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Abstract. The fuzzy number is a special case of fuzzy set. As a generalization of the fuzzy num-
ber, trapezoidal intuitionistic fuzzy number (TrIFN) is a special intuitionistic fuzzy set defined on
the real number set, which seems to suitably describe an ill-known quantity. The purpose of this
paper is to propose a new method for solving the multi-attribute group decision making problems,
in which the attribute values are TrIFNs and the attribute weight information are incomplete. The
concepts, such as the weighted lower and upper possibility means, the weighted possibility means
and variances of TIFNs, are introduced. Hereby, a new lexicographic method is developed to rank
the TrIFNs. In the proposed method, the weights of experts are determined in terms of the voting
model of intuitionistic fuzzy set. The attribute weights are objectively derived through construct-
ing the bi-objective programming model, which is transformed into the single objective quadratic
programming model to solve. The ranking order of alternatives is generated by the collective over-
all attribute values of alternatives. The stock selection example and comparison analyzes show the
validity and applicability of the method proposed in this paper.

Key words: multiattribute group decision making, trapezoidal intuitionistic fuzzy number, weighted
possibility mean, weighted possibility variance, stock investment selection.

1. Introduction

In many real-life decision making problems, such as stock investment selection, decision
maker (DM) does not know exactly the attribute values of alternative due to the complexity
and uncertainty involved in the decision problems, the fuzzy sets (FSs) (Zadeh, 1965) can
be used to describe an uncertain environment with vagueness, ambiguity or some other
type of fuzziness. Thus, the fuzzy decision making analysis appears (Stanujkic et al., 2012;
Celen, 2014; Zhang and Chen, 2014; Zeng et al., 2013b). However, the decision making
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problems often involve many incomplete information and relate to many complex factors,
such as economy, politics, psychological behavior, ideology and so on. Therefore, there
often exist some hesitation degrees in the judgments of DMs. For example, in stock invest-
ment selection, because of the incompleteness and uncertainty of information in the evalu-
ation of the listed company’s solvency indicator, the evaluation value can be expressed by
trapezoidal intuitionistic fuzzy number (TrIFN) (Wang, 2008; Wang and Zhang, 2009;
Wei, 2010a, 2010b, Du and Liu, 2011; Wu and Cao, 2013; Wan and Dong, 2010;
Wan, 2012, 2013b; Ye, 2011, 2012; Zhang and Xu, 2012) ([4,5,6,7]; 0.6,0.3), which
means that the minimum value of solvency is 4, the maximum value is 7, and the most pos-
sible value is between 5 and 6 (i.e., interval [5,6]). Meanwhile, the maximum membership
degree for the most possible value interval [5,6] is 0.6, the minimum non-membershipde-
gree for the most possible value interval [5,6] is 0.3, and the indeterminacy is 0.1. That
is to say, the DM has some hesitation degree for the estimation on this judgment, this
hesitation influences the decision making on the stock selection.

The intuitionistic fuzzy (IF) set (IFS) (Atanassov, 1986) and interval-valued intuition-
istic fuzzy set (IVIFS) (Atanassov and Gargov, 1989) are just the suitable and power-
ful tools to represent the uncertain information with hesitation degrees. At present, both
IFS and IVIFS have been widely applied to the fields of multiattribute decision making
(MADM) and multiattribute group decision making (MAGDM). These researches on IFS
and IVIFSs are mainly focused on the aggregationoperators (Li, 2010d, 2011a, 2011b; Liu
and Wang, 2007; Li et al., 2010a, 2010b; Yu et al., 2012; Wei and Merigó, 2012; Wan and
Dong, 2014a, 2014b), similarity (or distance) measures and entropy (Huang et al., 2012;
Xia et al., 2012; Ye, 2010; Xu and Yager, 2009; Xu, 2007a), extension of classic decision
making methods (Li, 2008a, 2010a, 2010b, 2011a, 2011b; Park et al., 2007, 2011; Xu,
2007a; Li and Wan, 2013; Zeng et al., 2013a), new decision making methods (Chen, 2011;
Chen and Yang, 2011, 2012; Guo and Liu, 2012; Li, 2007; Zhang and Xu, 2012). At the
same time, the researches on the intuitionistic fuzzy numbers (IFNs) also receive a little
attention (Dubois and Prade, 1980; Shu et al., 2006; Li, 2010a, 2010b, 2010c, 2010d; Li
et al., 2010a, 2010b, 2010c; Nan et al., 2010). Fuzzy numbers are a special case of fuzzy
sets. As a generalization of fuzzy numbers (Dubois and Prade, 1980), IFN is a special
IFS defined on the real number set, which seems to suitably describe an ill-known quan-
tity (Li, 2008a, 2008b). Currently, there are three kinds of typical IFNs: triangular IFN
(TIFN) (Shu et al., 2006; Li, 2008b, 2010c; Li et al., 2010a, 2010b; Nan et al., 2010;
Wan et al., 2013a, 2013b; Wan and Dong, 2014a, 2014b; Wan and Li, 2013b), trapezoidal
IFN (TrIFN) (Zhang and Xu, 2012; Ye, 2011, 2012; Wan, 2012, 2013b; Wan and Dong,
2010; Wu et al., 2012; Du and Liu, 2011; Wei, 2010a, 2010b; Wang and Zhang, 2009;
Wang, 2008) and interval-valued trapezoidal IFN (IVTrIFN) (Wan, 2011, 2012).

Shu et al. (2006) defined the concept of a TIFN in a similar way to that of the fuzzy
number (Dubois and Prade, 1980) and developed an algorithm for intuitionistic fuzzy fault
tree analysis. Li (2008b) pointed out and corrected some errors in the definition of the four
arithmetic operations over the TIFNs in Shu et al. (2006). Li (2010c) discussed the concept
of the TIFN and ranking method on the basis of the concept of a ratio of the value index to
the ambiguity index as well as applications to MADM problems in depth. Li et al. (2010c)



MAGDM with TrIFNs and Application to Stock Selection 665

defined the values and ambiguities of the membership degree and the non-membership
degree for TIFNs as well as the value-index and ambiguity-index. Hereby a value and
ambiguity based method is developed to rank TIFNs and applied to solve MADM prob-
lems in which the ratings of alternatives on attributes are expressed using TIFNs. Nan
et al. (2010) defined the ranking order relations of TIFNs and solved the fuzzy matrix
games with payoffs of TIFNs. Wan et al. (2013a, 2013b) proposed the extended VIKOR
method for MAGDM with TIFNs. As the extensions of the TIFNs, Wang (2008) defined
the trapezoidal IFN (TrIFN) and interval-valued trapezoidal IFN (IVTrIFN). Wang and
Zhang (2009) investigated the weighted arithmetic averaging operator and weighted ge-
ometric averaging operator on TrIFNs and their applications to MADM problems. Wei
(2010a, 2010b) investigated some arithmetic aggregation operators with TrIFNs and their
applications to MAGDM problems. Du and Liu (2011) extended fuzzy VIKOR method
with TrIFNs. Wu and Cao (2013) developed some families of geometric aggregation op-
erators with TrIFNs and applied to MAGDM problems. Wan and Dong (2010) defined the
expectation and expectant score, ordered weighted aggregation operator and hybrid aggre-
gation operator for TrIFNs and employed to MAGDM. Wan (2012) developed power av-
erage operators of TrIFNs and application to MAGDM. Ye (2011) developed the expected
value method for intuitionistic trapezoidal fuzzy multicriteria decision-making problems.
Ye (2012) proposed the MAGDM method using vector similarity measures for TrIFNs.
Zhang et al. (2013) proposed a grey relational projection method for MAGDM based on
TrIFNs. Wan (2011) firstly defined some operational laws of IVTrIFNs and developed the
IVTrIFN weighted arithmetical average operator and weighted geometrical average op-
erator. An approach to ranking IVTrIFNs is presented based on the score function and
accurate function. The MAGDM method using IVTrIFNs is then proposed. Wan (2012)
defined the Hamming and Euclidean distances for IVTrIFNs and proposed the fractional
programming method for the MADM problems using IVTrIFNs.

The above researches about IFNs mainly focus on the operation laws (Li, 2008a,
2008b; Shu et al., 2006; Wan, 2012; Zhang and Xu, 2012), aggregation operators (Wang
and Zhang, 2009; Wu and Cao, 2013; Wan and Dong, 2010; Wan, 2012), ranking methods
(Li et al., 2010a, 2010b; Nan et al., 2010; Wang, 2008; Wan, 2011, 2013a, 2013b; Wan
and Dong, 2014a, 2014b), extension of classical decision making methods (Zhang and Xu,
2012; Du and Liu, 2011; Wan and Li, 2014) and new decision making methods (Ye, 2011;
Wan, 2012). It is worthwhile to mention that the domains of the IFS and IVIFS are discrete
sets, which are also the same as fuzzy sets. TIFNs, TrIFNs and IVTrIFNs extend the do-
main of IFSs from the discrete set to the continuous set. They are the extensions of fuzzy
numbers (Wang and Zhang, 2009). Compared with the IFSs, TrIFNs are defined by using
trapezoidal fuzzy numbers expressing their membership and non-membership functions.
Hence, TrIFNs may better reflect the information of decision problems than IFSs. With
ever increasing complexity in many real decision situations, there are often some chal-
lenges for the DM to provide precise and complete weight preference information due to
time pressure, lack of knowledge (or data) and DM’s limited expertise about the problem
domain. In other words, usually attribute weights are totally unknown or partially known



666 S. Wan, J. Dong

a priori. Namely, weight preference information in MAGDM problems is usually incom-
plete (Li, 2011a, 2011b; Wan and Li, 2013a, 2014; Li and Wan, 2013, 2014; Wan and
Dong, 2014a, 2014b). However, there is less investigation for the MAGDM problems in
which the attribute values are in the form of TrIFNs and the weight preference information
is incomplete. The existing methods about IFNs, IFSs and IVIFSs cannot be applied to
MAGDM with TrIFNs and incomplete weight preference information. With the increas-
ing complexity of modern society, continued expansion of the scale and the diversification
of business, many large and important management decision optimization problems re-
quire many experts to participate in making decisions together. Therefore, the MAGDM
problems with TrIFNs and incomplete weight preference information are of a great im-
portance for scientific researches and real applications. For instance, since the real-life
stock investment selection problems often involve multiple different attributes (or indices,
factors) such as profit ability, debt paying ability, growth ability, market performance as
well as investment income, single DM is very difficult to make judgment which stock is
to be chosen for investment. Moreover, DMs are unable to accurately give these attribute
weights because of various subjective and objective reasons.

The possibility theory of FSs was proposed by Zadeh (1978), its academic meaning
is in building a theoretical framework of real applications for FSs. In statistics, central
tendency and distribution dispersion are considered to be the important measures. For
fuzzy numbers, two of the most useful measures are the mean and variance of fuzzy
numbers. The possibility mean and variance are the important mathematical character-
istics of fuzzy numbers. The possibilistic mean, variance and covariance of fuzzy num-
bers, defined by Carlsson and Fullér (2001) and Fullér and Majlender (2003) are usually
used to the research of fuzzy optimal portfolio selection (Zhang et al., 2009). They are
similar to the mean, variance and covariance of random variance, which may quantifi-
cationally express the uncertain information implied in the fuzzy numbers. In many real
decision making problems, the decision information provided by decision makers (DMs)
is often imprecise or uncertain. Hence, introducing the possibility mean and variance is
very importance and useful for solving fuzzy MAGDM problems. To our best knowledge,
however, there is no investigation on possibility mean and variance for IFSs up to date.
Hence, the aim of this paper is to define the weighted possibility means and variances of
TrIFN and hereby give a new method for ranking TrIFNs. A new decision method based
on the weighted possibility mean and variance is then proposed for the MAGDM prob-
lems, in which the attribute values are TrIFNs and the attribute weights are incompletely
known.

The rest of this paper is structured as follows. In Section 2, we present the defini-
tion, operation laws and weighted average operator of TrIFNs. In Section 3, some con-
cepts about TrIFNs, such as the weighted possibility means and variances of TrIFNs, are
defined, respectively. A lexicographic ranking method for TrIFNs is developed. A new
method for MAGDM using TrIFNs is developed in Section 4. A stock selection exam-
ple and comparison analyzes are given in Section 5. Short conclusions are made in Sec-
tion 6.
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Fig. 1. α-cut set of membership function and β-cut set of non-membership function.

2. Trapezoidal Intuitionistic Fuzzy Numbers

In this section, the definition, operation laws and weighted average operator of TrIFNs are
introduced.

2.1. The Definition of TrIFNs

Definition 1. (See Wang and Zhang, 2009; Wan et al., 2013a, 2013b.) Let ã be an in-
tuitionistic fuzzy number in the set of real numbers, whose membership function and
non-membership function are defined as follows:

µã(x) =



















x−a
b−a

wã, if a 6 x < b,

wã, if b 6 x 6 c,
d−x
d−c

wã, if c < x 6 d,

0, otherwise

and

νã(x) =























b−x+(x−a)uã

b−a
, if a 6 x < b,

uã, if b 6 x 6 c,

x−c+(d−x)uã

d−c
, if c < x 6 d,

1, otherwise,

respectively (see Fig. 1), where a, b, c, and d are all real numbers, the values wã and
uã represent the maximum degree of membership and the minimum degree of non-
membership, respectively, such that they satisfy the conditions: 0 6 wã 6 1, 0 6 uã 6 1

and wã + uã 6 1. Then, the intuitionistic fuzzy number ã is called the TrIFN, denoted by
ã = ([a, b, c, d];wã, uã).

The function πã(x) = 1 − µã(x) − νã(x) denotes the hesitation of ã. The smaller
πã(x), the more certain ã. When b = c, a TrIFN reduces to a TIFN. If a > 0 and one of
the four values b, c, and d is not equal to 0, then the TrIFN ã = ([a, b, c, d];wã, uã) is
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called a positive TrIFN, denoted by ã > 0. The TrIFNs discussed in the following are all
positive TrIFNs.

For example, there is a TrIFN 6̃ = ([4,5,7,8]; 0.5,0.2). Then, when x = 5, its mem-
bership degree being a TrIFN 6̃ is 0.5, its non-membership degree not being the TrIFN 6̃

is 0.2, and its hesitation being or not being the TrIFN 6̃ is 0.3.

2.2. Operation Laws and Properties for TrIFNs

Definition 2. Let ã1 = ([a1, b1, c1, d1];wã1
, uã1

) and ã2 = ([a2, b2, c2, d2];wã2
, uã2

) be
two TrIFNs and λ > 0. Then the operation laws for TrIFNs are defined as follows:

(1) ã1 + ã2 = ([a1 + a2, b1 + b2, c1 + c2, d1 + d2];wã1
∧ wã2

, uã1
∨ uã2

), where the
symbols “∧” and “∨” are min and max operators, respectively;

(2) ã1ã2 = ([a1a2, b1b2, c1c2, d1d2];wã1
∧ wã2

, uã1
∨ uã2

);
(3) λã1 = ([λa1, λb1, λc1, λd1];wã1

, uã1
);

(4) ã1
λ = ([aλ

1 , bλ
1 , cλ

1 , dλ
1 ];wã1

, uã1
).

It is easy to see that if bi = ci (i = 1,2), i.e., both ã1 and ã2 reduce to two TIFNs, then
the operation laws of TrIFNs are degenerated to those of TIFNs (Li, 2010c). Therefore,
the operation laws of TrIFNs defined in this paper are the natural generalization of the
TIFNs (Li, 2010c).

From Definition 2, the following properties are proven:

(1) ã1 + ã2 = ã2 + ã1, ã1ã2 = ã2ã1;
(2) λ(ã1 + ã2) = λã1 + λã2, λ1ã1 + λ2ã1 = (λ1 + λ2)ã1, ã1

λ1 ã1
λ2 = ã1

λ1+λ2 ;
(3) (ã1

λ)k = ã1
λk .

2.3. The Weighted Average Operator for TrIFNs

Definition 3. Assume that let ãj = ([aj , bj , cj , dj ];wãj
, uãj

) (j = 1,2, . . . , n) is a col-
lection of the TrIFNs. Let φA

w : T n → T . If

φA
w(ã1, ã2, . . . , ãn) =

n
∑

j=1

wj ãj , (1)

where T is the set of all TrIFNs, w = (w1,w2, . . . ,wn)
T is the weight vector of ãj

(j = 1,2, . . . , n), satisfying that 0 6 wn 6 1 and
∑n

j=1 wj = 1, then the function φA
w

is called the n-dimensional weighted average operator for the TrIFNs.

Proposition 1. Let ãj = ([aj , bj , cj , dj ];wãj
, uãj

) (j = 1,2, . . . , n) is a collection of the

TrIFNs, then their aggregated value by using φA
w operator is also an TrIFN, and

φA
w(ã1, ã2, . . . , ãn)

=

([

n
∑

j=1

wjaj ,

n
∑

j=1

wjbj ,

n
∑

j=1

wjcj ,

n
∑

j=1

wjdj

]

;∧jwãj
,∨juãj

). (2)
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Proposition 1 can be easily proven by using mathematical induction on n. The φA
w ope-

rator has some desirable properties, such as idempotency, boundedness and monotonicity.

3. The Weighted Possibility Means and Variances of TrIFNs and Lexicographic

Ranking Method

Since TrIFN is a special IFS, it can express the uncertain and fuzzy information inherent.
In order to develop the ranking method of TrIFNs, this section is devoted to introducing
the weighted lower and upper possibility means, weighted possibility means and variances
of TrIFNs. Thereby, the ranking method of TrIFNs is given.

3.1. The Weighted Possibility Means of TrIFNs

Analogous to the cut sets of TIFNs in Li (2010c), the definitions of the cut sets for TrIFNs
are given as follows.

Definition 4. For a TrIFN ã = ([a, b, c, d];wã, uã), (α,β)-cut set, α-cut set and β-cut
set are defined as ãα,β = {x|µã(x) > α, νã(x) 6 β}, ãα = {x|µã(x) > α} and ãβ =

{x|νã(x)6 β}, respectively, where 0 6 α 6 wã , uã 6 β 6 1 and 0 6 α + β 6 1.

It directly follows from Fig. 1, Definitions 1 and 4 that

ãα =
[

al
α, au

α

]

=

[

a + α
b − a

wã

, d − α
d − c

wã

]

, (3)

ãβ =
[

al
β , au

β

]

=

[

b − auã − β(b − a)

1 − uã

,
c − duã + β(d − c)

1 − uã

]

. (4)

Motivated by Fullér and Majlender (2003), we give the definitions of the weighted
possibility mean of TrIFNs as follows.

Definition 5. Let ãα = [al
α, au

α] be the α-cut set of a TrIFN ã = ([a, b, c, d];wã, uã) with
0 6 α 6 wã . A function f : [0,wã] → R is said to be a weighting function if f is a non-
negative, monotone increasing and satisfies the conditions:

∫ wã

0 f (α)dα and f (0) = 0.
The f weighted lower and upper possibility means of membership function for the

TrIFN ãα = [al
α, au

α] are, respectively, defined as follows:

mµ(ã) =

∫ wã

0

f
(

Pos
{

ã 6 al
α

})

al
α dα (5)

and

mµ(ã) =

∫ wã

0

f
(

Pos
{

ã > au
α

})

au
α, dα, (6)
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where Pos means possibility (Fullér and Majlender, 2003) and

Pos
{

ã 6 al
α

}

= sup
x6al

α

µã(x) = α, (7)

Pos
{

ã > au
α

}

= sup
x>au

α

µã(x) = α. (8)

It can be seen from Eqs. (7) and (8) that

mµ(ã) =

∫ wã

0

f
(

Pos
{

ã 6 al
α

})

al
α dα =

∫ wã

0

f (α)al
α dα,

mµ(ã) =

∫ wã

0

f
(

Pos
{

ã > au
α

})

au
αdα =

∫ wã

0

f (α)au
α dα.

Obviously, the f weighted lower possibility mean mµ(ã) of membership function is
nothing else but the f weighted lower possibility weighted average of the minimum of
the α-cut set. The f weighted upper possibility mean mµ(ã) of membership function is
nothing else but the f weighted upper possibility weighted average of the maximum of
the α-cut set.

Definition 6. Let ãβ = [al
β, au

β ] be the β-cut set of a TrIFN ã = ([a, b, c, d];wã, uã).
A function g : [uã,1] → R is said to be a weighting function if g is a non-negative, mono-
tone decreasing and satisfies the conditions:

∫ 1
uã

g(β) dβ = 1 − uã and g(1) = 1.
The g weighted lower and upper possibility means of non-membership function for

the TrIFN ã = ([a, b, c, d];wã, uã) are, respectively, defined as follows:

mν(ã) =

∫ 1

uã

g
(

Pos
{

ã 6 al
β

})

al
β dβ (9)

and

mν(ã) =

∫ 1

uã

g
(

Pos
{

ã > au
β

})

au
β dβ, (10)

where

Pos
{

ã 6 al
β

}

= sup
x6al

β

µã(x) = β, (11)

Pos
{

ã > au
β

}

= sup
x>au

β

µã(x) = β. (12)

It yields from Eqs. (11) and (12) that

mν(ã) =

∫ 1

uã

g
(

Pos
{

ã 6 al
β

})

al
β dβ =

∫ 1

uã

g(β)al
β dβ,
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mν(ã) =

∫ 1

uã

g
(

Pos
{

ã > au
β

})

au
β dβ =

∫ 1

uã

g(β)au
β dβ.

It can be seen that the g weighted lower possibility mean mν(ã) of non-membership
function is nothing else but the g weighted lower possibility weighted average of the min-
imum of the β-cut set. The g weighted upper possibility mean mν(ã) of non-membership
function is nothing else but the g weighted upper possibility weighted average of the max-
imum of the β-cut set.

Definition 7. For a TrIFN ã = ([a, b, c, d];wã, uã), the f weighted possibility mean of
membership function and g weighted possibility mean of non-membership function are,
respectively, defined as follows:

mµ(ã, θ) = (1 − θ)mµ(ã) + θmµ(ã) (13)

and

mν(ã, θ) = (1 − θ)mν(ã) + θmν(ã), (14)

where θ ∈ [0,1] is the preference parameter of DM and can reflect different importance
to the lower and upper possibility means. Different DMs have different preferences for
the lower and upper possibility means. θ ∈ (0.5,1] implies that DM prefers the upper
possibility mean, namely DM is pessimistic; θ ∈ [0,0.5)] shows that DM prefers the lower
possibility mean, namely DM is optimistic; θ = 0.5 indicates that DM is indifference
between the lower and upper possibility means, namely DM is preference neutral.

If θ = 0, then mµ(ã,0) = mµ(ã) and mν(ã,0) = mν(ã); If θ = 1, then mµ(ã,1) =

mµ(ã) and mν(ã,1) = mν(ã); If θ = 0.5, then mµ(ã,0.5) = 1
2
[mµ(ã) + mµ(ã)] and

mν(ã,0.5) = 1
2
[mν(ã) + mν(ã)]. Thus, if the TrIFN ã = ([a, b, c, d];wã, uã) degene-

rates to the trapezoidal fuzzy number ã = [a, b, c, d], i.e., wã = 1 and uã = 0, then,
mµ(ã,0.5) = 1

2
[mµ(ã) + mµ(ã)] (or mν(ã,0.5) = 1

2
[mν(ã) + mν(ã)] is just the f

weighted possibility mean of fuzzy number defined in Definition 2 of Fullér and Maj-
lender (2003, see pp. 365).

Obviously, mµ(ã, θ) synthetically reflects the information on every membership de-
gree, and mµ(ã,0.5) may be regarded as a central value that represents from the mem-
bership function point of view. Likewise, mν(ã, θ) synthetically reflects the information
on every non-membership degree, and mν(ã,0.5) may be regarded as a central value that
represents from the non-membership function point of view.

Example 1. If f and g are respectively chosen as follows:

f (α) = 2α/wã

(

α ∈ [0,wã]
)

(15)

and

g(β) = 2(1 − β)/(1 − uã)
(

β ∈ [uã,1]
)

, (16)
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respectively, then, according to Eqs. (5), (6), (9) and (10), we have

mµ(ã) =
1

3
(a + 2b)wã, (17)

mµ(ã) =
1

3
(d + 2c)wã, (18)

mν(ã) =
1

3
(a + 2b)(1 − uã), (19)

mν(ã) =
1

3
(d + 2c)(1 − uã). (20)

Further, from Eqs. (13) and (14) with θ = 0.5, it yields that

mµ(ã,0.5) =
1

6
(a + 2b + 2c + d)wã, (21)

mν(ã,0.5) =
1

6
(a + 2b + 2c + d)(1 − uã). (22)

Remark 1. If the TrIFN ã = ([a, b, c, d];wã, uã) degenerates to the triangular fuzzy
number ã = (a, a, a), i.e., wã = 1 and uã = 0, then, it follows from Eqs. (17) and (18) (or
Eqs. (19) and (20)) that the weighted lower possibility mean, weighted upper possibility
mean, and weighted possibility mean of a triangular fuzzy number ã = (a, a, a) are ob-
tained as follows: M∗(ã) = (a+2a)/3, M∗(ã) = (a+2a)/3, and M(ã) = (a+4a+a)/6,
respectively. These results of a triangular fuzzy number are the same as those of a trian-
gular fuzzy number in Examples 2.1 of Carlsson and Fullér (2001).

Example 2. If f and g are respectively chosen as follows:

f (α) = (n + 1)αn
/

wn
ã

(

α ∈ [0,wã]
)

(23)

and

g(β) = (n + 1)(1 − β)n
/

(1 − uã)
n

(

β ∈ [uã,1]
)

, (24)

respectively, then, according to Eqs. (5), (6), (9) and (10), we have

mµ(ã) =

[

a +
n + 1

n + 2
(b − a)

]

wã, (25)

mµ(ã) =

[

d −
n + 1

n + 2
(d − c)

]

wã, (26)

mν(ã) =

[

a +
n + 1

n + 2
(b − a)

]

(1 − uã), (27)

mν(ã) =

[

d −
n + 1

n + 2
(d − c)

]

(1 − uã). (28)
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Further, from Eqs. (13) and (14) with θ = 0.5, it yields that

mµ(ã,0.5) =
1

2

[

a + d −
n + 1

n + 2
(a − b + c − d)

]

wã, (29)

mν(ã,0.5) =
1

2

[

a + d −
n + 1

n + 2
(a − b + c − d)

]

(1 − uã). (30)

Remark 2. If the TrIFN ã = ([a, b, c, d];wã, uã) degenerates to the trapezoidal fuzzy
number ã = [a, b, c, d], i.e., wã = 1 and uã = 0, then, it follows from Eqs. (25) and (26)
(or Eqs. (27) and (28)) that the lower weighted possibility mean, upper weighted pos-
sibility mean, and weighted possibility mean of a trapezoidal fuzzy number [a, b, c, d]

are obtained as follows: M∗(ã) = a + n+1
n+2

(b − a), M∗(ã) = d − n+1
n+2

(d − c), and

m(ã) = 1
2
[a + d − n+1

n+2
(a − b + c − d)], respectively. These results of a trapezoidal fuzzy

number are the same as those of a trapezoidal fuzzy number in Examples 2 of Fullér and
Majlender (2003, see pp. 371).

The weighted possibility means have some useful properties, which are summarized
in Theorem 3.

Theorem 2. Let ãi = ([ai, bi, ci, di];wãi
, uãi

) (i = 1,2) be two TrIFNs with wã1
= wã2

and uã1
= uã2

. Then for any γ > 0 and τ > 0, the following equalities are valid:

mµ(γ ã1 + τ ã2, θ) = γmµ(ã1, θ) + τmµ(ã2, θ), (31)

mν(γ ã1 + τ ã2, θ) = γmν(ã1, θ) + τmν(ã2, θ). (32)

Proof. Since γ > 0 and τ > 0, by Definition 2, the α-cut set of TrIFN γ ã1 + τ ã2 is as
follows:

(γ ã1 + τ ã2)α =
[

γ al
1α + τal

2α, γ au
1α + τau

2α

]

.

By Eq. (13), we obtain

mµ(γ ã1 + τ ã2, θ)

=

∫ wã1
∧wã2

0

f (α)
[

(1 − θ)
(

γ al
1α + τal

2α

)

+ θ
(

γ au
1α + τau

2α

)]

dα

=

∫ wã1

0

γf (α)
[

(1 − θ)al
1α + θau

1α

]

dα +

∫ wã1

0

τf (α)
[

(1 − θ)al
2α + θau

2α

]

dα

= γmµ(ã1, θ) + τmµ(ã2, θ).

Thus, Eq. (31) holds. By the same way, Eq. (32) can be proven. Namely, Theorem 3 is
proven. �
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It is noted that if γ = τ = 1, then by Theorem 1 the following are valid:

mµ(ã1 + ã2, θ) = mµ(ã1, θ) + mµ(ã2, θ)

and

mν(ã1 + ã2, θ) = mν(ã1, θ) + mν(ã2, θ).

The above two equalities are similar to Theorems 2 and 3 of Li (2010c).

3.2. The Weighted Possibility Variances of TrIFNs

Next, we give the definition of the weighted possibility variances of TrIFNs.

Definition 8. For a TrIFN ã = ([a, b, c, d];wã, uã), the f weighted possibility variance
of membership function is defined as follows:

Vµ(ã) =

∫ wã

0

(

au
α − al

α

2

)2

f (α) dα, (33)

the g weighted possibility variance of non-membership function is defined as follows:

Vν(ã) =

∫ 1

uã

(

au
β − al

β

2

)2

g(β) dβ. (34)

The f weighted possibility variance Vµ(ã) of the membership function is defined as
the expected value of the squared deviations between the endpoints of α-cut set. The g

weighted possibility variance Vν(ã) of the non-membership function is defined as the
expected value of the squared deviations between the endpoints of β-cut set.

It is easily seen that au
α − al

α and au
β − al

β are just about the lengths of the intervals ãα

and ãβ , respectively. Thus, Vµ(ã) and Vν(ã) may be respectively regarded as the global
spreads of the membership function µã(x) and non-membership function νã(x). Clearly,
Vµ(ã) and Vν(ã) basically measure how much there is uncertainty and vagueness in the
TrIFN ã.

Example 3. The weighting functions f and g are respectively chosen as Eqs. (15)
and (16). According to Eqs. (3), (4), (33) and (34), the weighted possibility variances
are calculated as follows:

Vµ(ã) =
1

24

[

6(d − a)2 + 8(d − a)(a − b + c − d) + 3(a − b + c − d)2
]

wã, (35)

and

Vν(ã) =
1

24

[

6(d − a)2 + 8(d − a)(a − b + c − d) + 3(a − b + c − d)2
]

(1 − uã).

(36)
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Remark 3. If the TrIFN ã = ([a, b, c, d];wã, uã) degenerates to the triangular fuzzy
number ã = (a, a, a), i.e., wã = 1 and uã = 0, then, by Eq. (25) or Eq. (26) the possibility
variance of a triangular fuzzy number ã = (a, a, a) is obtained as V (ã) = (a − a)2/24,
which is accordance with that of a triangular fuzzy number in Carlsson and Fullér (2001,
see pp. 322).

Example 4. The weighting functions f and g are respectively chosen as Eqs. (23)
and (24). According to Eqs. (3), (4), (33) and (34), the weighted possibility variances
are calculated as follows:

Vµ(ã) =
1

4

[

6(d − a)2 +
2(n + 1)

n + 2
(d − a)(a − b + c − d)

+
n + 1

n + 3
(a − b + c − d)2

]

wã, (37)

and

Vν(ã) =
1

4

[

6(d − a)2 +
2(n + 1)

n + 2
(d − a)(a − b + c − d)

+
n + 1

n + 3
(a − b + c − d)2

]

(1 − uã). (38)

Remark 4. If the TrIFN ã = ([a, b, c, d];wã, uã) degenerates to the trapezoidal fuzzy
number ã = [a, b, c, d], i.e., wã = 1 and uã = 0, then, then by Eq. (37) or Eq. (38) the
possibility variance of a trapezoidal fuzzy number ã = [a, b, c, d] is obtained as V (ã) =
1
4
[6(d −a)2 +

2(n+1)
n+2

(d −a)(a −b+ c−d)+ n+1
n+3

(a −b+ c−d)2], which is accordance
with that of a trapezoidal fuzzy number in Fullér and Majlender (2003, see Example 5,
pp. 373).

Theorem 3. Let ã = ([a, b, c, d];wã, uã) be a TrIFN. Then for any γ ∈ R, the following

equalities are valid:

Vµ(γ ã) = γ 2Vµ(ã), (39)

Vν(γ ã) = γ 2Vν(ã). (40)

Proof. We only prove Vµ(γ ã) = γ 2Vµ(ã). According to Definitions 2, 3 and Eq. (33),
we have

Vµ(γ ã) =

∫ wã

0

(

γ au
α − γ al

α

2

)2

f (α) dα = γ 2Vµ(ã).

By the same way, Vν(γ ã) = γ 2Vν(ã). Namely, Theorem 3 is proven. �
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3.3. Lexicographic Ranking Method of TrIFNs Based on Weighted Possibility Mean and

Variance

The possibility mean and variance of fuzzy numbers are similar to the mean and variance
of random variables. They can be used to quantitatively characterize the values of fuzzy
numbers as well as the inherent uncertainty. Obviously, the greater the possibility mean,
the bigger the corresponding fuzzy numbers; the greater the possibility variance, the larger
the degree of vagueness and uncertainty of the fuzzy numbers.

Let mµ(ãi, θ), mν(ãi, θ), Vµ(ãi, θ), Vν(ãi, θ) be the weighted possibility mean
and variance of the membership and non-membership functions for TrIFNs ãi =

([ai, bi, ci, di];wãi
, uãi

) (i = 1,2), respectively. The ranking indices of the membership
and non-membership functions for TrIFN ãi are defined as follows:

Rµ(ãi, θ) = mµ(ãi, θ) − λVµ(ãi), (41)

and

Rν(ãi, θ) = mν(ãi, θ) − λVν(ãi), (42)

respectively, where λ ∈ [0,1] is the risk-aversion parameter of DM. The larger the value
of parameter λ, the greater the degree that DM hates risk.

Thereby, a lexicographic ranking method between two TrIFNs ã1 and ã2 can be sum-
marized as follows:

(1) if Rµ(ã1, θ) < Rµ(ã2, θ), then ã1 is smaller than ã2, denoted by ã1 < ã2;
(2) if Rµ(ã1, θ) > Rµ(ã2, θ), then ã1 is bigger than ã2, denoted by ã1 > ã2;
(3) if Rµ(ã1, θ) = Rµ(ã2, θ), then

(a) if Rν(ã1, θ) < Rν(ã2, θ), then ã1 < ã2;
(b) ifRν(ã1, θ) > Rν(ã2, θ), then ã1 > ã2;
(c) ifRν(ã1, θ) = Rν(ã2, θ), then ã1 and ã2 represent the same information, de-

noted by ã1 = ã2.

Remark 5. The weighting functions f and g can be chosen as several forms. For
computation convenience, the weighting functions f and g are respectively chosen as
Eqs. (15) and (16) in the following. Thus, the ranking indices of the membership and
non-membership functions for TrIFN ã are obtained as follows:

Rµ(ã, θ, λ) =
1

3
wã

[

(1 − θ)(a + 2b) + θ(c + 2d)
]

−
1

8
λ
[

6(d − a)2

+ 8(d − a)(a − b + c − d) + 3(a − b + c − d)2
]

(43)

and

Rν(ã, θ, λ) =
1

3
(1 − uã)

[

(1 − θ)(a + 2b) + θ(c + 2d)
]

−
1

8
λ
[

6(d − a)2

+ 8(d − a)(a − b + c − d) + 3(a − b + c − d)2
]

. (44)
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4. MAGDM Model and Method Using TrIFNs

In this section, a new method is developed to solve the MAGDM problems with TrIFNs
and incomplete weight preference information.

4.1. Description of MAGDM Problems Using TrIFNs

For some MAGDM problems, denote an alternative set by A = {A1,A2, . . . ,Am} and
an attribute set by C = {C1,C2, . . . ,Cn}. Assume that there are p DMs participating in
decision making, denote the set of DMs by E = {e1, e2, . . . , ep}. The weight vector of
attributes given by DM ek is wk = (wk

1,wk
2, . . . ,w

k
n)

T (k = 1,2, . . . , p), satisfying that
0 6 wk

j 6 1 and
∑n

j=1 wk
j = 1. The weight vector of DMs is V = (v1, v2, . . . , vp)T , satis-

fying that 0 6 vk 6 1 and
∑p

k=1 vk = 1. Both wk and V are unknown to be determined.
Suppose that the rating of an alternative Ai on an attribute Cj given by the DM ek is a
TrIFN ã′ k

ij = ([a′ k
ij , b′ k

ij , c′ k
ij , d ′ k

ij ];ωã′k
ij
, uã′k

ij
), where ωã′k

ij
and uã′k

ij
denote respectively the

maximum membership degree and the minimum non-membership degree of alternative
Ai on attribute Cj given by the DM ek , satisfying 0 6 ωã′k

ij
6 1, 0 6 uã′k

ij
6 1 and ωã′k

ij
+

uã′k
ij
6 1.

Hence, a MAGDM problem can be concisely expressed in matrix format as Ã
′
=

(ã′ k
ij )m×n (k = 1,2, . . . , p), which are referred to as TrIFN decision matrices usually used

to represent the MAGDM problem.
To eliminate the impact of different dimensions on the decision results, the matrix Ã′

needs to be normalized into Ã = (ãk
ij )m×n, where ãk

ij = ([ak
ij , b

k
ij , c

k
ij , d

k
ij ];ωãk

ij
, uãk

ij
),

ωãk
ij

= ωã′k
ij

and uãk
ij

= uã′k
ij

. In this paper, the normalization method is chosen as follows:

For benefit attributes,

ãk
ij =

([

a′ k
ij

/

d+
j , b′ k

ij

/

d+
j , c′ k

ij

/

d+
j , d ′ k

ij

/

d+
j

]

;ωãk
ij
, uãk

ij

)

. (45)

For cost attributes,

ãk
ij =

([

1 − d ′ k
ij

/

d+
j ,1 − c′ k

ij

/

d+
j ,1 − b′ k

ij

/

d+
j ,1 − a′ k

ij

/

d+
j

]

;ωãk
ij
, uãk

ij

)

, (46)

where d+
j = max{d ′ k

ij i = 1,2, . . . ,m; k = 1,2, . . . , p} (j = 1,2, . . . , n).

4.2. Incomplete Weight Information Structure

In decision making process, weights of attributes should be taken into account. The weight
vector of attributes given by ek is wk = (wk

1,w
k
2, . . . ,wk

n)
T (k = 1,2, . . . , p), satisfying

that 0 6 wk
j 6 1 (j = 1,2, . . . , n) and

∑n
j=1 wk

j = 1. Let 3k
0 = {wk|

∑n
j=1 wk

j = 1, wk
j >

ε for j = 1,2, . . . , n}, where ε is a sufficiently small positive number. The constraints
ε > 0 can ensure that each weight of wk

j > ε is not smaller than a given sufficiently small
positive number ε (for instance, ε = 0.05).
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In some real decision situations, the DM ek may specify some preference relations on
weights of attributes according to his/her knowledge, experience and judgment. Such in-
formation of attribute weights is incomplete. Usually incomplete information of attribute
weights can be obtained according to partial preference relations on weights given by
the DM ek and has several different structure forms. Li (2011a, 2011b) and Wan and Li
(2013a, 2013b) mathematically and rigorously expressed these weight information struc-
tures in the following five basic relations among attribute weights, which are denoted by
subsets 3k

h (h = 1,2,3,4,5) of weight vectors in 3k
0, respectively.

(1) The set of weights expressing a weak ranking: 3k
1 = {wk ∈ 3k

0|w
k
t > wk

j for all

t ∈ T k
1 and j ∈ J k

1 }, where T k
1 and J k

1 are two disjoint subsets of the subscript index set
N = {1,2, . . . , n}. Thus, 3k

1 is a set of all weight vectors in 3k
0 with the property that the

weight of an attribute in the set T k
1 is greater than or equal to that of an attribute in the

set J k
1 .

(2) The set of weights expressing a strict ranking: 3k
2 = {wk ∈ 3k

0|β
k
tj > wk

t − wk
j >

αk
tj for all t ∈ T k

2 and j ∈ J k
2 }, where αk

tj > 0 and βk
tj > 0 are constants, satisfying βk

tj >

αk
tj ; T k

2 and J k
2 are two disjoint subsets of N . Thus, 3k

2 is a set of all weight vectors in

3k
0 with the property that the weight of an attribute in the set T k

2 is greater than or equal
to that of an attribute in the set J k

2 but their difference does not exceed some range, i.e.,
a closed interval [αk

tj , β
k
tj ].

(3) The set of weights expressing a ranking with multiples: 3k
3 = {wk ∈ 3k

0|w
k
t >

ξk
tjw

k
j for all t ∈ T k

3 and j ∈ J k
3 }, where ξk

tj > 0 is a constant; T k
3 and J k

3 are two disjoint

subsets of N . Thus, 3k
3 is a set of all weight vectors in 3k

0 with the property that the weight
of an attribute in the set T k

3 is greater than or equal to ξk
tj multiple of that of an attribute

in the set J k
3 .

(4) The set of weights expressing an interval form: 3k
4 = {wk ∈ 3k

0|γ
k
j > wk

j >

ηk
j for all j ∈ J k

4 }, where γ k
j > 0 and ηk

j > 0 are constants, satisfying γ k
j > ηk

j > 0; J k
4 is a

subset of N . Thus, 3k
4 is a set of all weight vectors in 3k

0 with the property that the weight
of an attribute in the set J k

4 does not exceed some range, i.e., a closed interval [ηk
j , γ

k
j ].

(5) The set of weights expressing a ranking of differences: 3k
5 = {wk ∈ 3k

0|w
k
t −wk

j >

wk
l − wk

s for all t ∈ T k
5 , j ∈ J k

5 , l ∈ Lk
5, and s ∈ Sk

5 }, where T k
5 , J k

5 ,Lk
5, and Sk

5 are four
disjoint subsets of N . Thus, 3k

5 is a set of all weight vectors in 3k
0 with the property that

the difference between weights of attributes in the sets T k
5 and J k

5 , is greater than or equal
to that of attributes in the sets Lk

5 and Sk
5 .

Cases 1–5 are well known types of imprecise information, and Case 5 is a ranking
of differences of adjacent parameters obtained by weak rankings among the parameters,
which can be subsequently constructed based on Case 1.

In reality, usually the preference information structure 3k of attribute importance may
consist of several sets of the above basic sets 3k

h (h = 1,2,3,4,5) or may contain all
the five basic sets, which depend on the characteristic and need of the real-life decision
problems. For example, suppose that three attributes C1, C2 and C3 are used to assess the
stocks in some stock selection problem. Then, the subscript index set of all attributes is
N = {1,2,3}. The DM e1 may provide a preference information structure expressed as
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Table 1
The relationship between linguistic variables and intuitionistic

fuzzy values for rating the importance of experts.

Linguistic variables Intuitionistic fuzzy values

Very important (0.90,0.10,0.0)

Important (0.80,0.10,0.1)

Medium (0.60,0.30,0.1)

Not important (0.30,0.60,0.1)

Very unimportant (0.10,0.90,0.0)

follows (Li, 2011a, 2011b; Wan and Li, 2013a, 2013b):

31 =
{

w1 ∈ 31
0|0.156 w1

1 6 0.55, 0.2 6w1
2 6 0.65, 0.10 6w1

3 6 0.35,

w1
2 > w1

1, 0.026 w1
2 − w1

3 6 0.45
}

,

where 31
0 = {w1 = (w1

1,w1
2,w

1
3)

T |w1
1 + w1

2 + w1
3 = 1, w1

j > ε (j = 1,2,3)}. In fact,

31 may be regarded as consisting of the following three basic subsets:
The set of weights expressing a strict ranking: 31 = {w1 ∈ 31

0|0.02 6 w1
2 − w1

3 6

0.45}, β1
23 = 0.45 > α1

23 = 0.02, T 1
2 = {2} ⊆ N,J 1

2 = {3} ⊆ N and T 1
2 ∩ J 1

2 = φ.
The set of weights expressing a ranking with multiples: 31

3 = {w1 ∈ 31
0|w

1
2 > 1.2w1

1},
where ξ1

21 = 1.2 > 0, T 1
3 = {2} ⊆ N,J 1

3 = {1} ⊆ N and T 1
3 ∩ J 1

3 = φ.
The set of weights expressing an interval form: 31

4 = {w1 ∈ 31
0|0.15 6 w1

1 6

0.55, 0.2 6 w1
2 6 0.65, 0.106 w1

3 6 0.35, }, where γ 1
1 = 0.55 > η1

1 = 0.15, γ 1
2 = 0.65 >

η1
2 = 0.2, γ 1

3 = 0.35 > η1
3 = 0.1, J 1

4 = {1,2,3} ⊆ N .
In other words, the informationstructure 31 consists of the above three sets 31

2, 31
3 and

31
4. These parameters β1

23, α1
23, ξ1

21, γ 1
1 , η1

1 , γ 1
2 , η1

2 , γ 1
3 , and η1

3 can be chosen according
to the DM’s knowledge, experience, preference and judgment, and thus the corresponding
subsets T 1

2 , J 1
2 , T 1

3 , and J 1
4 can be determined.

4.3. Determining DMs’ Weights on the Basis of IFS Voting Model

In real-life decision problems, it is common that the importance of DMs are usually ex-
pressed by linguistic variables, such as “important”, “medium”, “not important” and so on.
Assume that the linguistic variables can be transformed into intuitionistic fuzzy values.
The corresponding relationship between the linguistic variables and intuitionistic fuzzy
values used in this paper is listed in Table 1.

Denote the intuitionistic fuzzy value of the importance for DM ek by δk = (µk, νk,πk).
According to the voting model of intuitionistic fuzzy sets, µk , νk , and πk can be interpreted
as proportions of the affirmative, dissent and abstention in a vote, respectively. Consid-
ering the possibility that in abstention group some people tend to cast affirmative votes,
others are dissenters and still others tend to abstain from voting, we can divide the absten-
tion proportion πk into three parts: µkπk , νkπk , and πkπk , which express the proportions
of the affirmative, dissent and abstention in original part of abstention (Liu and Wang,
2007). Thus, the score function of intuitionistic fuzzy value δk = (µk, νk,πk) is defined
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as sk = µk + µkπk = µk(2 − µk − νk) (k = 1,2, . . . , p). Normalized the score functions
sk (k = 1,2, . . . , p), the weight of DM ek can be generated as follows:

vk =
[

µk(2 − µk − νk)
]

/

p
∑

k=1

[

µk(2 − µk − νk)
]

(k = 1,2, . . . , p). (47)

4.4. Determining the Weights of Attributes Based on Bi-Objective Quadratic

Programming

By using the φA
w operator to integrate all the attribute values of alternative Ai given by

DM ek , the individual overall attribute value of alternative Ai given by DM ek is obtained
as follows:

ãk
i = φA

wk

(

ãk
i1, ã

k
i2, . . . , ã

k
in

)

=

([

n
∑

j=1

wk
ja

k
ij ,

n
∑

j=1

wk
jb

k
ij ,

n
∑

j=1

wk
jc

k
ij ,

n
∑

j=1

wk
jd

k
ij

]

;∧j {ωãk
ij
},∨j {uãk

ij
}

)

, (48)

where wk = (wk
1,w

k
2, . . . ,w

k
n)

T is the weight vector of attributes given by DM ek .
By Eqs. (13) and (14), the weighted possibility means of the membership and non-

membership functions for the individual overall attribute value ãk
i of alternative Ai are

computed as follows:

mµ(ãk
i , θk) =

1

3
∧j {ωãk

ij
}

[

(1 − θk)

n
∑

j=1

wk
j

(

ak
ij + 2bk

ij

)

+ θk

n
∑

j=1

wk
j

(

dk
ij + 2ck

ij

)

]

(49)

and

mν

(

ãk
i , θk

)

=
1

3

(

1 − ∨j

{

uãk
ij

})

[

(1 − θk)

n
∑

j=1

wk
j

(

ak
ij + 2bk

ij

)

+ θk

n
∑

j=1

wk
j

(

dk
ij + 2ck

ij

)

]

, (50)

respectively, where θk is the preference parameter for the lower and upper possibility
means of DM ek .

According to Eqs. (35) and (36), the weighted possibility variances of the membership
and non-membership functions for the individual overall attribute value ãk

i of alternative
Ai are calculated as follows:

Vµ

(

ãk
i

)

=
1

24
∧j

{

ωãk
ij

}

[

6

(

n
∑

j=1

wk
j

(

dk
ij − ak

ij

)

)2
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+ 8

n
∑

j=1

wk
j

(

dk
ij − ak

ij

)

n
∑

j=1

wk
j

(

ak
ij − bk

ij + ck
ij − dk

ij

)

+ 3

(

n
∑

j=1

wk
j

(

ak
ij − bk

ij + ck
ij − dk

ij

)

)2]

(51)

and

Vν(ã
k
i ) =

1

24

(

1 − ∨j

{

uãk
ij

})

[

6

(

n
∑

j=1

wk
j

(

dk
ij − ak

ij

)

)2

+ 8

n
∑

j=1

wk
j

(

dk
ij − ak

ij

)

n
∑

j=1

wk
j

(

ak
ij − bk

ij + ck
ij − dk

ij

)

+ 3

(

n
∑

j=1

wk
j

(

ak
ij − bk

ij + ck
ij − dk

ij

)

)2]

. (52)

According to Eqs. (43) and (44), the ranking indices of the membership and non-
membership functions for the individual overall attribute value ãk

i of alternative Ai are
calculated as follows:

Rµ

(

ãk
i , θk, λk

)

=
1

3
∧j {ωãk

ij
}

{[

(1 − θk)

n
∑

j=1

wk
j

(

ak
ij + 2bk

ij

)

+ θk

n
∑

j=1

wk
j

(

dk
ij + 2ck

ij

)

]

−
1

8
λk

[

6

( n
∑

j=1

wk
j

(

dk
ij − ak

ij

)

)2

+ 8

n
∑

j=1

wk
j

(

dk
ij − ak

ij

)

n
∑

j=1

wk
j

(

ak
ij − bk

ij + ck
ij − dk

ij

)

+ 3

(

n
∑

j=1

wk
j

(

ak
ij − bk

ij + ck
ij − dk

ij

)

)2]}

(53)

and

Rν

(

ãk
i , θk, λk

)

=
1

3

(

1 − ∨j {uãk
ij
}
)

{[

(1 − θk)

n
∑

j=1

wk
j

(

ak
ij + 2bk

ij

)

+ θk

n
∑

j=1

wk
j

(

dk
ij + 2ck

ij

)

]

−
1

8
λk

[

6

(

n
∑

j=1

wk
j

(

dk
ij − ak

ij

)

)2
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+ 8

n
∑

j=1

wk
j

(

dk
ij − ak

ij

)

n
∑

j=1

wk
j

(

ak
ij − bk

ij + ck
ij − dk

ij

)

+ 3

(

n
∑

j=1

wk
j

(

ak
ij − bk

ij + ck
ij − dk

ij

)

)2]}

, (54)

where λk is the risk aversion parameter of DM ek .
For each alternative, the bigger the individual overall attribute value, then the bigger the

collective overall attribute value, thus the larger the possibility of the alternative becoming
the best alternative. Hence, the following multi-objective fuzzy programming model for
DM ek is set up:

max
{

ãk
i

}

(i = 1,2, . . . ,m)

s.t. wk =
(

wk
1,wk

2, . . . ,w
k
n

)T
∈ 3k. (55)

According to the ranking method of TrIFNs in Section 2.4, the bigger the ranking in-
dices of membership and non-membership functions, the better the alternative. Therefore,
the reasonable weight vector of attributes wk = (wk

1,w
k
2, . . . ,wk

n)
T should be obtained so

that all the ranking indices of membership and non-membership functions for alternatives
could be as big as possible. Consequently, Eq. (55) can be transformed into the multi-
objective programming model as follows:

max
{

Rµ

(

ãk
i , θk

)

,Rν

(

ãk
i , θk

)}

(i = 1,2, . . . ,m)

s.t. wk =
(

wk
1,wk

2, . . . ,w
k
n

)T
∈ 3k. (56)

Since there is no any preference among the alternatives, Eq. (56) can be further trans-
formed into the bi-objective programming model as follows:

max

{

zk
1 =

m
∑

i=1

Rµ

(

ãk
i , θk

)

}

,

max

{

zk
2 =

m
∑

i=1

Rν

(

ãk
i , θk

)

}

s.t. wk =
(

wk
1,wk

2, . . . ,w
k
n

)T
∈ 3k. (57)

Obviously, Eq. (57) is a bi-objective non-linear programming model on the decision
variable vector wk = (wk

1,wk
2, . . . ,w

k
n)

T . There are few standard ways of defining a solu-
tion of multi-objective programming. Normally, the concept of Pareto optimal (efficient)
solutions is commonly used. There exist several solution methods for them. However, in
this study we focus on developing a linear sum method based on membership function to
solve Eq. (56) in the sense of Pareto optimality.
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The two objective functions zk
1 and zk

2 in Eq. (57) are the functions of the decision vari-
able vector wk = (wk

1,w
k
2, . . . ,wk

n)
T , simply denoted by zk

1(w
k) and zk

2(w
k). Let zk max

t

and wk
t respectively be the maximum objective value and the optimal solution for the

following single objective quadratic programming model:

max
{

zk
t = zk

t

(

wk
)}

s.t. wk =
(

wk
1,wk

2, . . . ,w
k
n

)T
∈ 3k . (58)

Then, set zk min
t = min{zk

t (w
k
1), z

k
t (w

k
2)} (t = 1,2). The membership function of the

objective function zk
t = zk

t (w
k) (t = 1,2) can be computed as follows:

µzk
t

(

wk
)

=















0, if x < zk min
t ,

zk
t −zk min

t

zk max
t −zk min

t

, if zk min
t 6 zk

t 6 zk max
t ,

1, if zk
t > zk max

t .

(59)

Thus, Eq. (57) can be solved by the following single objective quadratic programming
model:

max
{

η1µzk
1

(

wk
)

+ η2µzk
2

(

wk
)}

s.t. wk =
(

wk
1,wk

2, . . . ,w
k
n

)T
∈ 3k, (60)

where ηt is the weight of zk
t , satisfying that ηt > 0 (t = 1,2) and η1 + η2 = 1.

Remark 6. Equations (58) and (60) are the quadratic programming models. When the
numbers of decision variables in the models are finite, they can be solved by using the
common software, such as Matlab and Lingo. When the numbers of decision variables
are very large, they can be efficiently solved by using the sequential minimal optimization
(SMO) algorithm (Zhang et al., 2009; Keerthi et al., 2001).

4.5. MAGDM Method using TrIFNs

In sum, an algorithm and process of the MAGDM problems with TrIFNs and incomplete
weight preference information may be summarized as follows.

Step 1: Normalize the decision matrix Ã′ k into Ãk according to Eqs. (45) and (46).
Step 2: Determine the weight vector of DMs V = (v1, v2, . . . , vp)T according to

Eqs. (47).
Step 3: Construct the bi-objective programming model (57) to derive the attribute

weight vector wk = (wk
1,w

k
2, . . . ,wk

n)
T given by DM ek through solving Eq. (60).

Step 4: Calculate the individual overall attribute value ãk
i of alternative Ai given by ek

according to Eq. (58).
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Step 5: Combined the weight vector of DMs V = (v1, v2, . . . , vp)T with the φA
w opera-

tor, the collective overall attribute value of alternative Ai is calculated as follows:

ãi = φA
V

(

ã1
i , ã

2
i , . . . , ã

p
i

)

=

p
∑

k=1

vk ã
k
i , (i = 1,2, . . . ,m). (61)

Step 6: According to Eqs. (43) and (44), the ranking indices of the membership and
non-membership functions for the collective overall attribute value ãi of alternative Ai ,
Rµ(ãi, θ, λ) and Rν(ãi, θ, λ), are obtained, where θ =

∑p
k=1 vkθk is the preference pa-

rameter of the decision group, λ =
∑p

k=1 vkλk is the risk aversion parameter of the deci-
sion group.

Step 7: Rank the alternatives in terms of Rµ(ãi, θ, λ) and Rν(ãi, θ, λ) (i =

1,2, . . . ,m) by the ranking method of Section 3.3.

5. An Application to a Stock Selection Problem and cOMPARISON Analysis of the

Results Obtained

In this section, a stock selection problem is analyzed and the comparison analyzes are also
conducted to interpret the superiority of the method proposed in this paper.

5.1. A Stock Selection Problem and the Analysis Process

In this subsection, the proposed MAGDM method is illustrated with a problem of stock
selection. Assume that an investor desires to invest some stocks in Shanghai stock ex-
change. He employed four experts (i.e., DMs) e1, e2, e3, and e4 to help him to select the
best stock from the four stocks {A1,A2,A3,A4}. The four experts assess the four stocks on
the basis of five attributes, namely profit ability C1, debt paying ability C2, growth ability
C3, market performance C4 and investment income C5. The evaluations of importance
of experts e1, e2, e3, and e4 are given in the form of linguistic variables as “very im-
portant”, “important”, “important” and “medium”, respectively. The relationship between
linguistic variables and intuitionistic fuzzy values is listed in Table 1. After statistical pro-
cessing, the assessment information of each stock on attributes given by experts can be
expressed as TrIFNs shown in Tables 2, 3 and 4, respectively. For example, in the fourth
row and the third column of Table 2, the TrIFN ([3,4,5,7]; 0.6,0.3) indicates that expert
e1 believes that the lower and upper limit for the debt paying ability of stock A3 are 3
and 7, respectively, the most possible value is between 4 and 5. Meanwhile, the maximum
degree of membership for the most possible value [4,5] is 0.6, the minimum degree of
non-membership is 0.3, and the hesitancy degree is 0.1.

The preference information structures 3k of attribute importance given by the DM ek

(k = 1,2,3,4) are given as follows:

31 =
{

w1 ∈ 31
0

∣

∣w1
1 > 2w1

2, 0.1 6 w1
2 6 0.4, 0.18 6 w1

3 6 0.31,

w1
4 − w1

5 > w1
2 − w1

3, 0.2 6 w1
5 6 0.5},
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Table 2
TrIFN decision matrix given by expert e1 .

C1 C2 C3 C4 C5

A1 ([6, 7, 8, 9];0.6, 0.2)) ([3, 4, 5, 6];0.6, 0.4) ([5, 6, 7, 9];0.3, 0.4) ([6, 7, 8, 9];0.5, 0.3) ([2, 3, 4, 6];0.6, 0.3)

A2 ([7, 8, 9, 10];0.7, 0.3) ([5, 6, 7, 8];0.5, 0.3) ([4, 5, 7, 8];0.7, 0.3) ([5, 7, 8, 9];0.4, 0.6) ([3, 4, 5, 7];0.4, 0.4)

A3 ([4, 5, 6, 7];0.4, 0.2) ([3, 4, 5, 7];0.6, 0.3) ([2, 4, 5, 6];0.5, 0.3) ([6, 7, 8, 9];0.5, 0.2) ([7, 8, 9, 10];0.3, 0.3)

A4 ([1, 2, 4, 5];0.8, 0.1) ([3, 4, 6, 7];0.2, 0.4) ([5, 6, 7, 8];0.6, 0.1) ([4, 5, 6, 7];0.7, 0.2) ([3, 6, 8, 9];0.2, 0.6)

Table 3
TrIFN decision matrix given by expert e2 .

C1 C2 C3 C4 C5

A1 ([1, 3, 4, 5];0.5, 0.4) ([2, 4, 6, 8];0.8, 0.2) ([2, 5, 6, 8];0.7, 0.1) ([1, 4, 5, 6];0.6, 0.3) ([1, 2, 3, 4];0.5, 0.3)

A2 ([2, 4, 6, 8];0.6, 0.3) ([4, 6, 8, 10];0.7, 0.2) ([4, 6, 8, 10];0.5, 0.3) ([3, 5, 6, 7];0.8, 0.1) ([4, 5, 6, 7];0.3, 0.6)

A3 ([2, 4, 6, 10];0.6, 0.2) ([2, 4, 6, 8];0.8, 0.2) ([1, 2, 6, 8];0.6, 0.2) ([1, 2, 3, 5];0.6, 0.4) ([2, 4, 6, 8];0.7, 0.1)

A4 ([2, 3, 4, 7];0.5, 0.3) ([1, 2, 3, 5];0.6, 0.2) ([1, 3, 5, 7];0.7, 0.2) ([1, 2, 4, 5];0.5, 0.3) ([1, 3, 4, 6];0.8, 0.1)

Table 4
TrIFN decision matrix given by expert e3 .

C1 C2 C3 C4 C5

A1 ([6, 7, 8, 9];0.7, 0.2) ([1, 3, 5, 6];0.4, 0.2) ([3, 5, 6, 7];0.4, 0.3) ([1, 2, 4, 5];0.7, 0.1) ([5, 6, 7, 9];0.5, 0.3)

A2 ([5, 7, 8, 9];0.6, 0.3) ([4, 5, 6, 8];0.7, 0.3) ([4, 6, 7, 8];0.3, 0.1) ([3, 5, 6, 8];0.5, 0.3) ([2, 3, 4, 5];0.4, 0.5)

A3 ([7, 8, 9, 10];0.6, 0.2) ([3, 4, 6, 7];0.5, 0.2) ([1, 2, 6, 8];0.5, 0.3) ([1, 2, 4, 5];0.6, 0.3) ([6, 7, 8, 9];0.5, 0.4)

A4 ([4, 5, 7, 9];0.5, 0.3) ([1, 2, 3, 4];0.4, 0.1) ([1, 3, 5, 6];0.6, 0.2) ([1, 2, 3, 5];0.5, 0.2) ([4, 5, 7, 9];0.6, 0.2)

Table 5
TrIFN decision matrix given by expert e4 .

C1 C2 C3 C4 C5

A1 ([4, 5, 7, 8];0.4, 0.5) ([4, 5, 6, 7];0.6, 0.4) ([5, 6, 7, 9];0.3, 0.4) ([4, 7, 8, 10];0.3, 0.6) ([1, 2, 3, 4];0.5, 0.3)

A2 ([5, 6, 7, 9];0.3, 0.5) ([5, 6, 7, 8];0.4, 0.3) ([4, 5, 7, 8];0.7, 0.3) ([5, 6, 8, 9];0.5, 0.6) ([2, 3, 4, 5];0.3, 0.4)

A3 ([3, 5, 6, 8];0.4, 0.2) ([2, 4, 5, 8];0.6, 0.2) ([2, 4, 5, 6];0.5, 0.3) ([3, 5, 6, 8];0.4, 0.2) ([4, 6, 8, 9];0.5, 0.4)

A4 ([1, 2, 4, 6];0.6, 0.3) ([3, 5, 6, 7];0.5, 0.1) ([5, 6, 7, 8];0.4, 0.3) ([2, 4, 6, 7];0.5, 0.1) ([3, 4, 5, 6];0.3, 0.5)

32 =
{

w2 ∈ 32
0

∣

∣w2
1 > 3w2

2, 0.12 6 w2
2 6 0.45, 0.15 6 w2

3 6 0.35,

w2
4 − w2

3 > w2
2 − w2

1, 0.1 6 w2
5 6 0.42

}

,

33 =
{

w3 ∈ 33
0

∣

∣w3
1 > 2.4w3

2, 0.186 w3
2 6 0.44, 0.216 w3

3 6 0.36,

w3
2 − w3

3 > w3
4 − w3

5, 0.11 6 w3
4 6 0.27

}

,

and

34 =
{

w4 ∈ 34
0

∣

∣w4
2 > 1.5w4

3, 0.2 6 w4
2 6 0.39, 0.15 6 w4

3 − w4
5 6 0.35,

w4
2 − w4

3 > w4
4 − w4

5, 0.2 6 w4
4 6 0.34

}

,

respectively.
Step 1: By using Eq. (45), the fuzzy decision matrices of Tables 2–5 can be respec-

tively normalized into the normalized decision matrices shown in Tables 6–9.
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Table 6
The normalized TrIFN decision matrix given by expert e1 .

C1 C2 C3 C4 C5

A1 ([0.6,0.7,0.8,0.9];0.6,0.2) ([0.3,0.4,0.5,0.6];0.6,0.4) ([0.5,0.6,0.7,0.9];0.3,0.4) ([0.6,0.7,0.8,0.9];0.5,0.3) ([0.2,0.3,0.4,0.6];0.6,0.3)

A2 ([0.7,0.8,0.9,1.0];0.7,0.3) ([0.5,0.6,0.7,0.8];0.5,0.3) ([0.4,0.5,0.7,0.8];0.7,0.3) ([0.5,0.7,0.8,0.9];0.4,0.6) ([0.3,0.4,0.5,0.7];0.4,0.4)

A3 ([0.4,0.5,0.6,0.7];0.4,0.2) ([0.3,0.4,0.5,0.7];0.6,0.3) ([0.2,0.4,0.5,0.6];0.5,0.3) ([0.6,0.7,0.8,0.9];0.5,0.2) ([0.7,0.8,0.9,1.0];0.3,0.3)

A4 ([0.1,0.2,0.4,0.5];0.8,0.1) ([0.3,0.4,0.6,0.7];0.2,0.4) ([0.5,0.6,0.7,0.8];0.6,0.1) ([0.4,0.5,0.6,0.7];0.7,0.2) ([0.3,0.6,0.8,0.9];0.2,0.6)

Table 7
The normalized TrIFN decision matrix given by expert e2 .

C1 C2 C3 C4 C5

A1 ([0.1,0.3,0.4,0.5];0.5,0.4) ([0.2,0.4,0.6,0.8];0.8,0.2) ([0.2,0.5,0.6,0.8];0.7,0.1) ([0.1,0.4,0.5,0.6];0.6,0.3) ([0.1,0.2,0.3,0.4];0.5,0.3)

A2 ([0.2,0.4,0.6,0.8];0.6,0.3) ([0.4,0.6,0.8,1.0];0.7,0.2) ([0.4,0.6,0.8,1.0];0.5,0.3) ([0.3,0.5,0.6,0.7];0.8,0.1) (0.4,0.5,0.6,0.7];0.3,0.6)

A3 ([0.2,0.4,0.6,1.0];0.6,0.2) ([0.2,0.4,0.6,0.8];0.8,0.2) ([0.1,0.2,0.6,0.8];0.6,0.2) ([0.1,0.2,0.3,0.5];0.6,0.4) ([0.2,0.4,0.6,0.8];0.7,0.1)

A4 ([0.2,0.3,0.4,0.7];0.5,0.3) ([0.1,0.2,0.3,0.5];0.6,0.2) ([0.1,0.3,0.5,0.7];0.7,0.2) ([0.1,0.2,0.4,0.5];0.5,0.3) ([0.1,0.3,0.4,0.6];0.8,0.1)

Table 8
The normalized TrIFN decision matrix given by expert e3 .

C1 C2 C3 C4 C5

A1 ([0.6,0.7,0.8,0.9];0.7,0.2) ([0.1,0.3,0.5,0.6];0.4,0.2) ([0.3,0.5,0.6,0.7];0.4,0.3) ([0.1,0.2,0.4,0.5];0.7,0.1) ([0.5,0.6,0.7,0.9];0.5,0.3)

A2 ([0.5,0.7,0.8,0.9];0.6,0.3) ([0.4,0.5,0.6,0.8];0.7,0.3) ([0.4,0.6,0.7,0.8];0.3,0.1) ([0.3,0.5,0.6,0.8];0.5,0.3) ([0.2,0.3,0.4,0.5];0.4,0.5)

A3 ([0.7,0.8,0.9,1.0];0.6,0.2) ([0.3,0.4,0.6,0.7];0.5,0.2) ([0.1,0.2,0.6,0.8];0.5,0.3) ([0.1,0.2,0.4,0.5];0.6,0.3) ([0.6,0.7,0.8,0.9];0.5,0.4)

A4 ([0.4,0.5,0.7,0.9];0.5,0.3) ([0.1,0.2,0.3,0.4];0.4,0.1) ([0.1,0.3,0.5,0.6];0.6,0.2) ([0.1,0.2,0.3,0.5];0.5,0.2) ([0.4,0.5,0.7,0.9];0.6,0.2)

Table 9
The normalized TrIFN decision matrix given by expert e4 .

C1 C2 C3 C4 C5

A1 ([0.4,0.5,0.7,0.8];0.4,0.5) ([0.4,0.5,0.6,0.7];0.6,0.4) ([0.5,0.6,0.7,0.9];0.3,0.4) ([0.4,0.7,0.8,1.0];0.3,0.6) ([0.1,0.2,0.3,0.4];0.5,0.3)

A2 ([0.5,0.6,0.7,0.9];0.3,0.5) ([0.5,0.6,0.7,0.8];0.4,0.3) ([0.4,0.5,0.7,0.8];0.7,0.3) ([0.5,0.6,0.8,0.9];0.5,0.6) ([0.2,0.3,0.4,0.5];0.3,0.4)

A3 ([0.3,0.5,0.6,0.8];0.4,0.2) ([0.2,0.4,0.5,0.8];0.6,0.2) ([0.2,0.4,0.5,0.6];0.5,0.3) ([0.3,0.5,0.6,0.8];0.4,0.2) ([0.4,0.6,0.8,0.9];0.5,0.4)

A4 ([0.1,0.2,0.4,0.6];0.6,0.3) ([0.3,0.5,0.6,0.7];0.5,0.1) ([0.5,0.6,0.7,0.8];0.4,0.3) ([0.2,0.4,0.6,0.7];0.5,0.1) ([0.3,0.4,0.5,0.6];0.3,0.5)
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Step 2: Combined Table 1 and Eq. (47), the weight vector of experts is obtained as
V = (0.2711,0.2651,0.2651,0.1988)T .

Step 3: Assume that the preference parameter and risk aversion parameter of expert e1

are θ1 = 0.2 and λ1 = 0.2, respectively. Taking the normalized matrix Ã1 as an example,
the bi-objective programming model for expert e1 is constructed by Eq. (57) with ε = 0.5

as follows:

max z1
1

max z1
2

s.t.























w1
1 > 2w1

2, 0.1 6 w1
2 6 0.4, 0.18 6 w1

3 6 0.31,

w1
4 − w1

5 > w1
2 − w1

3, 0.2 6 w1
5 6 0.5

∑5
j=1 w1

j = 1,

0.05 6 w1
j 6 1 (j = 1,2,3,4,5),

(62)

where

z1
1 = 4.693w1

1 + 3.707w1
2 + 4.507w1

3 + 5.2w1
4 + 3.647w1

5 − 0.015(3w1
1

+ w1
2 + w1

3 − 4w1
4 + 2w1

5)
2 + (0.06w1

1 + 0.02w1
2 + 0.04w1

3 − 0.08w1
4

+ 0.04w1
5)(2w1

1 + 2w1
2 + 3w1

3 + 2w1
4 + 3w1

5) + 0.0075(2w1
1 + 2w1

2 + 3w1
3

+ 2w1
4 + 3w1

5)
2 − 0.015(3w1

1 + w1
2 + w1

3 − 2w1
4 + 2w1

5) + (0.06w1
1

+ 0.02w1
2 + 0.02w1

3 − 0.04w1
4 + 0.04w1

5)(2w1
1 + 2w1

2 + 2w1
3 + 3w1

4 + 3w1
5)

+0.0075(2w1
1 + 2w1

2 + 2w1
3 + 2w1

4 + 3w1
5)

2 − 0.015(3w1
1 + 2w1

2 + w1
3

− 4w1
4 + w1

5) + (0.06w1
1 + 0.04w1

2 + 0.02w1
3 − 0.08w1

4 + 0.02w1
5)

× (2w1
1 + 3w1

2 + 4w1
3 + 2w1

4 + 2w1
5) + 0.0075(2w1

1 + 3w1
2 + 3w1

3 + 2w1
4

+ 2w1
5)

2 − 0.015(4w1
1 + w1

2 + w1
3 − 2w1

4 + w1
5) + (0.08w1

1 + 0.02w1
2

+ 0.02w1
3 − 0.08w1

4 + 0.02w1
5)(2w1

1 + 2w1
2 + w1

3 + 2w1
4 + 4w1

5)

+ 0.0075(2w1
1 + 3w1

2 + 2w1
3 + 2w1

4 + 4w1
5)

2,

z1
2 = 10.3w1

1 + 8.467w1
2 + 9.44w1

3 + 11.89w1
4 + 9.707w1

5 − 0.02(3w1
1 + w1

2

+ 2w1
3 − 4w1

4 + 2w1
5)

2 + (0.08002w1
1 + 0.02667w1

2 + 0.05344w1
3

− 0.1067w1
4 + 0.05344w1

5)(2w1
1 + 2w1

2 + 3w1
3 + 2w1

4 + 3w1
5) + 0.01(2w1

1

+ 2w1
2 + 3w1

3 + 2w1
4 + 3w1

5)
2 − 0.02(3w1

1 + w1
2 + w1

3 − 2w1
4 + 2w1

5)

+ (0.08002w1
1 + 0.02667w1

2 + 0.02667w1
3 − 0.05334w1

4 + 0.05334w1
5)

× (2w1
1 + 2w1

2 + 2w1
3 + 3w1

4 + 3w1
5) + 0.01(2w1

1 + 2w1
2 + 2w1

3

+ 3w1
4 + 3w1

5)
2 − 0.02(3w1

1 + 2w1
2 + w1

3 − 4w1
4 + w1

5) + (0.08002w1
1
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+ 0.05334w1
2 + 0.02667w1

3 − 0.05334w1
4 + 0.02667w1

5)(2w1
1 + 3w1

2

+ w1
3 + 2w1

4 + 2w1
5) + 0.01(2w1

1 + 3w1
2 + 3w1

3 + 2w1
4 + 2w1

5)
2 − 0.02(4w1

1

+ w1
2 + w1

3 − 2w1
4 + w1

5) + (0.01067w1
1 + 0.02667w1

2 + 0.02667w1
3

+ 0.02667w1
5)(2w1

1 + 2w1
2 + 3w1

3 + 2w1
4 + 4w1

5) + 0.01(2w1
1 + 3w1

2 + 2w1
3

+ 2w1
4 + 4w1

5)
2.

Taking η1 = η2 = 0.5 and solving Eq. (62) by Eqs. (58)–(60), we can derive the weight
vector of attributes given by expert e1 as follows:

w1 = (0.191,0.235,0.247,0.145,0.182)T .

Assume that the preference parameter and risk aversion parameter of experts e2, e3 and
e4 are θ2 = 0.5, θ3 = 0.7, θ4 = 0.9, λ2 = 0.5, λ3 = 0.7, and λ4 = 0.9, respectively. By the
same way, the weight vectors of attributes given by other experts are respectively computed
as follows:

w2 = (0.206,0.13,0.321,0.165,0.178)T ,

w3 = (0.254,0.113,0.317,0.165,0.151)T ,

and

w4 = (0.2,0.35,0.2,0.2,0.05)T .

Step 4: According to Eq. (48), the individual overall attribute values of stocks are
respectively calculated as follows:

ã1
1 =

(

[0.4840,0.5899,0.6959,0.8459];0.3,0.6
)

,

ã1
2 =

(

[0.5119,0.6439,0.7679,0.8998];0.2,0.5
)

,

ã1
3 =

(

[0.5079,0.6319,0.7379,0.8538];0.1,0.5
)

,

ã1
4 =

(

[0.3280,0.4859,0.6539,0.7599];0.2,0.6
)

,

ã2
1 =

(

[0.1650,0.4013,0.5550,0.7200];0.5,0.1
)

,

ã2
2 =

(

[0.4050,0.6150,0.8100,1.0050];0.3,0.1
)

,

ã2
3 =

(

[0.2138,0.4275,0.6750,0.9750];0.2,0.1
)

,

ã2
4 =

(

[0.1500,0.3113,0.4575,0.7125];0.4,0.1
)

,

ã3
1 =

(

[0.1883,0.2948,0.3912,0.4675];0.5,0.3
)

,

ã3
2 =

(

[0.2502,0.3475,0.4260,0.5225];0.3,0.5
)

,

ã3
3 =

(

[0.1997,0.2672,0.4267,0.5152];0.5,0.4
)

,



MAGDM with TrIFNs and Application to Stock Selection 689

ã3
4 =

(

[0.1200,0.2085,0.3145,0.4105];0.4,0.5
)

,

ã4
1 =

(

[0.4200,0.5750,0.7100,0.8650];0.3,0.6
)

,

ã4
2 =

(

[0.4950,0.6100,0.7650,0.9000];0.3,0.6
)

,

ã4
3 =

(

[0.3100,0.5400,0.6750,0.9000];0.4,0.4
)

,

ã4
4 =

(

[0.3250,0.4950,0.6500,0.7850];0.3,0.5
)

.

Step 5: Combined the weight vector of expertsV = (0.2711,0.2651,0.2651,0.1988)T

with Eq. (61), the collective overall attribute values of stocks are calculated as follows:

ã1 =
(

[0.3083,0.4587,0.5806,0.7160]; 0.3,0.6
)

,

ã2 =
(

[0.4109,0.5509,0.6879,0.8277]; 0.2,0.6
)

,

ã3 =
(

[0.3089,0.4628,0.6262,0.8054]; 0.1,0.5
)

,

ã4 =
(

[0.2251,0.3679,0.5111,0.6597]; 0.2,0.6
)

.

Step 6: According to Eqs. (43) and (44), the ranking indices of the membership and
non-membership functions for stocks are respectively obtained as follows:

Rµ(ã1, θ, λ) = 0.1656, Rµ(ã2, θ, λ) = 0.1966, Rµ(ã3, θ, λ) = 0.1776,

Rµ(ã4, θ, λ) = 0.1434, Rν(ã1, θ, λ) = 0.2208, Rν(ã2, θ, λ) = 0.2621,

Rν(ã3, θ, λ) = 0.2368, Rν(ã4, θ, λ) = 0.1912.

Step 7: Since Rµ(ã2, θ, λ) > Rµ(ã3, θ, λ) > Rµ(ã1, θ, λ) > Rµ(ã4, θ, λ), the ranking
order of stocks is generated as A2 ≻ A3 ≻ A1 ≻ A4. The best selection is stock A2.

In the sequel, we calculated the ranking indices of stocks with different preference and
risk aversion parameters of experts. Some of the ranking orders of alternatives are listed
in Table 10.

It is easily seen from Table 10 that the ranking orders of alternatives may be changed
when the preference and risk aversion parameters of DMs differ. For instance, if all ex-
perts prefer upper possibility means and like risk extremely, i.e., θ1 = θ2 = θ3 = θ4 = 0

and λ1 = λ2 = λ3 = λ4 = 0, then the ranking order of stocks is A4 ≻ A2 ≻ A1 ≻ A3; if all
experts are indifferent between the lower and upper possibility means and hate risk, i.e.,
θ1 = θ2 = θ3 = θ4 = 0.5, and the risk aversion parameters are λ1 = λ2 = λ3 = λ4 = 0.5,
then the ranking order of stocks is A3 ≻ A2 ≻ A4 ≻ A1; if all experts prefer lower pos-
sibility means and hate risk extremely, i.e., θ1 = θ2 = θ3 = θ4 = 0.9 and λ1 = λ2 = λ3 =

λ4 = 0.9, then the ranking order of stocks is A3 ≻ A2 ≻ A4 ≻ A1. This analysis shows
that it is very necessarily and reasonable to consider the preference and risk aversion pa-
rameters of DMs in the MAGDM problems under intuitionistic fuzzy environment since
different DM has different preference on the lower and upper weighted possibility means
and has different degrees of risk aversion.



690 S. Wan, J. Dong

Table 10
The ranking order of alternatives with different preference and risk aversion parameters.

θ1 λ1 θ2 λ2 θ3 λ3 θ4 λ4 Ranking orders

0 0 0 0 0 0 0 0 A4 ≻ A2 ≻ A1 ≻ A3

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 A4 ≻ A2 ≻ A1 ≻ A3

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 A2 ≻ A3 ≻ A1 ≻ A4

0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 A3 ≻ A2 ≻ A4 ≻ A1

0.2 0.2 0.5 0.5 0.7 0.7 0.9 0.9 A2 ≻ A3 ≻ A1 ≻ A4

0.5 0.5 0.1 0.1 0.3 0.3 0.7 0.7 A4 ≻ A2 ≻ A1 ≻ A3

0.4 0.4 0.3 0.3 0.7 0.7 0.6 0.6 A4 ≻ A1 ≻ A2 ≻ A3

0.9 0.9 0.7 0.7 0.2 0.2 0.5 0.5 A3 ≻ A2 ≻ A4 ≻ A1

0.8 0.8 0.6 0.2 0.5 0.2 0.2 0.6 A2 ≻ A3 ≻ A1 ≻ A4

0.5 0.8 0.1 0.8 0.3 0.7 0.7 0.3 A3 ≻ A2 ≻ A4 ≻ A1

0.4 0.8 0.3 0.7 0.7 0.3 0.6 0.4 A4 ≻ A2 ≻ A1 ≻ A3

0.9 0.2 0.7 0.3 0.2 0.6 0.5 0.8 A1 ≻ A2 ≻ A3 ≻ A4

0.8 0.3 0.6 0.2 0.5 0.8 0.2 0.7 A4 ≻ A3 ≻ A1 ≻ A2

5.2. Comparison Analysis with the Method Using TrIFNs Geometric Aggregation

Operators

Wu and Cao (2013) proposed MAGDM method based on TrIFNs geometric ag-
gregation operators. Next, we adopt the method (Wu and Cao, 2013) to solve the
above stock selection problem. Assume that the weight vector of DMs is V =

(0.2711,0.2651,0.2651,0.1988)T and the weight vector of attributes is w = ( 1
p

∑p

k=1 wk
1,

1
p

∑p

k=1 wk
2,

1
p

∑p

k=1 wk
n)

T = (0.2368,0.2387,0.1538,0.1676,0.2031)T . Wu and Cao
(2013) used the TrIFNs weighted geometric operator and hybrid geometric operator to
obtain the collective overall values and then calculated the distances between collective
overall values and positive ideal solution as follows:

d
(

r̃1, r
+
)

= 0.6753, d
(

r̃2, r
+
)

= 0.6498,

d
(

r̃3, r
+
)

= 0.6590, d
(

r̃4, r
+
)

= 0.7256.

Then, the ranking order by Wu and Cao (2013) is A2 ≻ A3 ≻ A1 ≻ A4, the best sup-
plier is A2.

Obviously, the ranking orders obtained by the methods of Wu and Cao (2013) and this
paper are significantly different. Compared with the former, the latter has the following
advantages:

(i) The new operation laws of TrIFNs defined in the latter take the conservative and
reliable principle, which can effectively avoid losing and distorting the information, while
the operation laws of the former came from Wang and Zhang (2009), which may distort the
information. The normalized method proposed in the latter ensures that the normalized
results of TrIFNs are still TrIFNs, while the former did not consider the normalization
of data and thus only suited for the situation where the corresponding trapezoidal fuzzy
numbers in TrIFNs already lie in the unit interval [0,1].

(ii) This latter sufficiently considers the different preference for the upper and lower
possibility means and the different risk preference of different DM, which makes the deci-
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Table 11
IF decision matrix given by expert e1.

C1 C2 C3 C4 C5

A1 (0.6,0.2) (0.6,0.4) (0.3,0.4) (0.5,0.3) (0.6,0.3)

A2 (0.7,0.3) (0.5,0.3) (0.7,0.3) (0.4,0.6) (0.4,0.4)

A3 (0.4,0.2) (0.6,0.3) (0.5,0.3) (0.5,0.2) (0.3,0.3)

A4 (0.8,0.1) (0.2,0.4) (0.6,0.1) (0.7,0.2) (0.2,0.6)

sion results more consistent with the actual situation, while the former did not consider the
DM’s risk preference (namely it assumes that all DMs are risk neutral). Thus, the ranking
order obtained by the former, A2 ≻ A3 ≻ A1 ≻ A4, is just a special case of that obtained
by the latter (i.e., the case of θ1 = θ2 = θ3 = θ4 = 0.5 and λ1 = λ2 = λ3 = λ4 = 0.5 as
listed in Table 10).

(iii) This latter proposes the method to determine the weights of experts on the basis
of intuitionistic fuzzy set voting model and constructs the bi-objective programming to
objectively derive the attribute weights, whereas the former just assumed that the weights
of DMs and attributes are known in advance. That is to say, the former is only applicable to
the MAGDM problems in which weights of attributes and DMs are already known a pri-

ori, while the latter can solve the MAGDM problems with different preference information
structures between completely known and completely unknown.

(iv) The ranking method of TrIFNs adapted in the former came from Wei (2010a,
2010b), which simply calculated the distance between the TrIFNs and positive ideal solu-
tion. Such a ranking method of TrIFNs is a single-index approach, which is not always fea-
sible and effective. The latter, however, introduces the concepts of weighted lower and up-
per possibility means, weighted possibility means for membership and non-membership
functions of TrIFNs as well as weighted possibility variances. The ranking method of
TrIFNs of the latter is a two-index approach and more reasonable than that of the former
since the latter takes into consideration not only the weighted possibility means and vari-
ances of the membership functions, but also the weighted possibility means and variances
of non-membership functions of TrIFNs.

5.3. Comparison Analysis with the MAGDM Method Based on IF Power Geometric

Aggregation

In the above illustrated example, if we use IFSs to express the experts’ evaluations, then
Tables 2–5 can be written as Tables 11–14 through deleting the corresponding trapezoidal
fuzzy numbers in TrIFNs.

Xu (2011) utilized the IF power weighted geometric (IFPWG) operator and IF
weighted geometric (IFWG) operators to develop Approach I to MAGDM with IF in-
formation. To further explain the importance of using TrIFNs to represent the information
of assessment, we apply Approach I proposed in Xu (2011) to solve the adapted stock
selection problem (IF decision matrixes as in Tables 11–14). Assume that the attribute
weight vector and DMs weight vector are w = (0.2368,0.2387,0.1538,0.1767,0.2031)T
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Table 12
IF decision matrix given by expert e2 .

C1 C2 C3 C4 C5

A1 (0.5,0.4) (0.8,0.2) (0.7,0.1) (0.6,0.3) (0.5,0.3)

A2 (0.6,0.3) (0.7,0.2) (0.5,0.3) (0.8,0.1) (0.3,0.6)

A3 (0.6,0.2) (0.8,0.2) (0.6,0.2) (0.6,0.4) (0.7,0.1)

A4 (0.5,0.3) (0.6,0.2) (0.7,0.2) (0.5,0.3) (0.8,0.1)

Table 13
IF decision matrix given by expert e3 .

C1 C2 C3 C4 C5

A1 (0.7,0.2) (0.4,0.2) (0.4,0.3) (0.7,0.1) (0.5,0.3)

A2 (0.6,0.3) (0.7,0.3) (0.3,0.1) (0.5,0.3) (0.4,0.5)

A3 (0.6,0.2) (0.5,0.2) (0.5,0.3) (0.6,0.3) (0.5,0.4)

A4 (0.5,0.3) (0.4,0.1) (0.6,0.2) (0.5,0.2) (0.6,0.2)

Table 14
IF decision matrix given by expert e4 .

C1 C2 C3 C4 C5

A1 (0.4,0.5) (0.6,0.4) (0.3,0.4) (0.3,0.6) (0.5,0.3)

A2 (0.3,0.5) (0.4,0.3) (0.7,0.3) (0.5,0.6) (0.3,0.4)

A3 (0.4,0.2) (0.6,0.2) (0.5,0.3) (0.4,0.2) (0.5,0.4)

A4 (0.6,0.3) (0.5,0.1) (0.4,0.3) (0.5,0.1) (0.3,0.5)

and V = (0.2711,0.2651,0.2651,0.1988)T , respectively. After computation, the overall
preference values of alternatives are respectively obtained as follows:

r1 = (0.5073,0.3547,0.1380), r2 = (0.4570,0.3852,0.1578),

r3 = (0.4637,0.3072,0.2292), r4 = (0.5095,0.2530,0.2375).

The scores of ri (i = 1,2,3,4) are as follows:

Sr1
= 0.5073 − 0.3547 = 0.1526, Sr2

= 0.4570 − 0.3852 = 0.0718,

Sr3
= 0.4637 − 0.3072 = 0.1565, Sr4

= 0.5095 − 0.2530 = 0.2565.

Since Sr4
> Sr3

> Sr1
> Sr2

, the ranking order obtained by Xu (2011) is A4 ≻ A3 ≻

A1 ≻ A2, the best stock is A4, which is just a special case of that obtained by this paper
(i.e., the case of θ1 = 0.8, θ2 = 0.6, θ3 = 0.5, θ4 = 0.2 and λ1 = 0.3, λ2 = 0.2, λ3 = 0.8,
λ4 = 0.7 as listed in Table 10).

Compared with Xu (2011), this paper has the following advantages:
(i) As stated in introduction, TrIFNs are defined by using trapezoidal fuzzy numbers

expressing their membership and non-membership functions, which makes the member-
ship degrees and the non-membership degrees no longer relative to a fuzzy concept “Ex-
cellent” or “Good”, but relative to the trapezoidal fuzzy number. Thus, the information
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given by DMs can be reflected exactly and can be expressed in different dimensions.
Hence, TrIFNs may better reflect the assessment information of decision problems than
IFSs through adding trapezoidal fuzzy numbers. If all trapezoidal fuzzy numbers are lost
from the TrIFNs, then TrIFNs are transformed into IFSs, which weakens the representation
ability of information for IFSs.

(ii) The method (Xu, 2011) did not consider the different preference for the upper
and lower possibility means and the different risk preference of different DMs, while this
paper can give the different decision results with different preference and risk aversion
parameters. This analysis indicates that the method proposed in this paper is more flexible
than that proposed in Xu (2011).

(iii) Similar to Wu and Cao (2013), the method (Xu, 2011) is also only applicable
to the MAGDM problems in which weights of attributes and DMs are already known a

priori and can not be dealt with the MAGDM problems with incomplete weight preference
information.

6. Conclusions

As a special IFS on a real number set, TrIFNs are of importance for quantifying the
ill-known quantities in decision data and decision making problems themselves. This
paper introduces the concepts of the weighted lower and upper possibility means, the
weighted possibility means and variances of TrIFN. Hereby, a lexicographic method based
on the weighted possibility mean and variance is developed to rank the TrIFNs. A deci-
sion method is proposed for solving the MAGDM problems with TrIFNs and incomplete
weight preference information. In this method, the expert weights are given in the form
of linguistic variables, which are determined through the IFS voting model, and the at-
tribute weights are objectively derived through constructing the bi-objective programming
model, which is transformed into the single objective quadratic programming model to
solve. The ranking order of alternatives is generated by the collective overall attribute
values of alternatives. The proposed MAGDM method sufficiently considers the different
preferences for lower and upper weighted possibility means and risk aversion degrees of
different DMs, which can make the decision results more reasonable and consistent with
the reality.

Although the developed method in this paper is illustrated with a stock selection prob-
lem, it is expected to be applicable to the group decision making problems in many areas,
such as the supplier management, water environment assessment, threat evaluation and
missile weapon system selection, warship combat plan evaluation, and so on. It is easy to
see that how to construct TrIFNs (i.e., represent the assessment information of attribute
values with TrIFNs) is a key problem of applying the proposed method to practical deci-
sion situations. Generating methods of TrIFNs will be investigated for future research. In
addition, the weighted possibility covariance and correlation coefficient are also the im-
portant mathematical characteristics of TrIFNs, which will be introduced and employed
to MAGDM with TrIFNs in the near future.



694 S. Wan, J. Dong

Acknowledgment. This research was supported by the National Natural Science Foun-
dation of China (Nos. 71061006, 61263018 and 11461030), the Humanities Social Sci-
ence Programming Project of Ministry of Education of China (No. 09YGC630107), the
Natural Science Foundation of Jiangxi Province of China (Nos. 20114BAB201012 and
20142BAB201011), “Twelve five” Programming Project of Jiangxi province Social Sci-
ence (2013) (No. 13GL17) and the Excellent Young Academic Talent Support Program
of Jiangxi University of Finance and Economics.

References

Atanassov, K.T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87–96.
Atanassov, K., Gargov, G. (1989). Interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31(3), 343–

349.
Carlsson C., Fullér, R. (2001). On possibilistic mean value and deviation of fuzzy numbers. Fuzzy Sets and

Systems, 122(2), 315–326.
Celen, A. (2014). Comparative analysis of normalization procedures in TOPSIS method: with an application to

Turkish deposit banking market. Informatica, 25, 185–208.
Chen, T.Y. (2011). A comparative analysis of score functions for multiple criteria decision making in intuition-

istic fuzzy settings. Information Sciences, 181(17), 3652–3676.
Chen, Z.P., Yang, W. (2011). A new multiple attribute group decision making method in intuitionistic fuzzy

setting. Applied Mathematical Modeling, 33, 4424–4437.
Chen, Z.P., Yang, W. (2012). A new multiple criteria decision making method based on intuitionistic fuzzy

information. Expert Systems with Applications, 39(4), 4328–4334.
Du, Y., Liu, P.D. (2011). Extended fuzzy VIKOR method with intuitionistic trapezoidal fuzzy numbers.

Information—An International Interdisciplinary, 14(8), 2575–2584.
Dubois, D., Prade, H. (1980). Fuzzy Sets and Systems: Theory and Applications. New York, Academic Press.
Fullér, R., Majlender, P. (2003). On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy Sets and

Systems, 136, 363-374.
Guo, K.H., Liu, W.L. (2012). An attitudinal-based method for constructing intuitionistic fuzzy information in

hybrid MADM under uncertainty. Information Sciences, 208, 28–38.
Huang, C.M., Yang, M.S., Hung, W.L., Lee, M.G. (2012). A similarity measure of intuitionistic fuzzy sets based

on the Sugeno integral with its application to pattern recognition. Information Sciences, 189, 93–109.
Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., Murthy, K.R.K. (2001). Improvements to Platt’s SMO algo-

rithm for SVM classifier design. Neural Computation, 3, 637–649.
Li, D.F. (2007) A fuzzy closeness approach to fuzzy multi-attribute decision making, Fuzzy Optimization and

Decision Making, 6, 237–254.
Li, D.F. (2008a). Extension of the LINMAP for multiattribute decision making under Atanassov’s intuitionistic

fuzzy environment, Fuzzy Optimization and Decision Making, 7, 17–34.
Li, D.F. (2008b). A note on “using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assem-

bly”. Microelectronics Reliability, 48(10), 1741.
Li, D.F. (2010a). TOPSIS-based nonlinear-programming methodology for multiattribute decision making with

interval-valued intuitionistic fuzzy sets. IEEE Transactions on Fuzzy Systems, 18(2), 299–311.
Li, D.F. (2010b). Linear programming method for MADM with interval-valued intuitionistic fuzzy sets. Expert

Systems with Applications, 37(8), 5939–5945.
Li, D.F. (2010c). A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM

problems. Computers and Mathematics with Applications, 58, 1557–1570.
Li, D.F. (2010d). Multiattribute decision making method based on generalized OWA operators with intuitionistic

fuzzy sets. Expert Systems with Applications, 37(12), 8673–8678.
Li, D.F. (2011a). The GOWA operator based approach to multiattribute decision making using intuitionistic

fuzzy sets. Mathematical and Computer Modeling, 53(5–6), 1182–1196.
Li, D.F. (2011b). Closeness coefficient based nonlinear programming method for interval-valued intuitionis-

tic fuzzy multiattribute decision making with incomplete preference information. Applied Soft Computing,
11(4), 3402–3418.



MAGDM with TrIFNs and Application to Stock Selection 695

Li, D.F., Wan, S.P. (2013). Fuzzy linear programming approach to multiattribute decision making with multiple
types of attribute values and incomplete weight information. Applied Soft Computing, 13, 4333–4348.

Li, D.F., Wan, S.P. (2014). A fuzzy inhomogenous multiattribute group decision making approach to outsourcing
provider selection problems. Knowledge-Based Systems, 67, 71–89.

Li, D.F., Chen, G.H., Huang Z.G. (2010a). Linear programming method for multiattribute group decision making
using IF sets. Information Sciences, 180(9), 1591–1609.

Li, D.F., Nan, J.X., Zhang, M.J. (2010b). A ranking method of triangular intuitionistic fuzzy numbers and ap-
plication to decision making. International Journal of Computational Intelligence Systems, 3(5), 522–530.

Li, D.F., Wang, L.L., Chen, G.H. (2010c). Group decision making methodology based on the Atanassov’s
intuitionistic fuzzy set generalized OWA operator. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 18(6), 801–817.
Liu, H.W., Wang, G.J. (2007). Multi-criteria decision-making methods based on intuitionistic fuzzy Sets. Euro-

pean Journal of Operational Research, 179(1), 220–233.
Nan, J.X., Li, D.F., Zhang, M.J. (2010). A lexicographic method for matrix games with payoffs of triangular

intuitionistic fuzzy numbers. International Journal of Computational Intelligence Systems, 3(3), 280–289.
Park, J.H., Cho, H.J., Kwun, Y.C. (2007). Extension of the VIKOR method for group decision making with

interval-valued intuitionistic fuzzy information. Fuzzy Optimization and Decision Making, 10(2012) 233–
253.

Park, J.H., Park, Y., Kwun, Y.C., Tan, X.G. (2011). Extension of the topsis method for decision making problems
under interval-valued intuitionistic fuzzy environment. Applied Mathematical Modeling, 33, 2544–2556.

Shu, M.H., Cheng, C.H., Chang, J.R. (2006). Using intuitionistic fuzzy sets for fault tree analysis on printed
circuit board assembly. Microelectronics Reliability, 46(12), 2139–2148.

Stanujkic, D., Magdalinovic, N., Stojanovic, S., Jovanovic, R. (2012). Extension of ratio system part of MOORA
method for solving decision-making problems with interval data. Informatica, 23(1), 141–154.

Wan, S.P. (2011). Multi-attribute decision making method based on interval intuitionistic trapezoidal fuzzy
number. Control and Decision, 26(6), 857–861.

Wan, S.P. (2012). Method based on fractional programming for interval-valued intuitionistic trapezoidal fuzzy
number multi-attribute decision making. Control and Decision, 27(3), 455–458.

Wan, S.P. (2013a). Multi-attribute decision making method based on possibility variance coefficient of triangular
intuitionistic fuzzy numbers. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
21, 223–243.

Wan, S.P. (2013b). Power average operators of trapezoidal intuitionistic fuzzy numbers and application to multi-
attribute group decision making. Applied Mathematical Modelling, 37(6), 4112–4126.

Wan, S.P., Dong, J.Y. (2010). Method of intuitionistic trapezoidal fuzzy number for multi-attribute group deci-
sion. Control and Decision, 25(5), 773–776.

Wan, S.P., Dong, J.Y. (2014a). A possibility degree method for interval-valued intuitionistic fuzzy multi-attribute
group decision making. Journal of Computer and System Sciences, 80, 237–256.

Wan, S.P., Dong, J.Y. (2014b). Possibility method for triangular intuitionistic fuzzy multi-attribute group de-
cision making with incomplete weight information. International Journal of Computational Intelligence

Systems, 7, 65–79.
Wan, S.P., Li, D.F. (2013a). Fuzzy LINMAP approach to heterogeneous MADM considering the comparisons

of alternatives with hesitation degrees. Omega—The International Journal of Management Science, 41(6),
925–940.

Wan, S.P., Li, D.F. (2013b). Possibility mean and variance based method for multi-attribute decision making
with triangular intuitionistic fuzzy numbers. Journal of Intelligent and Fuzzy Systems, 24, 743–754.

Wan, S.P., Li, D.F. (2014). Atanassov’s intuitionistic fuzzy programming method for heterogeneous multiat-
tribute group decision making with Atanassov’s intuitionistic fuzzy truth degrees. IEEE Transaction of Fuzzy

Systems, 22, 300–312.
Wan, S.P., Li, D.F., Rui, Z.F. (2013a). Possibility mean, variance and covariance of triangular intuitionistic fuzzy

numbers. Journal of Intelligent and Fuzzy Systems, 24, 847–858.
Wan, S.P., Wang, Q.Y., Dong, J.Y. (2013b). The extended VIKOR method for multi-attribute group decision

making with triangular intuitionistic fuzzy numbers. Knowledge-Based Systems, 52, 65–77.
Wang, J. Q. (2008). Overview on fuzzy multi-criteria decision-making approach. Control and Decision, 23(6),

601–607.
Wang, J.Q., Zhang, Z. (2009). Aggregation operators on intuitionistic trapezoidal fuzzy number and its applica-

tion to multi-criteria decision making problems. Systems Engineering and Electronics, 20(2), 321–326.



696 S. Wan, J. Dong

Wei, G.W. (2010a). Some induced geometric aggregation operators with intuitionistic fuzzy information and
their application to group decision making. Applied Soft Computing, (10), 423–431.

Wei, G.W. (2010b). Some arithmetic aggregation operators with intuitionistic trapezoidal fuzzy numbers and
their application to group decision making. Journal of Computer, 5(3), 345–351.

Wei, G.W., Merigó, J.M. (2012). Methods for strategic decision making problems with immediate probabilities
in intuitionistic fuzzy setting. Scientia Iranica, 19(6), 1936–1946.

Wu, J., Cao, Q.W. (2013). Same families of geometric aggregation operators with intuitionistic trapezoidal fuzzy
numbers. Applied Mathematical Modelling, 37(1–2), 318–327.

Xia, M.M., Xu, Z.S., Zhu, B. (2012). Some issues on intuitionistic fuzzy aggregation operators based on
Archimedean t-conorm and t-norm. Knowledge-Based Systems, 29, 78–88.

Xu, Z. S. (2007a). Multi-person multi-attribute decision making models under intuitionistic fuzzy environment.
Fuzzy Optimization and Decision Making, 6, 221–236.

Xu, Z.S. (2007b). Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute
decision making. Fuzzy Optimization and Decision Making, 6, 109–121.

Xu, Z.S. (2011). Approaches to multiple attribute group decision making based on intuitionistic fuzzy power
aggregation operators. Knowledge-Based Systems, 24, 749–760.

Xu, Z.S., Yager, R.R. (2009). Intuitionistic and interval-valued intutionistic fuzzy preference relations and their
measures of similarity for the evaluation of agreement within a group. Fuzzy Optimization and Decision

Making, 8, 123–139.
Ye, J. (2010). Multicriteria fuzzy decision-making method using entropy weights-based correlation coefficients

of interval-valued intuitionistic fuzzy sets. Applied Mathematical Modeling, 32, 3864–3870.
Ye, J. (2011). Expected value method for intuitionistic trapezoidal fuzzy multicriteria decision-making problems.

Expert Systems with Applications, 38(9), 11730–11734.
Ye, J. (2012). Multicriteria group decision-making method using vector similarity measures for trapezoidal

intuitionistic fuzzy numbers. Group Decision and Negotiation, 21(4), 519–530.
Yu, D.J., Wu, Y.Y., Lu, T. (2012). Interval-valued intuitionistic fuzzy prioritized operators and their application

in group decision making. Knowledge-Based Systems, 30, 57–66.
Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338–356.
Zadeh, L.A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1(1), 3–28.
Zeng, S.Z., Balezentis, T., Chen, J., Luo, G.F. (2013a). A projection method for multiple attribute group decision

making with intuitionistic fuzzy information. Informatica, 24, 485–503.
Zeng, S.Z., Balezentis, T., Zhang, C.H. (2013b). A method based on OWA operator and distance measures for

multiple attribute decision making with 2-Tuple linguistic information. Informatica, 23, 665–681.
Zhang, X.M., Xu, Z.S. (2012). A new method for ranking intuitionistic fuzzy values and its application in multi-

attribute decision making. Fuzzy Optimization and Decision Making, 11, 135–146.
Zhang, W.G., Zhang, X.L., Xiao, W.L. (2009). Portfolio selection under possibilistic mean-variance utility and

a SMO algorithm. European Journal of Operational Research, 197(2), 693–770.
Zhang, X., Jian, F., Liu, P.D. (2013). A grey relational projection method for multi-attribute decision making

based on intuitionistic trapezoidal fuzzy number. Applied Mathematical Modeling, 37(5), 3467–3477.
Zhou, L.G., Chen, H.Y. (2014). Generalized ordered weighted proportional averaging operator and its applica-

tion to group decision making. Informatica, 25, 327–360.



MAGDM with TrIFNs and Application to Stock Selection 697

S.P. Wan received the PhD degree in control theory and control engineer from Nankai
University, Tianjin, China, in 2005. He is currently a professor in College of Information
Technology, Jiangxi University of Finance and Economics, China. He has contributed
more than 80 journal articles to professional journals, such as Omega, IEEE Transaction
of Fuzzy Systems, Knowledge-Based Systems, Applied Mathematical Modelling, Inter-
national Journal of Computational Intelligence Systems, International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, Journal of Intelligent and Fuzzy Sys-
tems, Applied Soft Computing, Journal of Computer and System Sciences, and Expert
Systems with Applications. His current research interests include decision analysis, fuzzy
game theory, information fusion, and financial engineering.

J.Y. Dong received the PhD degree in graph theory and combinatorial optimization
from Nankai University, Tianjin, China, in 2013. She is currently an associate profes-
sor in College of statistics, Jiangxi University of Finance and Economics, China. She has
contributed more than 20 journal articles to professional journals, such as Discrete Math-
ematics, Graphs and Combinatorics, Knowledge-Based Systems, Applied Mathematical
Modelling, Journal of Mathematical Research and Exposition, Acta Mathematicae Appli-
catae Sinica, and Journal of Computer and System Sciences. Her current research interests
include decision analysis, graph theory and combinatorial optimization.

Daugiatikslis grupinis sprendimų priėmimas su trapeciniais
intuityviais neraiškiaisiais skaičiais vertybinių popierių parinkimui

Shuping WAN, Jiuying DONG

Neraiškusis skaičius yra atskiras neraiškiųjų aibių atvejis. Trapeciniai intuityvūs neraiškieji skaičiai
(TrIFN) yra atskira intuityvioji neraiškioji aibė apibrėžta realiųjų skaičių aibėje, kuri yra tinkama
apibrėžti blogai žinomus kiekius. Šio straipsnio tikslas – pasiūlyti naują metodą daugiatiksliams
grupiniams sprendimų priėmimo uždaviniams, kuriuose rodiklių reikšmės yra TrIFN ir rodiklių
svorių informacija yra nepilna. Sampratos, tokios kaip TrIFN svertinis apatinis ir viršutinis galimy-
bių vidurkiai ir variacijos yra pateiktos. Tuo būdu, yra išplėtotas naujas metodas TrIFN surikiuoti.
Šiame metode, ekspertų įtakos svoriai yra nustatyti taikant intuityviųjų neraiškiųjų aibių balsavimo
modelį. Rodiklių svoriai yra nustatyti objektyviai bi-tikslo programavimo modelio pagrindu, kuris
yra transformuotas į vientikslį kvadratinio programavimo modelį. Alternatyvos suranguotos pagal
kolektyvinių rodiklių vidurkių reikšmes. Pateiktas akcijų pasirinkimo pavyzdys ir palyginamoji ana-
lizė patvirtinta pateikto modelio teisingumą ir tinkamumą naudoti.


