Eq. (7) one easily gets Eq. (6). Hypothesis, it has Eq. (6) with n = k,
i.e.,

ϕi(gλ,N) =
∑

i∈S⊆N

1

s
λs−1

∏

j∈S

gλ(j), ∀i ∈ N, (8)

where s is the cardinality of S.
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In the following, we prove Eq. (8), where n = k+1. Without loss of generality, suppose
that N = {i, j1, j2, . . . , jk}. By Eq. (7), it gets

ϕi(gλ,N) =
∑

S⊆N\i

(n − s − 1)!s!

n!
gλ(i)

∏

j∈S

(

1 + λgλ(j)
)

=
∑

S⊆N\i

(k − s)!s!

(k + 1)!
gλ(i)

∏

j∈S

(

1 + λgλ(j)
)

=
∑

S⊆N\{i,j1}

(k − s)!s!

(k + 1)!
gλ(i)

∏

j∈S

(

1 + λgλ(j)
)

+
∑

S⊆N\{i,j1}

(k − s − 1)!(s + 1)!

(k + 1)!
gλ(i)

∏

j∈S

(

1 + λgλ(j)
)(

1 + λgλ(j1)
)

=
∑

S⊆N\{i,j1}

(k − s)!s!

(k + 1)!
gλ(i)

∏

j∈S

(

1 + λgλ(j)
)

+
∑

S⊆N\{i,j1}

(k − s − 1)!(s + 1)!

(k + 1)!

×

(

gλ(i)
∏

j∈S

(

1 + λgλ(j)
)

+ λgλ(i)gλ(j1)
∏

j∈S

(

1 + λgλ(j)
)

)

=
∑

S⊆N\{i,j1}

(

(k − s)!s!

(k + 1)!
+

(k − s − 1)!(s + 1)!

(k + 1)!

)

gλ(i)
∏

j∈S

(

1 + λgλ(j)
)

+
∑

S⊆N\{i,j1}

(k − s − 1)!(s + 1)!

(k + 1)!
λgλ(i)gλ(j1)

∏

j∈S

(

1 + λgλ(j)
)

=
∑

S⊆N\{i,j1}

(k − s − 1)!s!

k!
gλ(i)

∏

j∈S

(

1 + λgλ(j)
)

+
∑

S⊆N\{i,j1}

(k − s − 1)!(s + 1)!

(k + 1)!
λgλ(i)gλ(j1)

∏

j∈S

(

1 + λgλ(j)
)

.

Let

ϕ′
i(gλ,N) =

∑

S⊆N\{i,j1}

(k − s − 1)!s!

k!
gλ(i)

∏

j∈S

(

1 + λgλ(j)
)

(9)

and

ϕ′′
i (gλ,N) =

∑

S⊆N\{i,j1}

(k − s − 1)!(s + 1)!

(k + 1)!
λgλ(i)gλ(j1)

∏

j∈S

(

1 + λgλ(j)
)

. (10)
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For Eq. (9): from assumption, it has

ϕ′
i(gλ,N) =

∑

i∈S⊆N\{j1}

1

s
λs−1

∏

j∈S

gλ(j). (11)

For Eq. (10): let q = {i, j1}, define g′
λ(q) = gλ(i)gλ(j1) and g′

λ(A) = gλ(A) for any A ⊆

N\{i, j1}. Then, g′
λ is a λ-fuzzy measure defined on N \ {i, j1}∪q with k elements. Thus,

ϕ′′
q (g′

λ,N) =
∑

S⊆N\q

(k − s − 1)!s!

k!
λg′

λ(q)
∏

j∈S

(

1 + λg′
λ(j)

)

= λ
∑

S⊆N\q

(k − s − 1)!s!

k!
g′

λ(q)
∏

j∈S

(

1 + λg′
λ(j)

)

= λ
∑

q∈S⊆{N\{i,j1}∪q}

1

s
λs−1

∏

j∈S

g′
λ(j)

= λ
∑

{i,j1}∈S⊆{N\{i,j1}∪q}

1

s
λs−1

∏

j∈S\{i,j1}g
′
λ(j)

gλ(i)gλ(j1). (12)

By Eq. (12), it has

ϕ′′
i (gλ,N) = λ

∑

i∈S⊆N

1

s + 1
λs−1

∏

j∈S

gλ(j)gλ(j1)

=
∑

i∈S⊆N\j1

1

s + 1
λs
∏

j∈S

gλ(j)gλ(j1). (13)

From Eqs. (11), (13) and hypothesis, it has

ϕi(gλ,N) =
∑

i∈S⊆N\{j1}

1

s
λs−1

∏

j∈S

gλ(j) +
∑

i∈S⊆N\j1

1

s + 1
λs
∏

j∈S

gλ(j)gλ(j1)

=
∑

i∈S⊆N

1

s
λs−1

∏

j∈S

gλ(j), where n = k + 1.

The result is obtained by induction. �

Because of the advantage of the λ-fuzzy measure, we only need n values to get the
Shapley values of n elements.

Let 〈u1, h̄1〉, 〈u2, h̄2〉, . . . , 〈un, h̄n〉 be a set of two tuples with a set of order-inducing
variables ui (i = 1,2, . . . , n) and h̄i (i = 1,2, . . . , n) being a collection of IVHFEs in H̄ ,
let g′

λ be a λ-fuzzy measure on Q̄ = {h̄j }j=1,...,n, and let gλ be a λ-fuzzy measure on the
ordered set N = {1,2, . . . , n}.
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We define the following two operators in a similar way to the IG-IVHFHSWA and
IG-IVHFHSGM operators.

(1) The induced generalized interval-valued hesitant fuzzy hybrid λ-Shapley weighted
averaging (IG-IVHFHλSWA) operator

IG-IVHFHλSWAgλ,g′
λ

(

〈u1, h̄1〉, 〈u2, h̄2〉, . . . , 〈un, h̄n〉
)

=

(

n
⊕

j=1

ϕj (gλ,N)z̄κ
(j)

)1/κ

;

(2) The induced generalized interval-valued hesitant fuzzy hybrid λ-Shapley geomet-
ric mean (IG-IVHFHλSGM) operator

IG-IVHFHλSGMgλ,g′
λ

(

〈u1, h̄1〉, 〈u2, h̄2〉, . . . , 〈un, h̄n〉
)

=
1

κ

(

n
⊗

j=1

(κx̄(j))
ϕj (gλ,N)

)

,

where (·) is a permutation on ui (i = 1,2, . . . , n) with u(j) being the j th largest value

of ui (i = 1,2, . . . , n), z̄i = nϕh̄i
(g′

λ, Q̄)h̄i and x̄i = h̄
nϕh̄i

(g′
λ,Q̄)

i being the Shapley value

with respect to the λ-fuzzy measure gλ for h̄j (j = 1,2, . . . , n), ϕj (gλ,N) is the Shapley
value with respect to the λ-fuzzy measure gλ for the j th position, and n is the balancing
coefficient.

4. An Approach to Interval-Valued Hesitant Fuzzy Multi-Attribute Decision

Making

If the weight vectors on the attribute set and on the ordered set are exactly known, then
we can use the associated aggregation operator to get the comprehensive values of alter-
natives. However, in many situations, because of various reasons, such as time pressure
and the expert’s limited expertise about the problem domain, we usually have incomplete
information about the weight vectors. In order to deal with this situation, we first need to
obtain their weight vectors.

Consider a decision-making problem, let A = {a1, a2, . . . , am} be the set of alterna-
tives, and C = {c1, c2, . . . , cn} be the set of attributes. The decision makers give their
individual preferences for alternatives with respect to attributes in anonymity. If the de-
cision makers provide several interval values for the alternative ai with respect to the
attribute cj , this value can be considered as an IVHFE h̄ij . By H̄ = (h̄ij )m×n, we denote
the interval-valued hesitant fuzzy decision matrix given by the decision makers.
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4.1. Models for the Optimal Weight Vectors

Since the weight vector makes the comprehensive values of the alternatives the bigger the
better, if the information about the weights of attributes is partly known, we establish the
following models for the optimal weight vector on the attribute set C with respect to the
alternative ai (i = 1,2, . . . ,m):

max

n
∑

j=1

ϕcj (v,C)
(

S(h̄ij )l + S(h̄ij )u
)

/2

s.t.











v(C) = 1,

v(S) 6 v(T ) ∀S,T ⊆ C s.t. S ⊆ T ,

v(cj ) ∈ Ucj , v(cj )> 0

(14)

and

min

n
∑

j=1

ϕcj (v,C)D(h̄ij )

s.t.











v(C) = 1,

v(S) 6 v(T ) ∀S,T ⊆ C s.t. S ⊆ T ,

v(cj ) ∈ Ucj , v(cj )> 0,

(15)

where S(h̄ij ) = [S(h̄ij )l, S(h̄ij )u] is the score value as given in Definition 2, D(h̄ij ) is
the averaging deviation value defined by Eq. (2), ϕcj (v,C) is the Shapley value of the
attribute cj with v being the fuzzy measure on the attribute set C, and Ucj is the known
weight information, j = 1,2, . . . , n.

Since models (14) and (15) have the same constraints, and all alternatives are non
inferior, they can be combined to formulate the following linear programming

max

m
∑

i=1

n
∑

j=1

ϕcj (v,C)
((

S(h̄ij )l + S(h̄ij )u
)/

2 − D(h̄ij )
)

s.t.











v(C) = 1

v(S) 6 v(T ) ∀S,T ⊆ C s.t. S ⊆ T ,

v(cj ) ∈ Ucj , v(cj )> 0, j = 1,2, . . . , n.

(16)

Now, let’s consider the weight vector on the ordered set N = {1,2, . . . , n}. For each
i = 1,2, . . . ,m, reorder (S(h̄ij )

l + S(h̄ij )u)/2 − D(h̄ij ) (j = 1,2, . . . , n) with
(S(h̄i(j))

l +S(h̄i(j))
u)/2−D(h̄i(j)) being the j th largest value of (S(h̄ij )

l +S(h̄ij )u)/2−

D(h̄ij ) (j = 1,2, . . . , n). Since the optimal weight vector makes bigger comprehensive
value for each alternative preferable, we build the following model for the optimal fuzzy
measure on the ordered set N .
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max

n
∑

j=1

ϕj (µ,N)
((

S(h̄i(j))
l + S(h̄i(j))

u
)/

2 − D(h̄i(j))
)

s.t.











µ(N) = 1,

µ(S) 6µ(T ) ∀S,T ⊆ N s.t. S ⊆ T ,

µ(j) ∈ Uj , µ(j)> 0, j = 1,2, . . . , n,

(17)

where ϕj (µ,N) is the Shapley value of the j th position with µ being the fuzzy measure
on the ordered set N , and Uj is the known weight information, j = 1,2, . . . , n.

Since all alternatives are non inferior, we further get the following model for the opti-
mal fuzzy measure on the ordered set N .

max

m
∑

i=1

n
∑

j=1

ϕj (µ,N)
((

S(h̄i(j))
l + S(h̄i(j))

u
)/

2 − D(h̄i(j))
)

s.t.











µ(N) = 1,

µ(S) 6µ(T ) ∀S,T ⊆ N s.t. S ⊆ T ,

µ(j) ∈ Uj , µ(j)> 0, j = 1,2, . . . , n.

(18)

If v is a λ-fuzzy measure g′
λ on the attribute set C, and µ is a λ-fuzzy measure gλ on the

ordered set N , then we obtain the following models for the optimal weight vectors on the
attribute set C and on the ordered set N , respectively.

max

m
∑

i=1

n
∑

j=1

ϕcj (g
′
λ,C)

((

S(h̄ij )l + S(h̄ij )u
)/

2 − D(h̄ij )
)

s.t.











g′
λ(∅) = 0, g′

λ(C) = 1,

g′
λ(cj ) ∈ Ucj , j = 1,2, . . . , n,

λ > −1

(19)

and

max

m
∑

i=1

n
∑

j=1

ϕj (gλ,N)
((

S(h̄i(j))
l + S(h̄i(j))

u
)/

− D(h̄i(j))
)

s.t.











gλ(∅) = 0, gλ(C) = 1,

gλ(cj ) ∈ Uj , j = 1,2, . . . , n,

λ > −1.

(20)

Furthermore, if there is no interaction between attributes and between their order posi-
tions, then models (16) and (18) respectively degenerate to be the following programming
for the optimal weight vectors on the attribute set and on the ordered set.
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max

m
∑

i=1

n
∑

j=1

wcj

((

S(h̄ij )l + S(h̄ij )u
)/

2 − D(h̄ij )
)

s.t.

{

∑n
j=1

wcj = 1,

wcj ∈ Ucj , wcj > 0, j = 1,2, . . . , n
(21)

and

max

m
∑

i=1

n
∑

j=1

ωj

((

S(h̄i(j))
l + S(h̄i(j))

u
)/

2 − D(h̄i(j))
)

s.t.

{

∑n
j=1

ωj = 1,

ωj ∈ Uj , ωj > 0, j = 1,2, . . . , n,
(22)

where wcj = v(cj ) and ωj = µ(j) for each j = 1,2, . . . , n.

Remark 4. In the building models, we apply the elements’ Shapley values as their
weights, which globally consider the interactions between them. If there are no interac-
tions, then the elements’ Shapley values equal to their own importance. When the weight
information is completely unknown, we can also use the established models to obtain the
optimal weight vectors, which only need to delete the range of the associated element.

4.2. An Algorithm

Based on the introduced aggregation operators and the established models for the opti-
mal weight vectors, the section develops an approach to interval-valued hesitant fuzzy
multi-attribute decision making, which address the situations where elements in a set are
correlative and the weight information is not exactly known. The main decision procedure
can be described as follows:

Step 1: Suppose that there exist m alternatives A = {a1, a2, . . . , am} to be evaluated ac-
cording to n attributes C = {c1, c2, . . . , cn} to form the interval-valued hesitant
fuzzy decision matrix H̄ = (h̄ij )m×n, where h̄ij is an IVHFE for the alternative
ai with respect to the attribute cj .

Step 2: If all attributes cj (j = 1,2, . . . , n) are benefits (i.e., the bigger the better), then
the attribute values do not need transformation. Otherwise, we need to transform the
interval-valued hesitant fuzzy decision matrix H̄ = (h̄ij )m×n into H̄ ′ = (h̄′

ij )m×n,
where

h̄′
ij =

{

h̄ij for benefit attribute cj ,

h̄c
ij for cost attribute cj ,

(i = 1,2, . . . ,m; j = 1,2, . . . , n)

with h̄c
ij =

⋃

r̄∈h̄ij
[1 − ru,1 − r l].
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Table 1
Interval-valued hesitant fuzzy decision matrix.

c1 c2 c3 c4

a1 {[0.2,0.5], [0.4,0.7]} {[0.2,0.3], [0.4,0.6], [0.7,0.8]} {[0.5,0.6], [0.7,0.9]} {[0.4,0.7]}

a2 {[0.2,0.4], [0.5,0.6]} {[0.1,0.4], [0.5,0.6]} {[0.5,0.7], [0.8,0.9]} {[0.6,0.8]}

a3 {[0.3,0.5]} {[0.4,0.6]} {[0.3,0.5], [0.7,0.8]} {[0.5,0.7]}

a4 {[0.2,0.4], [0.5,0.6]} {[0.5,0.7]} {[0.6,0.7]} {[0.4,0.6], [0.8,0.9]}

Step 3: Utilize model (16) to solve the optimal fuzzy measure v on the attribute set C,
and calculate the Shapley value.

Step 4: Utilize model (18) to solve the optimal fuzzy measure µ on the ordered set N ,
and calculate the Shapley value.

Step 5: Let uj = (S(h̄ij )l + S(h̄ij )u)/2 − D(h̄ij ) (j = 1,2, . . . , n) for each i =

1,2, . . . ,m, utilize the IG-IVHFHSWA operator or the IG-IVHFHSGM opera-
tor to get the comprehensive IVHFE h̄i (i = 1,2, . . . ,m) of the alternative ai

(i = 1,2, . . . ,m).
Step 6: According to the comprehensive IVHFE h̄i (i = 1,2, . . . ,m), calculate the score

value S(h̄i) and the average deviation value D(h̄i). Then, to rank the comprehensive
IVHFE h̄i (i = 1,2, . . . ,m), and select the best alternative(s).

Step 7: End.

5. An Illustrative Example

The enterprise’s board of directors, which includes five members, is to plan the develop-
ment of large projects strategy initiatives for the following five years (adapted from Xia
and Xu, 2011). Suppose there are four possible projects ai (i = 1,2,3,4) to be evaluated.
It is necessary to compare these projects to select the most importance of them as well as
order them from the point of view of their importance, taking into account four attributes
suggested by the Balanced Scorecard methodology (it should be noted that all of them
are of the maximization type): c1: financial perspective, c2: the customer satisfaction, c3:
internal business process perspective, and c4: learning and growth perspective. In order
to avoid influencing each other, the decision makers are required to provide their prefer-
ences in anonymity and the interval-valued hesitant fuzzy decision matrix H̄ = (h̄ij )4×4

is presented in Table 1, where h̄ij {i, j = 1,2,3,4} are in the form of IVHFEs.
Assume that the weight vector on the attribute set is given by UC = {[0.1,0.3], [0.2,0.4],

[0.05,0.25], [0.25,0.45]}, and the weight vector on the ordered positions is defined by
UN = {[0.4,0.5], [0.3,0.4], [0.2,0.3], [0.1,0.2]}. To effectively solve this problem, the
proposed decision procedure is followed for determining the most desirable alternative(s).

Step 1: Since all attributes are benefits, there is on need to transform the interval-valued
hesitant fuzzy decision matrix H̄ , namely, H̄ = H̄ ′.
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Table 2
The fuzzy measure on the attribute set C .

Combination Fuzzy measure Combination Fuzzy measure Combination Fuzzy measure

{c1} 0.1 {c1, c3} 0.1 {c1, c2, c3} 0.2
{c2} 0.2 {c1, c4} 1 {c1, c2, c4} 1
{c3} 0.05 {c2, c3} 0.2 {c1, c3, c4} 1
{c4} 0.45 {c2, c4} 1 {c2, c3, c4} 1
{c1, c2} 0.2 {c3, c4} 1 {c1, c2, c3, c4} 1

Step 2: According to model (16), we get the following model for the optimal fuzzy mea-
sure on the attribute set C.

max−0.0241
(

v(c1) − v(c2, c3, c4)
)

+ 0.0082
(

v(c2) − v(c1, c3, c4)
)

− 0.0324
(

v(c3) − v(c1, c2, c4)
)

+ 0.0483
(

v(c4) − v(c1, c2, c3)
)

− 0.0079
(

v(c1, c2) − v(c3, c4)
)

− 0.0282
(

v(c1, c3) − v(c2, c4)
)

+ 0.0121
(

v(c1, c4) − v(c2, c3)
)

+ 2.1102

s.t.















v(c1, c2, c3, c4) = 1,

v(S) 6 v(T ) ∀S,T ⊆ {c1, c2, c3, c4} s.t. S ⊆ T ,

v(c1) ∈ [0.1,0.3], v(c2) ∈ [0.2,0.4],

v(c3) ∈ [0.05,0.25], v(c4) ∈ [0.25,0.45].

After solving the above model, the fuzzy measure on the attribute set C is obtained as
shown in Table 2.

According to Table 2, we get the attribute Shapley values

ϕc1
(v,C) = 0.075, ϕc2

(v,C) = 0.125,

ϕc3
(v,C) = 0.058, ϕc4

(v,C) = 0.742.

Step 3: According to model (18), we get the following model for the optimal fuzzy mea-
sure on the ordered set N .

max 0.1608
(

µ(1) − µ(2,3,4)
)

+ 0.0858
(

µ(2) − µ(1,3,4)
)

− 0.0625
(

µ(3)

− µ(1,2,4)
)

− 0.1842
(

µ(4) − µ(1,2,3)
)

+ 0.1233
(

µ(1,2) − µ(3,4)
)

+ 0.0492
(

µ(1,3) − µ(2,4)
)

− 0.0117
(

µ(1,4) − µ(2,3)
)

+ 2.1105

s.t.



















µ(1,2,3,4) = 1,

µ(S) 6 µ(T ) ∀S,T ⊆ {1,2,3,4} s.t. S ⊆ T ,

µ(1) ∈ [0.4,0.5], µ(2) ∈ [0.3,0.4],

µ(3) ∈ [0.2,0.3], µ(4) ∈ [0.1,0.2].

After solving the above model, the fuzzy measure on ordered set N is obtained as shown
in Table 3.



634 F. Meng, X. Chen

Table 3
The fuzzy measure on the attribute set N .

Combination Fuzzy measure Combination Fuzzy measure Combination Fuzzy measure

{1} 0.5 {1,3} 0.5 {1,2,3} 1
{2} 0.3 {1,4} 0.5 {1,2,4} 1
{3} 0.2 {2,3} 0.3 {1,3,4} 0.5
{4} 0.1 {2,4} 0.3 {2,3,4} 0.3
{1,2} 1 {3,4} 0.2 {1,2,3,4} 1

According to Table 3, we get the ordered position Shapley values

ϕ1(µ,N) = 0.558, ϕ2(µ,N) = 0.358,

ϕ3(µ,N) = 0.058, ϕ4(µ,N) = 0.025.

Step 4: Let uj = (S(h̄ij )l + S(h̄ij )u)/2 − D(h̄ij ) (j = 1,2,3,4) for each i = 1,2,3,4

and κ = 1, utilize the IG-IVHFHSWA operator to calculate the comprehensive values for
the alternatives, i.g., i = 1,

h̄1 = IG-IVHFHSWA
(

〈u1, h̄11〉, 〈u2, h̄12〉, 〈u3, h̄13〉, 〈u4, h̄14〉
)

=
⋃

r̄13∈h̄13,r̄14∈h̄14,r̄11∈h̄11,r̄12∈h̄12

[

1 −
(

1 − r l
13

)4ϕc3
(v,C)ϕ1(µ,N)(

1 − r l
14

)4ϕc4
(v,C)ϕ2(µ,N)

×
(

1 − r l
11

)4ϕc1
(v,C)ϕ3(µ,N)(

1 − r l
12

)4ϕc2
(v,C)ϕ4(µ,N)

,

1 −
(

1 − ru
13

)4ϕc3
(v,C)ϕ1(µ,N)(

1 − ru
14

)4ϕc4
(v,C)ϕ2(µ,N)

×
(

1 − ru
11

)4ϕc1
(v,C)ϕ3(µ,N)(

1 − ru
12

)4ϕc2
(v,C)ϕ4(µ,N)]

=
{

[0.472,0.757], [0.474,0.759], [0.475,0.759], [0.479,0.761],

[0.477,0.761], [0.481,0.763], [0.506,0.797], [0.508,0.798],

[0.509,0.799], [0.512,0.8], [0.5,0.8], [0.514,0.802]
}

.

Step 5: According to the comprehensive IVHFEs h̄i (i = 1,2,3,4,5), the score values
S(h̄i) (i = 1,2,3,4,5) are obtained as follows:

S(h̄1) = [0.493,0.780], S(h̄2) = [0.802,0.941],

S(h̄3) = [0.708,0.88], S(h̄4) = [0.670,0.809].

From S(h̄i) (i = 1,2,3,4,5), we get h̄2 > h̄3 > h̄4 > h̄1. Thus, the project a2 is the best
choice.

In the above example, we only use the IG-IVHFHSWA operator with respect to λ = 1

to make decision. If the IG-IVHFHλSWA operator is applied to calculate the comprehen-
sive values of the alternatives, then the main steps are as follows:
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Step 1: According to model (19), we obtain the following model for the optimal fuzzy
measure on the attribute set C.

max 2.038g′
λ(c1) + 2.135g′

λ(c2) + 2.013g′
λ(c3) + 2.255g′

λ(c4) + 2.087λg′
λ(c1)g

′
λ(c2)

+ 2.026λg′
λ(c1)g

′
λ(c3) + 2.147λg′

λ(c1)g
′
λ(c4) + 2.195λg′

λ(c2)g
′
λ(c3)

+ 2.134λg′
λ(c2)g

′
λ(c4) + 2.062λ2g′

λ(c1)g
′
λ(c2)g

′
λ(c3)

+ 2.143λ2g′
λ(c1)g

′
λ(c2)g

′
λ(c4) + 2.102λ2g′

λ(c1)g
′
λ(c3)g

′
λ(c4)

+ 2.134λ2g′
λ(c2)g

′
λ(c3)g

′
λ(c4) + 2.11λ3g′

λ(c1)g
′
λ(c2)g

′
λ(c3)g

′
λ(c4)

s.t.



















(1 + λg′
λ(c1))(1 + λg′

λ(c2))(1 + λg′
λ(c3))(1 + λg′

λ(c4)) − 1 = λ,

g′
λ(c1) ∈ [0.1,0.3], g′

λ(c2) ∈ [0.2,0.4], g′
λ(c3) ∈ [0.05,0.25],

g′
λ(c4) ∈ [0.25,0.45],

λ > −1.

After solving the above model, it has

λ = 0.9572, g′
λ(c1) = 0.1, g′

λ(c2) = 0.2,

g′
λ(c3) = 0.05, g′

λ(c4) = 0.45.

By Eq. (6), we get the attribute Shapley values

ϕc1
(g′

λ,C) = 0.137, ϕc2
(g′

λ,C) = 0.262,

ϕc3
(g′

λ,C) = 0.07, ϕc4
(g′

λ,C) = 0.53.

Step 2: According to model (20), we obtain the following model for the optimal fuzzy
measure on the ordered set N .

max 2.593gλ(1) + 2.368gλ(2) + 1.923gλ(3) + 1.558gλ(4) + 2.481λgλ(1)gλ(2)

+ 2.258λgλ(1)gλ(3) + 2.076λgλ(1)gλ(4) + 2.146λgλ(2)gλ(3)

+ 1.741λgλ(2)gλ(4) + 2.295λ2gλ(1)gλ(2)gλ(3)

+ 2.173λ2gλ(1)gλ(2)gλ(4) + 2.025λ2gλ(1)gλ(3)gλ(4)

+ 1.95λ2gλ(2)gλ(3)gλ(4) + 2.111λ3gλ(1)gλ(2)gλ(3)gλ(4)

s.t.



















(1 + λgλ(1))(1 + λgλ(2))(1 + λgλ(3))(1 + λgλ(4)) − 1 = λ,

gλ(1) ∈ [0.4,0.5], gλ(2) ∈ [0.3,0.4], gλ(3) ∈ [0.2,0.3],

gλ(4) ∈ [0.1,0.2],

λ > −1.

After solving the above model, it has

λ = −0.438, gλ(1) = 0.5, gλ(2) = 0.4,

gλ(3) = 0.2, gλ(4) = 0.1.
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By Eq. (6), we get the ordered position Shapley values

ϕ1(gλ,N) = 0.428, ϕ2(gλ,N) = 0.334,

ϕ3(gλ,N) = 0.16, ϕ4(gλ,N) = 0.08.

Step 3: Let uj = (S(h̄ij )l + S(h̄ij )u)/2 − D(h̄ij ) (j = 1,2,3,4) for each i = 1,2,3,4

and κ = 1, utilize the IG-IVHFHλSWA operator to calculate the comprehensive values of
the alternatives, i.g., i = 1,

h̄1 = IG-IVHFHλSWA
(

〈u1, h̄11〉, 〈u2, h̄12〉, 〈u3, h̄13〉, 〈u4, h̄14〉
)

=
⋃

r̄13∈h̄13,r̄14∈h̄14,r̄11∈h̄11,r̄12∈h̄12

[

1 −
(

1 − r l
13

)4ϕc3
(g′

λ,C)ϕ1(gλ,N)

×
(

1 − r l
14

)4ϕc4
(g′

λ,C)ϕ2(gλ,N)(
1 − r l

11

)4ϕc1
(g′

λ,C)ϕ3(gλ,N)

×
(

1 − r l
12

)4ϕc2
(g′

λ,C)ϕ4(gλ,N)
,1 −

(

1 − ru
13

)4ϕc3
(g′

λ,C)ϕ1(gλ,N)

×
(

1 − ru
14

)4ϕc4
(g′

λ,C)ϕ2(gλ,N)(
1 − ru

11

)4ϕc1
(g′

λ,C)ϕ3(gλ,N)

×
(

1 − ru
12

)4ϕc2
(g′

λ,C)ϕ4(gλ,N)]

=
{

[0.383,0.651], [0.398,0.667], [0.399,0.666], [0.432,0.686],

[0.413,0.682], [0.446,0.670], [0.420,0.705], [0.433,0.718], [0.466,0.734],

[0.434,0.718], [0.448,0.730], [0.479,0.746]
}

.

Step 4: According to the comprehensive IVHFEs h̄i (i = 1,2,3,4,5), the score values
S(h̄i) (i = 1,2,3,4,5) are obtained as follows:

S(h̄1) = [0.429,0.7], S(h̄2) = [0.636,0.825],

S(h̄3) = [0.552,0.749], S(h̄4) = [0.603,0.754].

From S(h̄i) (i = 1,2,3,4,5), we get h̄2 > h̄4 > h̄3 > h̄1. The ranking result is slightly
different to that got by the IG-IVHFHSWA operator. But the best choice is still with the
project a2.

Furthermore, if the GIVHFHA operator is used to calculate the comprehensive values
of the alternatives, then the main steps are as follows:

Step 1: According to model (21), we obtain the following model for the optimal fuzzy
measure on the attribute set C.

max 2.038wc1
+ 2.135wc2

+ 2.013wc3
+ 2.255wc4

s.t.











wc1
+ wc2

+ wc3
+ wc4

= 1,

wc1
∈ [0.1,0.3], wc2

∈ [0.2,0.4],

wc3
∈ [0.05,0.25], wc4

∈ [0.25,0.45].
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After solving the above model, it has

wc1
= 0.1, wc2

= 0.4, wc3
= 0.05, wc4

= 0.45.

Step 2: According to model (22), we obtain the following model for the optimal fuzzy
measure on the ordered set N .

max 2.593ω1 + 2.368ω2 + 1.923ω3 + 1.558ω4

s.t.







ω1 + ω2 + ω3 + ω4 = 1

ω1 ∈ [0.4,0.5], ω2 ∈ [0.3,0.4],

ω3 ∈ [0.2,0.3], ω4 ∈ [0.1,0.2].

After solving the above model, it has

ω1 = 0.4, ω2 = 0.3, ω3 = 0.2, ω4 = 0.1.

Step 3: Let κ = 1, utilize the GIVHFHA operator to calculate the comprehensive values
of the alternatives, i.g., i = 1,

h̄1 = GIVHFHA
(

〈u1, h̄11〉, 〈u2, h̄12〉, 〈u3, h̄13〉, 〈u4, h̄14〉
)

=
⋃

r̄14∈h̄14,r̄12∈h̄12,r̄11∈h̄11,r̄13∈h̄13

[

1 −
(

1 − r l
14

)4w4ω1
(

1 − r l
12

)4w2ω2

×
(

1 − r l
11

)4w1ω3
(

1 − r l
13

)4w3ω4,1 −
(

1 − ru
14

)4w4ω1
(

1 − ru
12

)4w2ω2

×
(

1 − ru
11

)4w1ω3
(

1 − ru
13

)4w3ω4
]

=
{

[0.398,0.671], [0.404,0.680], [0.412,0.684], [0.417,0.693], [0.475,0.749],

[0.481,0.755], [0.487,0.757], [0.492,0.765], [0.624,0.820], [0.628,0.825],

[0.632,0.827], [0.636,0.832]
}

.

Step 4: According to the comprehensive IVHFEs h̄i (i = 1,2,3,4,5), the score values
S(h̄i ) (i = 1,2,3,4,5) are obtained as follows:

S(h̄1) = [0.507,0.755], S(h̄2) = [0.596,0.797],

S(h̄3) = [0.545,0.750], S(h̄4) = [0.659,0.817].

From S(h̄i) (i = 1,2,3,4,5), we get h̄4 > h̄2 > h̄3 > h̄1. The ranking result is different
to that got by the IG-IVHFHSWA and IG-IVHFHλSWA operators, and the best choice is
the project a4.

For the comparative convenience, the ranking results with respect to the different ag-
gregation operators and the different values of the parameter λ are obtained as shown in
Tables 4, 5, 6 and 7.
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Table 4
Ranking results with respect to λ = 1.

a1 a2 a3 a4 Ranking orders

The GIVHFHA operator [0.507, 0.755] [0.596, 0.797] [0.545, 0.750] [0.659, 0.817] h̄4 > h̄2 > h̄3 > h̄1

The GIVHFHG operator [0.420, 0.677] [0.493, 0.700] [0.417, 0.622] [0.615, 0.758] h̄4 > h̄2 > h̄1 > h̄3

The IG-IVHFHSWA operator [0.493, 0.780] [0.803, 0.941] [0.708, 0.880] [0.670, 0.809] h̄2 > h̄3 > h̄4 > h̄1

The IG-IVHFHSGM operator [0.341, 0.647] [0.398, 0.664] [0.287, 0.523] [0.531, 0.693] h̄4 > h̄2 > h̄1 > h̄3

The IG-IVHFHλSWA operator [0.429, 0.700] [0.636, 0.825] [0.552, 0.749] [0.603, 0.753] h̄2 > h̄4 > h̄3 > h̄1

The IG-IVHFHλSGM operator [0.406, 0.678] [0.482, 0.707] [0.404, 0.617] [0.548, 0.711] h̄4 > h̄2 > h̄1 > h̄3

Table 5
Ranking results with respect to λ = 2.

a1 a2 a3 a4 Ranking orders

The GIVHFHA operator [0.537, 0.775] [0.638, 0.818] [0.575, 0.770] [0.684, 0.833] h̄4 > h̄2 > h̄3 > h̄1

The GIVHFHG operator [0.380, 0.631] [0.449, 0.659] [0.394, 0.598] [0.562, 0.720] h̄4 > h̄2 > h̄1 > h̄3

The IG-IVHFHSWA operator [0.552, 0.818] [0.831, 0.950] [0.746, 0.899] [0.716, 0.842] h̄2 > h̄3 > h̄4 > h̄1

The IG-IVHFHSGM operator [0.272, 0.568] [0.353, 0.621] [0.252, 0.478] [0.475, 0.641] h̄4 > h̄2 > h̄1 > h̄3

The IG-IVHFHλSWA operator [0.468, 0.734] [0.679, 0.848] [0.593, 0.777] [0.639, 0.781] h̄2 > h̄4 > h̄3 > h̄1

The IG-IVHFHλSGM operator [0.353, 0.627] [0.442, 0.675] [0.374, 0.588] [0.508, 0.675] h̄4 > h̄2 > h̄1 > h̄3

Table 6
Ranking results with respect to λ = 5.

a1 a2 a3 a4 Ranking orders

The GIVHFHA operator [0.590, 0.813] [0.704, 0.856] [0.623, 0.804] [0.723, 0.858] h̄4 > h̄2 > h̄3 > h̄1

The GIVHFHG operator [0.307, 0.541] [0.366, 0.561] [0.346, 0.549] [0.461, 0.636] h̄4 > h̄2 > h̄1 > h̄3

The IG-IVHFHSWA operator [0.650, 0.876] [0.871, 0.964] [0.798, 0.925] [0.788, 0.891] h̄2 > h̄3 > h̄4 > h̄1

The IG-IVHFHSGM operator [0.185, 0.464] [0.294, 0.568] [0.201, 0.416] [0.394, 0.565] h̄4 > h̄2 > h̄1 > h̄3

The IG-IVHFHλSWA operator [0.549, 0.797] [0.748, 0.889] [0.663, 0.826] [0.704, 0.830] h̄2 > h̄4 > h̄3 > h̄1

The IG-IVHFHλSGM operator [0.273, 0.546] [0.377, 0.622] [0.324, 0.541] [0.436, 0.608] h̄4 > h̄2 > h̄3 > h̄1

Table 7
Ranking results with respect to λ = 10.

a1 a2 a3 a4 Ranking orders

The GIVHFHA operator [0.627, 0.841] [0.744, 0.884] [0.655, 0.828] [0.750, 0.874] h̄2 > h̄4 > h̄3 > h̄1

The GIVHFHG operator [0.253, 0.476] [0.303, 0.471] [0.308, 0.512] [0.384, 0.571] h̄4 > h̄3 > h̄2 > h̄1

The IG-IVHFHSWA operator [0.706, 0.911] [0.894, 0.972] [0.828, 0.940] [0.828, 0.920] h̄2 > h̄3 > h̄4 > h̄1

The IG-IVHFHSGM operator [0.139, 0.410] [0.262, 0.543] [0.172, 0.384] [0.351, 0.526] h̄4 > h̄2 > h̄3 > h̄1

The IG-IVHFHλSWA operator [0.602, 0.843] [0.792, 0.916] [0.709, 0.861] [0.747, 0.863] h̄2 > h̄4 > h̄3 > h̄1

The IG-IVHFHλSGM operator [0.223, 0.493] [0.327, 0.576] [0.288, 0.511] [0.385, 0.560] h̄4 > h̄2 > h̄3 > h̄1

According to Tables 4, 5, 6 and 7, the ranking results show that the different optimal al-
ternatives may be yielded using the different aggregation operators, and thus, the decision
makers can properly select the aggregation operator according to the underlying interest
and demanding to each problem.

6. Conclusion

In order to deal with the situation where the elements in a set are correlative and the weight
information is not exactly known, this study first gives a new ranking method to IVHFEs.
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Then, based on the Shapley function, two induced generalized interval-valued hesitant
fuzzy hybrid Shapley aggregation operators are defined, which do not only globally con-
sider the importance of elements and their ordered positions but also reflect the overall
interactions between them, respectively. Because of various reasons, the information about
the weight vectors is usually partly known. Based on the Shapley function, the models for
the optimal fuzzy measures on the attribute set and on the ordered set are established. In
the end, an approach to interval-valued hesitant fuzzy multi-attribute decision making is
developed, and an illustrative example is given to show the feasibility and practicality of
the proposed procedure. If there is no interaction between elements, then the introduced
decision-making method degenerates to an approach based on additive measures.

Besides the application in decision making, we can also apply the introduced opera-
tors and the building models to other fields, such as digital image processing, clustering
analysis and pattern recognition. Furthermore, we here only define two aggregation oper-
ators, and it will be interesting to study other interval-valued hesitant fuzzy aggregation
operators.
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Hibridiniais Shapley operatoriais grįstas neraiškusis daugiatikslis
vertinimo būdas, kai rodiklių reikšmės apibrėžtos nepastoviais
intervalais

Fanyong MENG, Xiaohong CHEN

Šiame straipsnyje pateikiamas naujas nepastoviais intervalais apibrėžtų elementų surikiavimo meto-
das. Siekiant gauti tinkamas reikšmes alternatyvoms, aprašyti du apibendrinti intervalais matuojami
nepastovieji neraiškieji hibridiniai operatoriai, kurie yra pagrįsti Shapley funkcija. Shapley funkcija
globaliai apima tiek elementų svarbą ir jų (sutvarkytas) surikiuotas vietas, tiek ir atspindi tarpusavio
veikas (poveikius) tarp jų. Jei informacija apie svorį yra nepilnai žinoma, tai sukuriami optimalių-
jų rodiklių aibės svorių vektorių ir sutvarkytos (surikiuotos) aibės atitinkami modeliai. Vėliau yra
sukuriamas neraiškusis daugiatikslis vertinimo būdas kai rodiklių reikšmės apibrėžtos nepastoviais
intervalais. Pabaigoje pateiktas pavyzdys sukurtam vertinimo būdui iliustruoti.


