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Abstract. We propose an adaptive inverse control scheme, which employs a neural network for the
system identification phase and updates its weights in online mode. The theoretical basis of the
method is given and its performance is illustrated by means of its application to different control
problems showing that our proposal is able to overcome the problems generated by dynamic nature
of the process or by physical changes of the system which originate important modifications in the
process. A comparative experimental study is presented in order to show the more stable behavior
of the proposed method in several working ranks.
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1. Introduction

Nowadays automatic control systems have become part of our everyday life. They allow
us to guarantee that the process or plant presents the desired behavior along time. Among
other applications they ensure that, for example (a) the temperature in our homes remains
within adequate levels in both summer and winter, (b) the airplanes maintain desired speed
and altitude, and (c) the automobile emissions satisfy the specifications. Automatic control
systems can take different shapes but common to all them is the function to manipulate a
system so that it reaches the desired behavior. When designing a controller for a particular
system, it is important to acquire knowledge about how the system will react when it is
manipulated in different ways. This information allows us to know how to control the
system so that it shows a determinate behavior (Nørgaard et al., 2000).

The principles of predictive control were introduced in the seventies. Subsequently
over more than two decades, these were refined to a high level thanks to an important re-
search in the field. Among others classic methods, it worth mentioning the proportional-
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integral-derivative (PID) and the model predictive control (MPC) since, they are con-
sidered as two of the most popular control strategies. The first one, PID control algo-
rithm, is widely applied in the industrial field. This is not only due to its simple struc-
ture but also to the fact that the algorithm shows a good performance in a wide variety
of applications (Liua and Daleyb, 2001). Most of the PID tuning rules use frequency-
response methods as those proposed by Ziegler and Nichols (1942), Voda and Landau
(1995), Zhuang and Atherton (1993), Pessen (1994), Kaya and Scheib (1988), Chien
et al. (1952), Åstrom and Hägglund (2000). The latter, MPC is an advanced control
strategy based on the optimization of an objective function within a specified predic-
tion horizon. This strategy has been recognized as the winning alternative for constrained
multivariable control of industrial systems (Seborg et al., 2004; Maciejowski, 2002;
Normey-Rico and Camacho, 2007). However, there exist many real industrial systems
that present highly nonlinear characteristics which can be inherent to the system or due
to its deterioration, signs of wearing, etc. In such situations, classic methods, based on a
linear mathematical model of the controlled process, are not very efficient because they
can not guarantee stable control outside the range of model validity (Muske and Rawl-
ings, 1993). In order to improve PID and MPC performance for dynamic processes, sev-
eral tuning strategies were presented by different authors (Åstrom and Hägglund, 1984;
Kraus and Mayron, 1984)but these approachesdo not achieve a good control performance.
These reasons motivate the development of nonlinear model predictive control (NMPC)
where a more accurate model of the process is used for prediction and optimization. How-
ever, many of current NMPC schemes are based on physical models of the controlled
processes, which are difficult to obtain or they are not available.

A recent approach to model nonlinear dynamical systems is the use of artificial neu-
ral networks. Neural networks have turned into an useful tool to deal with the problems
of controlling nonlinear dynamical systems thanks to their properties, such as the adap-
tive nature and the universal approximation capabilities. Unlike classic methods, arti-
ficial neural networks solve any nonlinear correspondence between the inputs and the
outputs of a system. The key to the successful application of NMPC based on a neu-
ral network model is an accurate nonlinear model and an efficient optimization algo-
rithm. Taking into account these favorable characteristics, the application of neural net-
works for model identification and adaptive control of dynamic and complex systems
has been studied extensively (Nørgaard et al., 2000; Narendra and Parthasarathy, 1990;
Sarangapani, 2006). Thus, it is possible to find diverse approaches of neural control ap-
plied to different interest fields (Hsu, 2008; Zhai and Yu, 2009; Ben-Nakhi and Mah-
moud, 2002; Vasickaninova et al., 2011; Han and Qiao, 2011; Leeghim et al., 2009;
Wang et al., 2006).

Besides, it is worthwhile to mention that in the particular case of highly dynamic pro-
cesses, it would be appropriate to employ models that allow to make a precise control in
real time. Therefore, with the aim of treating properly these situations, in this work we
propose a generic topology which allows the control of any industrial process including
highly nonlinear and dynamic systems. This is the main characteristic of the proposed
model improving the existing techniques that employ among others, minimum squares.
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Then, we propose a new nonlinear adaptive control model which employs, as part of the
system identification stage, a learning algorithm for a two-layer feedforward neural net-
work that updates the weights in online mode to overcome the problems generated by the
dynamic nature of the process. This algorithm, presented in Pérez-Sánchez et al. (2010),
includes a factor that weights the errors committed in each one of the training samples.
Thanks to this term, the method obtains a good performance in environments that present
an evolutionary behavior over time. Thus, in this paper we present a model for predictive
control that furthermore allows to adjust the identification of process in an online mode
favouring its control.

The paper is structured as follows. In Section 2 we describe our proposal of adaptive
inverse control scheme with neural networks. In Section 3 its behavior is illustrated by
its application to several simulated systems and their results are compared to those ob-
tained by classic control systems. Finally, in Section 4 the results are discussed and some
conclusions are given.

2. Proposed Method Based on Adaptive Inverse Control

Adaptive inverse control using neural networks for nonlinear dynamical system has re-
ceived much attention in recent years. The aim of this technique is to inversely identify
the dynamic of the process using its outputs as inputs of the model. Direct adaptive in-
verse control is a relatively new approach (Widrow and Walach, 2008), which combines
signal processing methods with the control theory, and it is designed to control systems
with complex characteristics. It is a control technique widely used for design and analysis
in industrial process control systems as it can be implemented for a process in a straight-
forward way. As the process is generally unknown, it is necessary to adapt or to adjust the
parameters of the neural network in order to create a true plant inverse.

In Fig. 1 it can be observed our proposal of adaptive inverse control scheme for an
industrial process. In figure, SP(t) indicates the set point signal at the instant t , yd(t) is
the desired output of the system, u(t) refers to the control signal and y(t) denotes the
process output. In the proposed scheme, an error signal, the difference between the plant
output y(t) and the desired output of the system yd(t), is used by an adaptive algorithm to
adjust the parameters with the aim of minimizing the mean square of this error. Therefore,
the key of the inverse control is how to obtain the inverse model of the plant. The control
system is composed of two parts which are detailed below:

1. The driver block which aim is to force the output response to a certain way, despite
of the process natural behavior. Thus, the driver block is a mathematical model
that calculates the desired output of the process for a particular behavior using as
reference the set point signal. The block has several inputs: the set point, the process
output and their past values. As output, the driver block obtains the desired output
of the process. The concept is very similar to the Reference Trajectory of Model
Predictive Control (Camacho and Bordons, 2004), Predictive Functional Control
(Richalet et al., 1987) or Extended Prediction Self Adaptive Control (De Keyser
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Fig. 1. Adaptive inverse control scheme.

and Van Cuawenberghe, 1985). In most cases, typically, the mathematical model
implements a first order system. For the proposed method, the desired output yd(t)

is described by the following equation,

yd(t) = α1SP(t − 1) + α2SP(t − 2) + · · · + αnSP(t − n)

+ β1y(t − 1) + β2y(t − 2) + · · · + βmy(t − m) (1)

where αn and βm are the parameters establishing the dynamic of this driver block
for the desired response of the controlled system. Usually the driver block is used
to smooth the set point signal in order to get an output without overshoot, achieving
good results for response and peak times, etc.

2. The neural predictor is employed to identify the system, in an inverse way, using a
real time approach. As it can be observed in Fig. 1, the inputs of the neural predictor
are composed of the desired output yd(t) and previous values of the process output
y(t) and the control signal u(t). The online learning algorithm employed to train
the feedforward neural network is explained in detail in the following subsection.

It is worthwhile to mention that in the case of real systems the previous values of the plant
output signal should be filtered before their substitution. The inclusion of this filtered
phase allows to the system reduces possible noises, parasitic nonlinearities, etc. of the
output signal. As we propose a generic model this filtered phase is not reflected in our
scheme (as it can be observed in Fig. 1).

2.1. Online Learning Algorithm for the Neural Network

The learning algorithm used to train the neural network was presented in a previous work
(Pérez-Sánchez et al., 2010). It is an online algorithm for two-layer feedforward neural
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Fig. 2. Two-layer feedforward neural network.

networks which has the ability of dealing with non-stationary environments. Consider the
two-layer feedforward neural network in Fig. 2 where the inputs are represented as the
column vectors x(t) and the outputs are denoted as y(t), where t indicates the learning
epoch, I , J are the number of inputs and outputs, respectively, and K is the number of
hidden neurons. Functions g1, g2, . . . , gK and f1, f2, . . . , fJ are the nonlinear activation
functions of the hidden and output layer of the network.

If we consider this network as the composition of two one-layer subnetworks (see
Fig. 2) we can define the objective functions for both subnetworks independently. Suppose
zk(t), the desired output for hidden neuron k at the current learning epoch t , is available
(see Fig. 2). In this case, employing z̄k(t) = g−1

k (zk(t)) we can define the objective func-
tion for the k output of the subnetwork 1 as the sum of squared errors before the nonlinear
activation function gk as,

Q
(1)
k (t) = hk(t)

(

g′
k

(

z̄k(t)
)(

w
(1)
k

T
(t)x(t) − z̄k(t)

))2
, k = 1, . . . ,K, (2)

where w
(1)
k (t) is the input vector of weights for hidden neuron k at the instant t and

g′
k(z̄k(t)) is a scaling term which weighs the errors (Fontenla-Romero et al., 2010). More-

over, hk(t) is a forgetting factor that determines the importance of the error at the t-th time
instant. This factor is employed in order to establish the form and the speed of the adapta-
tion to the recent samples in a dynamic context (Martínez-Rego et al., 2011). Analogously,
the cost function for each output j of the subnetwork 2 is defined as,

Q
(2)
j (t) = hj (t)

(

f ′
j

(

d̄j (t)
)(

w
(2)
j

T
(t)z(s) − d̄j (t)

))2
, j = 1, . . . , J, (3)

where dj (t) is the desired output for neuron j , d̄j (t) = f −1

j (dj (t)), f ′
j (d̄j (t)) is the scal-

ing term of the errors and hj (t) is a forgetting factor. Regarding the forgetting functions
hk(t) and hj (t), there exist several options that can be used, for example, an exponential
or lineal function among others. In a stationary environment a constant function should
be used in order to give the same weight to all the data points analyzed during the learning
process. Whereas in a non-stationary context the function should be monotonically cres-
cent to take into account the increment in the importance of recent information in contrast
with the previous one.
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As the objective functions presented in Eqs. (2) and (3) are cuadratic in weights w,
which are free parameters of the system, both functions are convex. Thus for these objec-
tive functions, the global optimum can be easily obtained deriving them with respect to
the parameters of the network and setting the derivatives to zero (Fontenla-Romero et al.,
2010). So, using matrix notation, we obtain the following systems of linear equations,

A
(1)
k (t)w

(1)
k (t) = b

(1)
k (t), k = 1, . . . ,K, (4)

A
(2)
j (t)w

(2)
j (t) = b

(2)
j (t), j = 1, . . . , J , (5)

where

A
(1)
k (t) = A

(1)
k (t − 1) + hk(t)x(t)xT (t)g′2

k

(

z̄k(t)
)

, (6)

b
(1)
k (t) = b

(1)
k (t − 1) + hk(t)g

−1

k (zk(t))x(t)g′2

k

(

z̄k(t)
)

(7)

and

A
(2)
j (t) = A

(2)
j (t − 1) + hj (t)z(t)z

T (t)f ′2

j

(

d̄j (t)
)

, (8)

b
(2)
j (t) = b

(2)
j (t − 1) + hj (t)f

−1

j

(

dj (t)
)

z(t)f ′2

j

(

d̄j (t)
)

, (9)

being A(1)(t − 1), A(2)(t − 1), b(1)(t − 1), b(2)(t − 1) the matrices and vectors that store
the coefficients of the systems of linear equations obtained in previous iterations to calcu-
late the values of the weights of both layers. Therefore, this permits handling the earlier
knowledge acquired by the network and using it to incrementally approach the optimum
value of the weights.

Finally, from Eqs. (4) and (5) the optimal weights can be obtained as,

w
(1)
k (t) = A

(1)
k

−1

(t)b
(1)
k (t), ∀k, (10)

w
(2)
j (t) = A

(2)
j

−1

(t)b
(2)
j (t), ∀j . (11)

Algorithm 1 details the incremental online learning method employing the concepts
earlier described. Finally, it is worth mentioning that the complexity of the algorithm
is determined by the complexity to solve several systems of linear equations for each
layer of the network. Several computationally efficient methods can be used to solve
this kind of systems (except for ill-conditioned matrices) with a complexity from O(n2)

to O(n3), being n the number of weights of the network (Carayannis et al., 1982;
Bojanczyk, 1984). In the case of ill-conditioned matrices, the problem can be solved ap-
plying the pseudoinverse Moore–Penrose (Penrose, 1955).

3. Experimental Results

Several experiments were carried out to check the efficacy of the proposed method. In
order to accomplish this analysis we have compared the behavior of our proposal with
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Algorithm 1 Online algorithm with forgetting ability for two-layer feedforward neural
networks.

Inputs: x(t) = (x1(t), x2(t), . . . xI (t)), being t the current instant
d(t) = (d1(t), d2(t), . . . dJ (t))

bias, x0(t) = 1, z0(t) = 1

1. Initialization Phase:
2. A

(1)
k (0) = 0(I+1)×(I+1), b

(1)
k (0) = 0(I+1)×1, ∀k = 1, . . . ,K ,

3. A
(2)
j (0) = 0(K+1)×(K+1), b

(2)
j (0) = 0(K+1)×1, ∀j = 1, . . . , J ,

4. The initial weights, w
(1)
k (0), are calculated by means of some initialization

method.
5. For the current instant t , and k = 1, . . . ,K

6. zk(t) = g(w
(1)
k (0),x(t)),

7. For each output k of the subnetwork 1 (k = 1, . . . ,K),
8. A

(1)
k (t) = A

(1)
k (t − 1) + hk(t)x(t)xT (t)g′2

k (z̄k(t)) (Eq. (6)),

9. b
(1)
k (t) = b

(1)
k (t − 1) + hk(t)g

−1

k (zk(t))x(t)g′2

k (z̄k(t)) (Eq. (7)),

10. Calculate w
(1)
k (t) solving the system of linear equations (Eq. (4)),

11. end of For.
12. For each output j of the subnetwork 2 (j = 1, . . . , J ),
13. A

(2)
j (t) = A

(2)
j (t − 1) + hj (t)z(t)z

T (t)f ′2

j (d̄j (t)) (Eq. (8)),

14. b
(2)
j (t) = b

(2)
j (t − 1) + hj (t)f

−1

j (dj (t))z(t)f
′2

j (d̄j (t)) (Eq. (9)),

15. Calculate w
(2)
j (t) solving the system of linear equations (Eq. (5)),

16. end of For.
17. end of For.

the standard methods PID, MPC and also for an adaptive scheme formed by a Recur-
sive Least Squares (RLS) method and a self-tuned PID (Banyasz and Keviczky, 1982;
Keviczky and Banyasz, 1992). This last approach uses the online RLS learning method
to identify the process in real-time and the self-tuned PID to regulate the process. Thus,
in this section we present two representative examples which uncover the good results
achieved by the presented approach. In both cases only two parameters in the driver block,
see Eq. (1), were used and their values were empirically established as α1 = 0.2592 and
β1 = 0.7408. Also the forgetting function in Eqs. (2) and (3) was the exponential function
with a factor of 0.9. Regarding the standard controller PID, the great problem is the ad-
justment of its parameters. In order to solve this problem, we accomplished several proofs
with some of the most known and usual methods, specifically, of Ziegler and Nichols
(1942), Kaya and Scheib (1988) and Chien et al. (1952). The best methods for the adjust-
ment of the parameters and the values obtained are displayed in Table 1. For the MPC
controller the parameters were empirically determined and the final values are included in
Table 2. Finally, for the adaptive RLS-PID method a forgetting factor of 0.99 was used for
the RLS and a Km = 0.001 for the self-tuned PID. This last parameter is used to attenuate
the overshooting effect.
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Table 1
PID controller parameters for experiments 1 and 2: proportional gain (Kp ), integral time (ti ) and derivative

time (td ).

Experiment Method of adjustment Kp ti td

1 Kaya–Scheib set point regulation minimize IAE 4.6741 1.5448 0.1016

2 Kaya–Scheib set point regulation minimize ISE 4.2968 0.3999 0.0489

Table 2
MPC controller parameters for experiments 1 and 2.

Parameter Values

Control time step 0.1 s
Prediction horizon 1.0 s
Control horizon 0.2 s
Overall weight tuning 0.7
Overall estimator gain 0.5

(a) (b)

Fig. 3. Step response and root locus for the systems in experiment 1.

In the first experiment, the system to be controlled, G1(z), presents a low percentage
of overshoot and a certain speed when the input is a unit step. However, at a given instant
of time, the model of the plant was changed abruptly to G2(z). From that moment, the
response of the system is faster and then it has more percentage of overshoot and its gain
varies. Both systems are generated in accord with Eq. (12) with sampling time of 0.1 s.
In Fig. 3(a) it can be seen the response for both systems to unit step. Moreover, Fig. 3(b)
shows the root locus of both systems superposed. In this last figure, it is possible to check
that the systems are very similar, in fact they have the same shape but their starting points
are different

G1(z) =
0.004675z+ 0.004373

z2 − 1.801z + 0.8187
, G2(z) =

0.009319z + 0.008717

z2 − 1.765z + 0.8187
. (12)
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Fig. 4. Set point signal and system output for the MPC, PID, RLS-PID and proposed method in experiment 1.

(a) (b)

Fig. 5. Step response and root locus for the systems in experiment 2

Figure 4 shows the results for this experiment. The transition between the systems is
presented at t = 30 s and it can be observed from this moment that the behavior of the
MPC and PID is more unstable than the proposed method. In the instant t = 30 s all the
methods present an abrupt change in their behavior but our proposal is able to adapt its
parameters, in an online fashion, achieving a good identification of the new system.

In the second experiment, we generated the system G3(z) that shows a low percentage
of overshoot when the input is an unit step. At a given instant of time the plant changes
strongly to G4(z). Due to this fact, the system becomes slower and it presents a more per-
centage of overshoot and a different gain. Both systems are generated according to Eq. (13)
with sampling time of 0.1 seconds. Figure 5(a) shows the response for both systems to unit
step. The root locus of both systems superposed is shown in Fig. 5(b). In these graphics it
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can be seen that the change is more significative than in the first test.

G3(s) =
0.1013z + 0.08284

z2 − 1.365z + 0.5488
, G4(s) =

0.004803z + 0.004614

z2 − 1.879z + 0.8869
. (13)

Figure 6 contains the results for this second test. In this case the change in the system
is forced at t = 50 s. Again, at that point, the classical control models suffer a significant
degradation but the proposed method recovers its good performance for the new system in
a few number of samples. The other approaches present an oscillating behavior for the new
system because they are not able to adapt to the new situation. Furthermore, the presented
method presents a lesser overshooting effect than the adaptive RLS-PID, despite of the
low value of Km parameter, which ensures a more stable mode of operation.

3.1. Robustness to Disturbances

Finally, two experiments were accomplish to analyze the performance of the proposed
method for nonlinear or nonminimum-phase systems, including also some random distur-
bances added at the output of the system. The random disturbances were generated from
a Normal distribution having a mean of 0 and a standard deviation of 0.02.

For the first experiment the plant introduced into the literature by Narendra and
Parthasarathy (1990), and subsequently studied by other authors (Plett, 2003), was used.
The difference equations defining its dynamics are:

s(k) =
s(k − 1)

1 + s2(k − 1)
+ u3(k − 1),

y(k) = s(k) + noise(k),

where noise(k) is the random disturbance described previously.
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Fig. 8. Set point signal and system output for the proposed method.

The second experiment was generated with the transfer function in Eq. (14) with sam-
pling time of 0.1 s.

G(z) =
−0.08347z + 0.09705

z2 − 1.81z + 0.8187
. (14)

Figure 7 shows the response of this system to unit step and the corresponding root lo-
cus. As can be observed a typical nonminimum-phase response is obtained where the step
response departs in a different direction from the one of the steady state, which produces
an initial undershoot. A classical result states that the step response of an asymptotically
stable, strictly proper transfer function exhibits initial undershoot if and only if the system
has an odd number of positive zeros.

Figure 8 shows the results for the two experiments. The graphs show that in both cases
the method is able to control the plant even with the presence of disturbances in the output
of the plant. In the case of the nonminimum-phase system (Fig. 8(b)) the on-line learning
algorithm can overcome the problem produced the initial undershoot and leads the plant
to the reference point.
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4. Conclusions

In this research we have proposed a scheme for adaptive inverse control that employs a
supervised neural network for the system identification. In order to obtain a real-time con-
trol, a new online algorithm was employed for the learning process of the neural network.
The main characteristics of the method are:

• The presented topology is able to control processes with hard nonlinearities and
shifts in its operational behavior that cause different dynamic outcomes. Therefore, it
is suitable for the control of dynamic processes that change very much their behavior
due to several reasons such as variations in their working regime, deteriorations,
maintenance operations, etc. Besides, as it was checked in the experimental study
the model is able to adapt the identification of the process in real time with a stable
behavior.

• It shows a better performance than classic control methods, such as PID and MPC,
and other well-established adaptive systems as the Recurrent Least Squares with
Self-tuning PID for the control of adaptive processes.

• The learning method, employed to identify the process, presents an complexity from
O((K +J )N2) to O((K +J )N3), being K , J , N the number of hidden units, output
neurons and parameters of each subnetwork, respectively. This is due to the system
has to solve K + J systems of linear equations in each iteration of the learning
algorithm. Although previous online learning algorithms were used in the literature,
this new method has a fast convergence and also can be parallelized (each system of
linear equations can be solved independently) allowing a significant improvement in
learning time for large networks.
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Adaptyvusis inversinis valdymas operatyviuoju mokymosi algoritmu,

skirtu neuroniniams tinklams

José Luis CALVO-ROLLE, Oscar FONTENLA-ROMERO, Beatriz PÉREZ-SÁNCHEZ,
Bertha GUIJARRO-BERDIÑAS

Siūloma adaptyvioji inversinio valdymo schema, sistemos identifikavimo fazėje naudojanti neuro-
ninį tinklą, atnaujindama jos svorius operatyviojoje būsenoje. Pateiktas taikomo metodo teorinis
pagrindas. Šio metodo efektyvumas iliustruojamas, sprendžiant įvairias valdymo problemas. Paro-
doma, kad pasiūlytas metodas yra pajėgus išspręsti uždavinius, sąlygojamus proceso dinamika ar
sistemos fiziniais pokyčiais, sukeliančiais svarbias proceso modifikacijas.


