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Abstract. Manifold learning algorithms do not extract the structure of datasets in an abstract form
or they do not have high performance for complex data.In this paper, a method for Learning an
Inductive Riemannian Manifold in Abstract form (LIRMA) is presented in which the structure
of patterns is determined by solving the embedded dynamical system of the patterns. In order to
model corresponding system, the true sequence of patterns is estimated using a topology preserving
method.LIRMA has the advantage of being an inductive method with low complexity. Additionally,
it is a topology preserving method with respect to quantitative measures.
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1. Introduction

Dimensionality reduction is an important step in many machine learning problems
such as solving the curse of dimensionality, removing the uninformative variables of
a dataset or visualization problem. The dimensionality reduction methods are catego-
rized into linear and non-linear approaches. The linear methods such as Principal Com-
ponent Analysis (PCA) are successful when the assumption of patterns lying on a lin-
ear subspace is true (Jolliffe, 2002; Theodoridis and Koutroumbas, 2003; Izenman, 2008;
Lee and Verleysen, 2007; Burges, 2009).However, this assumption is not satisfied for more
complex datasets. Non-linear approaches such as principal curve and surface, polynomial
PCA, kernel PCA, Self Organizing Map (SOM) and manifold learning methods are useful
for dimensionality reduction of these datasets (Izenman, 2008; Lee and Verleysen, 2007;
Burges, 2009; Masahiro, 2004; Law, 2006; Belkin, 2003). However, they do not extract
the underlying structure of the dataset in an abstract form or they are not applicable for
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high dimensional datasets. By learning the underlying structure of data, inductive low
dimensional representation of test patterns is possible.

Principal curve and principal surfaces (Izenman, 2008; Lee and Verleysen, 2007;
Masahiro, 2004) present dataset in an abstract form and are applied inductively for non-
linear dimensionality reduction. However, the general structure of the principal surface
should manually be determined in advance. Local minimum solutions make these meth-
ods not a proper candidate for high dimensional datasets. Polynomial PCA is also not
applicable in high dimensional feature space. The reason is that the size of extended
matrix analyzed by PCA increases quickly (Izenman, 2008; Lee and Verleysen, 2007;
Masahiro, 2004).

Kernel PCA is a dimensionality reduction approach which does not extract the un-
derlying structure of the dataset. Determining the correct structure of kernels plays an
important role in successful results of this method (Izenman, 2008; Lee and Verley-
sen, 2007; Masahiro, 2004). Similarly SOM does not extract the underlying structure
of dataset. However, it has an acceptable performance for dimensionality reduction of
datasets which are compatible with clustering assumption (Izenman, 2008; Burges, 2009;
Law, 2006). Furthermore, there are local methods which propose better generalization
ability by applying simple structures on local intervals. However, determining the local
intervals is a challenging task and the success of the results depends on it. Additionally,
these methods are not able to extract the global structure of dataset. As a result, they
cannot be applied beyond the range of training samples (Ozertem and Erdogmus, 2011;
Vapnik, 1998).

Manifold learning methods are developed rapidly by representing manifold topology
using graphs and by applying Geodesic distance as a new metric (Lee and Verleysen,
2007). It is expected that the non-linear underlying structure of patterns and their low
dimensional representation are discovered by using a manifold learning method. Theoret-
ically, it is desirable that the underlying structure is determined as an invertible function
(Izenman, 2008). As explained before, the advantage of such function is that mapping
from low dimensional space to the original one and an inverse mapping are possible.
However, in the discrete-graphical representation of a graph-based method, the underly-
ing structure implicitly embeds in the connections between graph nodes (Izenman, 2008;
Lee and Verleysen, 2007; Burges, 2009; Masahiro, 2004; Law, 2006; Belkin, 2003).There-
fore, it is not explicitly estimated as an invertible mapping. Additionally, an adjacency
graph is constructed with respect to the K nearest neighbors of samples in these meth-
ods. Low value of K partitions the constructed graph into separated connected compo-
nents. Since the method is applied on the largest connected component, there might be
missed training patterns during the dimensionality reduction process (Izenman, 2008;
Lee and Verleysen, 2007).

Since there is no direct mapping for low dimensional representation of test patterns
in graph based approaches, mediator methods are applied process (Izenman, 2008; Lee
and Verleysen, 2007). Neural Networks such as Multi-Layer Perceptron (MLP) and Radial
Basis Function (RBF), K Nearest Neighbors (KNN) and interpolation function are some
of mediators to estimate the low dimensional representation of the test patterns (Lee and
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Verleysen, 2007). The memory and computational complexities of correspondingmethods
might be considerable in comparison to a direct mapping.

Although enhancements in the line of performance and applicability of non-linear
dimensionality reduction methods are presented in recent papers, the main concept be-
hind these methods are not changed (Tuzel et al., 2008; Raducanu and Dornaika, 2012;
Li et al., 2011; Zhang et al., 2011). In this paper, we present a method which models the
embedded linear dynamical system of a dataset and applies it to estimate the underlying
structure of data. By solving the embedded dynamical system, the parameterized map-
ping of Riemannian manifold of the dataset is obtained in abstract form (Ogata, 2002).
As a result, this function can be applied inductively for test patterns without requirement
to mediator methods such as KNN. In order to determine the embedded dynamical sys-
tem, the order of patterns is estimated using a topology preserving dimensionality reduc-
tion method (Izenman, 2008; Lee and Verleysen, 2007; Burges, 2009; Masahiro, 2004;
Law, 2006; Belkin, 2003; Zhang and Zha, 2004).

The important advantage of Learning an Inductive Riemannian Manifold in Abstract
form (LIRMA) is that this method extracts the structure of patterns by using a weighted
summation of rich set of functions (i.e. families of tα exp(λt), tα exp(at) sin(bt) and
tα sin(bt) where α ∈ Z

+ and λ,a, b ∈R). By applying this abstract form, LIRMA is used
inductively. Consequently, it has low computational and memory complexities and also
acceptable performance to preserve the topology of data.

The arrangement of remaining sections is as follows: In Section 2, a review on prin-
cipal surfaces and manifolds is made. Parametric modeling of linear dynamical systems
is the subject of Section 3. Learning an Inductive Riemannian Manifold in Abstract form
(LIRMA) using its embedded dynamical system is presented in Section 4. In Section 5,
experimental results are given and finally, Section 6 includes our conclusions and future
works.

2. Principal Surfaces and Manifold Learning Methods

Manifold learning is one of the effective methods for non-linear dimensionality reduction
which develops rapidly by applying graph theory and metrics such as Geodesic distance
(Izenman, 2008; Lee and Verleysen, 2007; Burges, 2009; Masahiro, 2004; Law, 2006;
Belkin, 2003). The goal of manifold learning is to discover the non-linear underlying
structure of dataset and the low dimensional representation of patterns (Izenman, 2008).
According to the definition of Georg Friedrich Bernhard Riemann (1854), when a topo-
logical manifold is continuous and smooth (i.e. differentiable in any order or C∞) and a
metric such as geodesic distance is defined for it, the manifold is called Riemannian Man-
ifold (Izenman, 2008; Lee and Verleysen, 2007). In case of a Riemannian manifold, the
structure of the manifold is estimated using various tangent spaces. These tangent spaces
discretize the manifold to flatten sub-manifolds which are defined in a same dimensional-
ity (Tuzel et al., 2008).

In Lin and Zha (2008), a frame work is presented for Riemannian Manifold Learn-
ing (RML) for dimensionality reduction which maps patterns on only one tangent space.
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The low dimensional tangent space is estimated by using PCA which is applied on the
center of patterns and its nearest neighbors.However, applying only one tangent space
causes that the topological structure of Riemannian manifold and the theoretical expecta-
tions from Riemannian manifold are not satisfied. Additionally, the manifold assumption
for applying RML is that its subject is considered as a unit sphere. Face recognition is a
compatible task for this assumption. In Local Tangent Space Alignment (LTSA) (Zhang
and Zha, 2004), the tangent spaces of all of training samples are estimated using their
nearest neighbors. The tangent spaces are represented in low dimensional feature space
using PCA. The global coordinate system is then learned to represent training samples
in a single coordinate. Uniform distribution of patterns and lying samples and their close
neighbors on linear subspaces are necessary conditions for best performance of LTSA
(Zhang and Zha, 2004).

Principal curve and principal surfaces (Izenman, 2008; Lee and Verleysen, 2007;
Masahiro, 2004) are methods which present dataset in an abstract form and are used in-
ductively for non-linear dimensionality reduction. Before applying the learning algorithm
for a principal curve/surface, its general structure should be determined in advance. The
learning process includes projection and expectation step. In one iteration of learning, the
low dimensional representations of samples are updated according to the previous struc-
ture of the curve (i.e. projection). In the expectation step, the parameters of the curve
are expected by considering the updated representations of the samples. Sensitivity to the
initial parameters of the curve/surface and consequently local minimum problem are the
main disadvantages of this learning algorithm. These problems are more challenging for
high dimensional datasets.

Comparing the advantage of applying LIRMA with projection-expectation algorithm
demonstrates the challenge of learning for principal curve/surface. In Section 4, it is shown
that the underlying structure of a dataset is estimated using the summation of the families
tα exp(λt), tα exp(at)sin(bt) and tα sin(bt) where α ∈ Z+ and λ,a, b ∈ R. As a result,
for n dimensional feature space, n2 + 3n parameters is needed (e.g. when n = 50, number
of parameters = 2650). Therefore, the search space grows quickly and the projection-
expectation algorithm returns a local minimum solution. Applying local learning methods
might bean efficient strategy to solve corresponding challenge.

In order to reduce the order of complexity of a classifier, regressor and dimension
reduction method, local methods are applied. Decreasing Vapnik–Chervonenkis (VC) di-
mension and better controlling the generalization ability are the main advantages of apply-
ing local learning approaches. However, determining the local intervals is a challenging
task and the success of the results depends on it (Vapnik, 1998). Gaussian kernels and tan-
gent spaces are usual options to estimate local intervals (Ozertem and Erdogmus, 2011).
In addition to determing the local intervals, these methods are not able to extract the global
structure of a dataset. As a result, they cannot be applied beyond the range of patterns (e.g.
red points in Fig. 2, Section 4). Furthermore, acceptable performance in comparison to
the other non-linear dimensionality reduction methods is not reported for local learning
manifold (Ozertem and Erdogmus, 2011).

By applying graph based manifold learning such as (Isometric feature Mapping)
ISOMAP, (Locally Linear Embedding) LLE and Laplacian Eigenmap (LE), the adja-
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cency graph applies local information of dataset without the challenges of determining
local intervals (Izenman, 2008; Lee and Verleysen, 2007; Burges, 2009; Masahiro, 2004;
Law, 2006; Belkin, 2003). Although the underlying topological structure of dataset
is not defined explicitly, it is embedded implicitly in the connections between graph
nodes. Methods such as ISOMAP try to keep a global-local structure of patterns; how-
ever, LLE and LE preserve local curvatures better than a global shape (Izenman, 2008;
Lee and Verleysen, 2007). Without considering different concepts behind graph based
manifold learning methods for non-linear dimensionality reduction, they are similar in
three main steps (Izenman, 2008). These steps are summarized as follows:

1. Extracting the weighted adjacency graph according to the neighborhood relations
between patterns. Determining the proper number of neighbors in this step plays
an important role in the success of the algorithm. Low values for the number of
neighbors makes the adjacency graph spars. In contrast, applying large number of
neighbors disturbs the local information and curvatures.

2. The second step includes the special characteristics of each algorithm. It prepares
patterns for representation in low dimensional sub-space. According to the trans-
forming process of the adjacency matrix of the graph, patterns will be prepared for
low dimensional representation in the 3rd step.

3. The final step to represent patterns in low dimensional space involves solving an
eigen-equation.

More details on learning graph based manifolds are given in Izenman (2008), Lee and
Verleysen (2007), Burges (2009), Masahiro (2004), Law (2006), Belkin (2003). Since
graph based methods are applied on the largest connected component of the adjacency
graph, the dimensionality reduction process may ignore some of training samples (missed
samples). With respect to the discrete-graph based representation of samples, the under-
lying structure of a dataset is defined implicitly between the nodes of the graph. However,
corresponding structure does not extracted explicitly as an invertible mapping. As a result,
mediator methods should be applied in order to represent a test pattern in low dimensional
space. Recommended mediators to embed test patterns are neural networks such as Multi-
Layer Perceptron (MLP) and Radial Basis Function (RBF), K Nearest Neighbors (KNN)
and local linear interpolation (Lee and Verleysen, 2007).

Local linear interpolation is one of the usual methods for representing a test pattern.
The low dimensional representation is computed using linear interpolation on the low
dimensional images of its K nearest neighbors. The computational complexities of find-
ing K nearest neighbors (in the best case by applying Tournament sort Chen, 2002) and
interpolation are O(nl + l + K log(l)) and O(Km) respectively (important notations are
summarized in Table 1). As a result, the overall computational complexity of the algorithm
is in the order of O(ln). All of training patterns in high dimensional space are needed to
find the K nearest neighbors. Therefore, the memory complexity is in the order of O(ln).
By increasing the number of training samples, the computational and memory complexi-
ties of interpolation increases accordingly.

The computational and memory complexities of neural networks depend on the com-
plexity of dataset (i.e. topology of patterns in high dimensional space and their low di-



366 E. Bavafaye Haghighi et al.

Table 1
Important notations.

Rn n-Dimensional Euclidian space where high dimensional patterns lie.
Rm m-Dimensional Euclidian space where low dimensional representation of patterns lie

(m ≪ n).
K Number of nearest neighbors in KNN and LLE.
xi xi ∈R

n is ith training pattern (1 6 i 6 l) or test pattern (l + 1 6 i 6 L).
x(t) x(t) ∈R

n is the state vector or response time of a continuous state equation.
xr or xr(i,k) xr is rth or r(i, k)th state vector in a discrete state space.
δk Determines the selected features in kth set of correlated variables.
nk The number of variables in kth set of correlated variables. Therefore, it is the order of

corresponding dynamical system for kth set.
xi,δk

Representation of xi using features determined by δk .
γi,k One-dimensional representation of ith pattern for kth set of correlated variables using a

non-linear dimension reduction method (e.g. LLE).
AC or AC

k AC ∈R
nk×nk is the state matrix of a continuous state space for kth set of correlated variables.

AD or AD
k

AD ∈Rnk×nk is the state matrix of a discrete state space for kth set of correlated variables.
T Time interval for sampling and discretizing state vectors.
z(t) or zk(t) z(t), zk(t) ∈ Cnk ; the state vector of Jordan canonical state space for kth set of correlated

variables.
U or Uk U,Uk ∈ Cnk×nk ; the orthonormal modal matrix to represent the Jordan canonical state space

for kth set of correlated variables.
JC , JD JC , JD ∈ Cnk×nk , the Jordan canonical state matrix for continuous and discrete state spaces

for a set of correlated variables.
λC
p , λD

p pth different eigenvalue of AC or AD for a set of correlated variables.

np The power of (λ − λC
p ) in the characteristic polynomial of dynamical system for a set of

correlated variables. For kth set of correlated variables:
∑

p np = nk .
τj,i,k Scaled time or low dimensional representation for j th variable of ith sample for kth set of

correlated variables.

mensional image). For example the number of basis in RBF are increased up to l in the
worst case. As a result, computational and memory complexities are in the order of O(ln).
By applying MLP, the computational complexity might be lower than KNN. However, the
underlying structure of a dataset which is implicitly defined between the graph nodes of a
manifold, is not defined by MLP. Additionally, local minimum solution is another disad-
vantage of applying neural networks.

By learning an inductive Riemannian manifold in abstract form, the underlying struc-
ture of patterns is estimated using a continuous invertible smooth function. As a result,
low dimensional representation is accomplished inductively and directly for test patterns
with respect to the structure of the dataset.

3. Parametric Modeling of Linear Dynamical Systems

By mathematical modeling of a linear dynamical system, the state space equation of the
system is estimated. Representation of this system using state space equation is given
by (1) (Ogata, 1995, 2002).

{

ẋ(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) + D(t)u(t).
(1)
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In (1), x(.), u(.) and y(.) are state vector, input (or control)vector and output vector of
the continuous system respectively. A(.), B(.), C(.) and D(.) are the state matrix, input
matrix, output matrix and feed through (feed forward) matrix of a time-variant system. In
a time-invariant continuous system, these matrices are constants (i.e. A, B , C and D).

Modeling linear dynamical systems are divided to white box and black box approaches
(Ogata, 2002; Ljung and Glad, 1994; Sishwick, 2007; Haefner, 2005). In a white box ap-
proach, the linear dynamical components of the system (or their linear approximations)
and their interactions are observable. As a result, the order of the equation and its parame-
ters are determined according to the specifications of the components. For more complex
systems, black box approaches are applied. Non-parametric and parametric methods are
the two main categories of black box approaches. In case of non-parametric methods, the
model is estimated according to impulse response or frequency response of the system
(Ljung and Glad, 1994). How to excite the system using an impulse or defining a suffi-
ciently rich set of input to stimulate the major frequencies of the system are some of the
main challenges of non-parametric modeling of linear dynamical systems. Additionally,
these methods are not proportional for an autonomous system in which the matrix B is
zero and the system is not affected by u(.). In these systems, the dynamicity is determined
according to the sequence of observed state vectors beginning from an initial state.

In the parametric modeling approach (Ljung and Glad, 1994; Sishwick, 2007; Haefner,
2005) the parameters of a dynamical system are estimated according to the initial state
vector of it. Least Square Error (LSE) and its iterative versions are usual candidates to es-
timate/learn the state matrix of a discrete-autonomous dynamical system. The state space
equation of a discrete-autonomous dynamical system in Rn is given in (2) (Ogata, 1995).

xr+1 = ADxr , xr ∈ R
n, 1 6 r 6 l. (2)

The subscript r in (2), defines the order of the state vectors during sampling process. l is the
number of observations. Equation (2) is also called Auto Regressive (AR) model (Ljung
and Glad, 1994). From this point forward, the notations AD and AC are applied to present
state matrices of Discrete and Continuous state spaces respectively (see (2) and (3)).

ẋ(t) = ACx(t). (3)

Equation (3) presents the continuous form of an autonomous time-invariant dynamical
system. By considering T as the time interval of sampling and discretizing state vectors,
the relation between AD and AC is defined by (4) (Ogata, 1995).

(xr+1 − xr)/T ∼= ACxr ⇒ xr+1 =
(

T AC + I
)

xr ⇒ AD ∼= T AC + I. (4)

In (4), I is n × n identity matrix. In Section 4, it is assumed that approximation (4) is
equality.

In order to estimate AD using LSE, the matrices X1,l−1 ∈ Rn×(l−1) and X2,l ∈
Rn×(l−1) are constructed in such way that rth (1 6 r 6 l − 1) column of these matri-
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ces are xr and xr+1 respectively. At this step, (2) is rewritten by using X1,l−1,X2,l which
is given by (5) (Ljung and Glad, 1994; Sishwick, 2007; Haefner, 2005).

X2,l = ADX1,l−1. (5)

According to (5), AD is estimated as follows:

AD ∼= X2,lX1,l−1
T
(

X1,l−1X1,l−1
T
)−1 = X2,lX

+
1,l−1. (6)

In (6), T is transpose operator and + is Moore–Penrose pseudo inverse (Strang, 1988;
Sheldon, 1997). Estimating AD with respect to all of training samples in a batch form,
makes modeling process more robust to the noise and distortion (Ljung and Glad, 1994;
Sishwick, 2007; Haefner, 2005).

4. Learning an Inductive Riemannian Manifold in Abstract Form

The major expectation from a non-linear dimensionality reduction method is that it pre-
serves the topological information of samples. As a result, similar patterns remain close
together in their one dimensional representation which is learned by a topology preserving
method. In this regard, deformable sample shapes on one dimensional manifold demon-
strates existence of an embedded dynamical system in dataset (Fig. 1 and Eq. (2)). Con-
sequently, a manifold can be estimated by modeling its embedded dynamical system.

The first step of estimating the underlying structure includes finding the most corre-
lated features. It is expected that correlated features belong to the same structure. As a
result, in order to represent dataset in m dimensional feature space, m sets of correlated
features are determined. For each set of features, its embedded dynamical system is mod-
eled. However, an ordered sequence of observations from the state vectors is required
for such modeling. Therefore, patterns (which are presented by the selected correlated
features) are ordered with respect to their one dimensional representation. The one di-
mensional representation is learned by a topology preserving non-linear dimensionality
reduction method.At this step, the AR model of the system is estimated. By modeling the
embedded linear dynamical system, corresponding Riemannian manifold is determined
in abstract form by solving its canonical Jordan equivalent representation. With respect to
the underlying structure of the dataset, samples are represented in low dimensional feature
space inductively and directly.

 
Fig. 1. Deformable sample shapes on a manifold confirms existence of an embedded dynamical system in the dataset. These 

Fig. 1. Deformable sample shapes on a manifold confirms existence of an embedded dynamical system in the
dataset. These figures are taken from COIL100 (Nene et al., 1996, Table 2) and the order of images are deter-
mined by LLE.
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4.1. Partitioning to Correlated Features

The probability of lying on a surface increases for most correlated features. In the other
words, correlated features belong to the same structure. As a result, in order to represent n
dimensional patterns inRm using LIRMA, m subsets of correlated features are determined
using PCA (Jolliffe, 2002; Theodoridis and Koutroumbas, 2003; Izenman, 2008; Lee and
Verleysen, 2007). The selected features for kth dimension (1 6 k 6 m) are presented using
δk which is defined by (7).

δk = (δk1, δk2, . . . , δkn), δkj ∈ {0,1},
m

∑

k=1

δkj = 1,

n
∑

j=1

δkj > 1, 1 6 j 6 n, 1 6 k 6 m.
(7)

δkj = 1 means that the j th element of x is selected to be applied for kth set. The condition
∑m

k=1 δkj = 1 ensures that all of the variables are applied in LIRMA. Additionally, each
variable is appeared in only in one of δks. This condition makes a unique representation for
each variable (see Section 4.5). The condition

∑n
j=1 δkj > 1 guarantees that the number

of applied variables for each dynamical system is more than one. Consequently, nk =
∑n

j=1 δkj is the number of applied variables in each correlated set or it is the order of
dynamical system of each set.

PCA is used to determine the set of correlated variables with respect to the importance
of variables in each principal component. By sorting the elements of a principal com-
ponent in increasing order, the effectiveness of corresponding variables are determined.
With respect to the effect of variable scales on the covariance matrix and consequently on
the principal components, applying PCA on the centered-normalized version of variables
(Izenman, 2008) is more effective to reduce the effect of variable scales.

Since PCA results in a set of orthonormal basis of principal components, the impor-
tance of each variable in an eigenvector is different from the other eigenvectors.As a result,
it is not probable that the most important variables of a major principal component have
a same degree of importance in the other ones. Therefore, the first ⌊n/m⌋ non-selected
variables of kth major eigenvectorare considered for kth set where ⌊.⌋ is the floor op-
erator. According to the explanations of this subsection, the algorithm of partitioning to
correlated features is summarized as follows:

1. Apply PCA on the centered-normalized dataset.
2. Select the first m major principal components.
3. For 1 6 k 6 m:

3.1 Select the first ⌊n/m⌋ non-selected variables of kth eigenvector for kth set of
correlated features.

3.2 Set δkj = 1 (1 6 j 6 n) for the selected variables accordingly.
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he traditional methods of manifold learning do not estimate the underlying structure of 

Fig. 2. The spiral dataset. The traditional methods of manifold learning do not estimate the underlying structure
of such datasets in abstract form. As a result, they are not able to predict the shape of the dataset beyond the
range of training samples (e.g. red points).

(a)
 (a)  

' " [1,1000] [1,1000]

(b)

 (a)  

(b)  

Fig. 3. In this figure, ' " [1,1000] is illustrated using the correspondence between [1,1000] and the color range [orange, red]. 

Fig. 3. In this figure, t ∈ [1,1000] is illustrated using the correspondence between [1,1000] and the color range
[orange, red]. (a) The unordered sequence of t by which the dataset of spiral is constructed. (b) By applying
LLE to represent dataset in one dimensional space, the order of t and consequently the order of samples are
estimated.

4.2. Order Reconstruction

Estimating the order of patterns for each set of correlated variables is required to deter-
mine corresponding AR model. The ith sample (1 6 i 6 l) with δk features is represented
using xi,δk ∈ Rnk . By applying a topology preserving non-linear dimensionality reduc-
tion method (Izenman, 2008; Lee and Verleysen, 2007; Burges, 2009; Masahiro, 2004;
Law, 2006; Belkin, 2003; Zhang and Zha, 2004) on xi,δk s to represent them in one dimen-
sional feature space, γi,k ∈ R is determined for each pattern. Since the applied method is
topology preserving, it is expected that similar γi,ks belong to similar xi,δk s. As a result
by sorting γi,ks, corresponding xi,δk s in the sequence are similar and deformable (Fig. 1).
Therefore, the order of xi,δk s is estimated by sorting the values of γi,k in ascending order.

Figure 2 illustrates the spiral dataset which is produced synthetically for x1 =
sin(0.01πt) exp(0.005t) and x2 = cos(0.01πt) exp(0.005t). The values of t belong to the
random permutation of the integers in [1,1000]. As a result, the sequence of samples in
dataset is not preserved. Figure 2 illustrates the shape of the dataset according to the val-
ues of x1 and x2. In Fig. 3(a), the unordered sequence of t is presented. In this illustration,
the values of t is represented schematically with respect to the correspondence between
[1,1000] and the color range [orange, red] where orange is the left side of Fig. 3(b) and
red is right side of Fig. 3(b). It is shown in Fig. 3(b) that the order of patterns is estimated
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by applying LLE by representing dataset in one dimensional space. In order to apply LLE,
the adjacency graph is constructed using 15 nearest neighbors for each sample.

The sequence γk estimates the order of applied t in Riemannian manifold. However,
the true values of t by which the underlying structure is determined in abstract form is not
determined.

4.3. Model Estimation

Once the γi,ks, are determined, these values are ordered increasingly. In this way, r(i, k) is
the rank of ith sample in the kth correlated set. Consequently, xr(i,k) is r(i, k)th sample in
the ordered sequence of kth correlated set. By applying a topology preserving method, it
is expected that γi,ks of adjacency samples in an ordered sequence have minor differences
(Fig. 1). The gradual deforming shape of patterns in an ordered sequence is mathemati-
cally represented by (8) using a discrete linear dynamical system.

xr(i,k)+1 = AD
k xr(i,k), (8)

where AD
k ∈ Rnk×nk . By considering xr(i,k)=1, xr(i,k)=2, . . . , xr(i,k)=l , the matrices

X1,l−1 ∈ Rnk×(l−1) and X2,l ∈ Rnk×(l−1) are constructed by applying the first and
the last l − 1 samples of the sequence respectively. AD

k is estimated by applying
(6) with respect to all of training samples in a batch form. As a result, the esti-
mated AR model is robust of to the noise (Ljung and Glad, 1994; Sishwick, 2007;
Haefner, 2005). Since the sequence of patterns is estimated using a non-linear dimen-
sionality reduction method, there are minor dis-orderings in the sequence which affects as
noise and distortion. Applying (6), makes our modeling robust to the dis-ordering noise.

According to AD
k and (4), AC

k is given by (9).

AC
k

∼=
(

AD
k − Ink×nk

)

/T . (9)

As a result, the embedded dynamical system for kth correlated set of variables is estimated
in the continuous form of (3). For simplicity the index k is omitted in most of formulas
from this point forward (i.e. zk ↔ z, Uk ↔ U , AD

k ↔ AD and AC
k ↔ AC ). By represent-

ing (3) using equivalent Jordan canonical state equation, it is known that (Strang, 1988;
Sheldon, 1997):

ż(t) = JCz(t),

s.t.











AC = UT JCU,

UT U = In×n,

z(t) = Ux(t).

(10)

The factorization of AC = UT JCU is computed using Singular Value Decomposition
(SVD). In (10), z(t) ∈ Cnk (C is the set of complex numbers) and the modal matrix U ∈
Cnk×nk includes orthonormal eigenvectors of AC . It rotates the underlying Riemannian
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surface without modifying topology of the dataset in a complex space.The importance of
representing by equivalent Jordan canonical state equation is that it is possible to analyze
variables related to each Jordan block independent from the other blocks.

4.4. Response Time Analysis

The response time of (10) is a parameterized curve on Riemannian surface (Ogata, 2002).
In order to analyze the response time of the system, the roots of characteristic polynomial
of state space should be analyzed. Since these roots are the main frequencies of the system,
they are not changed in the equivalent state space. Additionally, there is a relationship
between JC and JD .2 By considering AC = (AD − I)/T , it is proved in linear algebra
(Strang, 1988; Sheldon, 1997) that the modal matrices of AC and AD are the same (i.e. U ).
Additionally, the relationship between eigenvalues of AC and AD is as follows:

λC =
(

λD − 1
)

/T , (11)

where λC and λD are eigenvalues of AC and AD respectively. In order to solve (10),
λCs are analyzed. The characteristic polynomial of equivalent state space (P(λ)) (Ogata,
2002), is presented in (12) according to its eigenvalues;

P(λ) =
ń

∏

p=1

(

λ − λC
p

)np
. (12)

In (12), λC
p is pth different eigenvalue of AC , ń is number of different λCs and np is the

power of (λ − λC
p ) where

∑

p np = nk . For np = 1 and λC
p ∈R, the response time of j th

variable of z(t) (i.e. zj (t)) which is in correspondence with λC
p , is presented as (Ogata,

1995, 2002):

zj (t) = exp
(

λC
p t

)

zj (0). (13)

The value of zj (0) is determined using Uxr(i,k)=1 where xr(i,k)=1 is the first pattern (state)
in the ordered sequence (see (10)). With respect to (13) and (11), the value of t for ith
sample in kth set is given by (14).

τj,i,k = tj,i,k/T = Re
(

log
(

zj (t)
/

zj (0)
)/(

λD
p − 1

))

. (14)

The general definition of log(y) for y = a + bi ∈ C is log(r) + θi where r =
√

a2 + b2

and θ = arctg(b/a).3 It can be shown that log(zj (t)/zj (0))/(λD
p − 1) is a real number for

a noise free dataset for λD
p , λC

p ∈ C. In practice, because of the noise and disturbance of

2JD is computed by factorizing AD = UT JDU using SVD.
3In order to make difference between i as ith sample and i in imaginary part of a complex number,

√
−1 is

shown by i.
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data, complex values might be appeared at right side of (14). By applying Re(.), the real
part of the right side of (14) is extracted.

In (14), note that T is only a scaling factor. As a result, τ is applied for low dimensional
representation of patterns. Additionally, it is expected that τj,i,ks are the same for variables
of xi,δk . However, such expectation is not possible in a real world noisy dataset. As a result,
the mean of τj,i,ks is computed for variables of xi,δk . Computing the mean of τj,i,ks makes
the result of LIRMA less sensitive to the noise of the dataset.

In case of λC
p = ap + bpi ∈C, the response time is given by:

zj (t) = exp
(

λC
p t

)

zj (0) =
(

exp(apt) cos(bpt) + exp(apt) sin(bpt)i
)

zj (0). (15)

The solution of (15) is the same as (14). Complex conjugate root theorem states that when
λC

p = ap + bpi is one of the roots of P(λ), λC
p = ap − bpi is the other root of the equa-

tion (McGuire et al., 2002). The response time of such systems includes a spiral form
similar to Fig. 2. For the example given in Fig. 2, the complex roots of state equation are
estimated as 0.0055 ± 0.0313i. By applying the rotation matrix, x1 and x2 are estimated
in abstract form as sin(0.0313t) exp(0.0055t) and cos(0.0313t) exp(0.0055t) which are
close estimations of their original structures. Additionally, according to the abstract form
of the spiral dataset, it is possible to predict its shape beyond the range of the training
patterns (e.g. red points in Fig. 2).

When λC
p has only the imaginary part (i.e. ±bpi), the dataset includes a circle shape.

The response time of zj (t) is given by,

zj (t) =
(

cos(bpt) + sin(bpt)i
)

zj (0). (16)

When np > 1, there is Jordan block on the main diagonal of JC . An example for JC

with ń = 2, n1 = 1 and n2 = 2 is JC = [λ1,0,0; 0, λ2,1; 0,0, λ2] in which rows are
separated with ‘;’. The main diagonal of JC includes a single λ1 and a Jordan block for λ2

(i.e. [λ2,1; 0, λ2]). The Jordan block corresponding to λC
p is a np × np matrix which is

presented by (17).

JC
p =



















λC
p 1 0 . . . 0

0 λC
p 1 . . . 0

0 0 λC
p . . . 0

...
. . .

...

0 0 0 . . . 1

0 0 0 . . . λC
p



















np×np

. (17)

More details on construction of Jordan blocks, its generalized eigenvectors and response
time can be found in Ogata (1995), Strang (1988), Sheldon (1997). The response time
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[zj (t), . . . , zj+np−1(t)]T associated with JC
p , is presented in (18).











zj (t)

zj+1(t)

.

.

.

zj+np−2(t)

zj+np−1(t)











=













exp(λC
p t) t exp(λC

p t) t2 exp(λC
p t)/2! · · · tnp−1 exp(λC

p t)/(np − 1)!
0 exp(λC

p t) t exp(λC
p t) . . . tnp−2 exp(λC

p t)/(np − 2)!
.
.
.

. . .
.
.
.

0 0 0 . . . t exp(λC
p t)

0 0 0 . . . exp(λC
p t)













np×np

×











zj (0)

zj+1(0)

.

.

.

zj+np−2(0)

zj+np−1(0)











. (18)

According to (18), τj+np−1,i,k is estimated using (14). The response time of the other
variables includes weighted summation of tα exp(λC

p t)/α! (1 6 α < np). As a result, for
np > 1, the response time is invertible for zj+np−1 which is not associated with the gener-
alized eigenvectors of Jordan block. In (18), the part of underlying structure of dataset is
estimated using a rich set of functions includes the family of tα exp(λt), tα exp(at) sin(bt)

and tα sin(bt).

4.5. Underlying Structure Estimation Using LIRMA

Figure 4 illustrates the algorithm of learning inductive Riemannian manifold in abstract
form. The first step is partitioning the set of features to m subsets. From this point, LIRMA
can take the advantages of parallel computing (El-Rewini and Abd-El-Barr, 2005). For
each set of correlated features, patterns are ordered using a topology preserving non-linear
dimensionality reduction method (e.g. ISOMAP, LLE, LE or LTSA).

After determining the order of patterns, the AR model which presents the dynamicity
between deformable ordered patterns is estimated. The dynamical system is represented
using equivalent Jordan canonical form. In order to determine the underlying structure for
kth set of correlated variables (1 6 k 6 m), corresponding response time zk(t) and modal
matrix Uk are required. It is worth reminding that for simplicity the index k is omitted in
most formulas of Sections 4.3 and 4.4 (i.e. zk ↔ z, Uk ↔ U , AD

k ↔ AD and AC
k ↔ AC ).

With respect to the roots of characteristic equation presented by (12), the response time
of each variable of zk is determined (using (13), (15), (16) and (18)). The response time
xδk (t) is given by (19).

xδk (t) = UT
k zk(t). (19)

By modeling the embedded dynamical system of a dataset, LIRMA estimates the underly-
ing structure in the form of Riemannian surface using weighted summation of the families
tα exp(λt), tα exp(at) sin(bt) and tα sin(bt) where α ∈ Z+, λ,a, b ∈ R. The condition
∑m

k=1 δkj = 1 of (7) ensures that each variable is appeared in only in one of δks. As a
result, there is a unique representation for each variable.
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Fig. 4. The algorithm of learning inductive Riemannian manifold in abstract form. This algorithm can take the
advantage of parallel computing.

The computational complexity of LIRMA depends on applying PCA for partitioning
into correlated features (O(n3 +n2l)) (Sharma and Paliwal, 2007), LLE (O(nl2 +nlK3 +
ml2)) (Kayo, 2006), modeling dynamical system using Moore–Penrose pseudo inverse
operator (O(n3)) (Stewart, 1998) and representing the equivalent Jordan canonical state
equation (O(2n3)) (Sharma and Paliwal, 2007). As a result, the computational complexity
of the algorithm is polynomial with respect to its parameters. In order to apply LIRMA,
several matrices with n×n and n× l dimensionalities are required. Since in general n < l,
the memory complexity of training LIRMA is in the order of O(n l).

4.6. Inductive Dimension Reduction Using LIRMA

The main advantage of applying LIRMA is estimating the underlying structure of dataset
in abstract form. It results in applying LIRMA inductively for non-linear dimensionality
reduction. The process of dimensionality reduction using LIRMA is illustrated in Fig. 5.
After learning inductive Riemannian manifold in abstract form (Fig. 4), the pattern x is
partitioned to xδk s (1 6 k 6 m). From this point, the algorithm can take the advantage of
parallel computing (El-Rewini and Abd-El-Barr, 2005). Each xδk is represented in corre-
sponding equivalent Jordan canonical state space using (20)

zk = Ukxδk . (20)
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Fig. 5. The algorithm of non-linear inductive dimensionality reduction using LIRMA. This algorithm can take
the advantage of parallel computing.

According to the main frequencies in the response time of zk(t), τj,ks (16 j 6 np) are
determined for each variable of zk (using (14)). For np > 1, corresponding response time
is invertible for the variable which is not associated with the generalized eigenvectors of
Jordan block. Since log(.) is not defined for zero input, an epsilon number should be added
to x to solve such issues. The kth element of low dimensional representation of x is the
mean of τj,ks (1 6 j 6 ń). Applying the mean operator, makes our proposed method more
robust to noise and disturbances.

The computational complexity of dimension reduction algorithm is related to rotation
using Uk (O(n2)) and the number of applying log(.) (O(n)). As a result, the computation
complexity of the algorithm is from the order of O(n2). In order to apply the result of
LIRMA for non-linear dimension reduction, n frequencies (eigenvalues) of the system
and rotation matrix are required. Therefore, the memory complexity is from the order of
O(n2). Since n < l in most of datasets, the computational and memory complexity of the
proposed method is better than graph based approaches.

5. Experimental Results

In Section 4, LIRMA is applied for spiral dataset. Additionally, its ability is tested suc-
cessfully for other lost order linear dynamical systems with dimensionality up to 30. In
these tests, LLEis applied with K = 15. The number of nearest neighbors to find the or-
der of patterns plays an important role for successful results of LIRMA. For the synthetic
example of Fig. 2, K = 30 is not a correct option. In this case, x1 and x2 are estimated as
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Table 2
Specifications of the applied datasets.

n l L

MNIST 784 1000 11 000

Forest 54 2000 7000

COIL100 292 1800 7200

Face 10 304 160 400

Robot 24 4910 5457

Segment 19 210 2310

MFeat 649 1800 2000

exp(0.1725t) and exp(1.1019t). However, by applying K = 15, x1 and x2 are estimated as
sin(0.0313t) exp(0.0055t) and cos(0.0313t) exp(0.0055t) which are close to their origi-
nal versions. K = 15 is confirmed by the experimental results of Karbauskaitė and Dze-
myda (2009). In addition to the lost order dynamical systems, our proposed method is
applied for real world datasets which are more challenging tasks. In this case, the ability
of LIRMA for inductive dimensionality reduction is tested with respect to a quantitative
measure.

5.1. Datasets Specifications

Table 2 presents the specification of datasets which are applied in this paper. MNIST
(MNIST dataset) is the set of handwritten digits. Each digit has been size-normalized
and centred in a fixed size (28 × 28) image. The first 1000 samples in original train-
ing set of MNIST are used for training in this paper. COIL100 (Nene et al., 1996) con-
tains colour images of 100 different objects which are turned by 5◦. As a result, there are
72 images from different views for each object. In COIL100, 18 images from each ob-
ject (which are turned 20◦) are applied to train and the 54 remaining images are used to
test.

Similar to Kietzmann et al. (2008), from each image of COIL100, 292 dimensional fea-
tures are extracted. Each extracted feature contains 64 × 3 dimension for the histograms
of Lab channels, 64 dimensional histogram of Discrete Cosine Transformation (DCT),
8 dimension for Hu moments in addition to the logarithm form of their absolute values,
10 dimensional shape information which contains centroid, compactness, perimeter, ec-
centricity, circularity, aspect ratio, elongation, maximum and minimum diameters in ad-
dition to the logarithm of their absolute values.

For Face dataset (Face Dataset), 10 different images have been taken from 40 distinct
human subjects. The images are presented using 92 × 112 pixels in 256 grey levels. The
facial expressions (open/closed eyes, smiling/not smiling), facial details (glass/no glass) or
lightening are not the same for some subjects. Other datasets which are Forest Cover Type
(Forest), Wall Following Robot (Robot), Segmentation (Segment) and Multiple Feature
Digit (MFeat), are downloaded from UCI repository (UCI Repository). Train and test
samples of Forest are selected randomly from its original dataset. No feature extraction is
applied on the UCI, Face and also on MNIST datasets.
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Fig. 6. The Euclidian distance holds more topological information of the dataset in comparison to a rank mea-
sure. For two neighbors of ith sample, Euclidian distances (d1 and d2) and the ranks of the neighbors (r1 and
r2) are given. It might be possible that d1 ≪ d2 while r1 < r2.

5.2. Topology Preserving Quantitative Measures

Recently, quantitative measures are introduced to verify how much a manifold preserves
the topology of a dataset. These quantitative measures are more reliable than a visual-
subjective qualitative one. In Karbauskaitė and Dzemyda (2009), it is shown that Mean
Relative Rank Errors (MRRE) is one of the acceptable measures to ensure that the local
topological information of the dataset is preserved. It ensures that the nearest neighbors
of samples in the new space have the same rank of closeness in the original one and wise
versa. By considering X as the set of training samples in high dimensional space, MRRE
defines the rank rX(i, j) as follows:

1. By taking xi as the reference point, compute Euclidian distances between xi and xj

(1 6 i, j 6 l).
2. For each xi , sort the distances in ascending order.
3. The output of rX(i, j) is the rank of xj in the sorted list of distances such that for

j = min16s6l, s 6=i ‖xi − xs‖, rX(i, j) = 1.

Similarly, rY (i, j) is defined for Y which includes low dimensional representation of the
samples. In our experiments, yi ∈ Y is in correspondence with γ (in case of comparison
methods, i.e. LLE, LE, etc.) or τ (for LIRMA). MRREtrain (from Y to X) is defined by (21).

MRREtrain = 1

C

l
∑

i=1

∑

j∈NK (yi)

|rX(i, j) − rY (i, j)|
rY (i, j)

, C = l

K
∑

k=1

|2k − l − 1|
k

.

(21)

In (21), NK (yi) is a set which includes the indices of K nearest neighbors of yi and C is the
normalization constant which scales the result between [0,1]. For a topology preserving
method, MRREtrain converges to zero. In other words, the rank of the nearest neighbors
of the new representation is similar to the original space. Although MRRE is one of the
reliable measures to ensure topological information is preserved, it is based on the rank of
the neighbors. The Euclidian distance holds more topological information of the dataset
in comparison to a rank measurement. Figure 6 illustrates a schematic example in which
for two neighbors of ith sample, Euclidian distances (d1 and d2) and the ranks of the
neighbors (r1 and r2) are given. It might be possible that d1 ≪ d2 while r1 < r2.
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Additionally, missed samples in graph based methods make False Ranking in MRRE.
Since the given rank to the patterns ignores the missed samples, the assigned rank is not
equal to the true one (i.e. by considering all of the training samples). As a result, MRRE

is not a reliable measure when there are missed samples.
With respect to the problems of MRRE, we propose Mean Relative Euclidian Distances

(MRED). Corresponding measure is defined by (22) and (23) for training and test patterns
respectively.

MREDtrain = 1

l

l
∑

i=1

∑

j∈NK (yi)

‖xi − xj‖, (22)

MREDtest = 1

(L − l)

L
∑

i=l+1

∑

j∈NK (yi)

‖xi − xj‖. (23)

In (22) and (23), ‖xi − xj‖ returns Euclidian distance between two patterns. The missed
training samples of graph based method are penalized using mean of MREDtrain evaluated
for LIRMA. Applying Euclidian distance in MRED is more reliable option to determine
how much a method preserves local topological information of a dataset.

5.3. Performance Evaluation

In this section, the performance of LIRMA is evaluated in comparison to kernel PCA,
ISOMAP, LLE, LE and LTSA (MTDR v0.8b, 2012) by using MRED measure. In order to
select comparison methods, different approaches are analysed. As explained in Sections 1
and 2, principal surfaces and polynomial PCA estimate the underlying structure of dataset;
however, they are not applicable for high dimensional or complex real world datasets (Izen-
man, 2008). For example, in order to apply principal surface for Forest, MNIST and Face
datasets using a structure similar to LIRMA, 3078, 617 008 and 106 203 328 parameters
are needed to learn respectively.

The manifold assumption for applying RML is that its subject is considered as a unit
sphere (Lin and Zha, 2008) which is not satisfied in most of real applications. As a re-
sult, RML is not selected in our comparisons. Determining local intervals is a challenging
task in case of local methods and acceptable performance in comparison to the other non-
linear dimensionality reduction methods is not reported for them (Ozertem and Erdog-
mus, 2011). However, in case of LTSA, the tangent spaces of all of training samples are
estimated using their nearest neighbors (Zhang and Zha, 2004). As a result, LTSA is an
acceptable option to show the performance of a local approach by considering all tangent
spaces.

As Graph based methods are the most successful non-linear approaches (Lee and Ver-
leysen, 2007), ISOMAP, LLE and LE areselected for comparisons.ISOMAP is a qual-
ified graph based method to preserve the global-local structure of dataset.LLE and LE
are locally topology preserving approaches (Izenman, 2008; Lee and Verleysen, 2007;
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Burges, 2009; Masahiro, 2004; Law, 2006; Belkin, 2003). Therefore, the performance
of LIRMA is evaluated in comparison to ISOMAP, LLE, LE and LTSA. These meth-
ods are applied with 15 nearest neighbours. Additionally, kernel PCA is applied in our
comparisons as a kernel based approach. All of these methods are applied individually
for dimensionality reduction as well as to determine the order of patterns in LIRMA (i.e.
LIRMA + ISOMAP, LIRMA + LLE, etc.). Figures 7(a)–7(g) illustrate the performance
of these methods to train and test of different datasets. In case of Kernel PCA, ISOMAP,
LLE, LE and LTSA, interpolation functions are applied forlow dimensional representa-
tion of test samples. In Table 3, the mean and standard deviation of MRED measures
computed for LIRMA (on LIRMA + ISOMAP, LIRMA + LLE, etc.) and the other com-
parison methods (ISOMAP, LLE, etc.) are given.

It is explained in Sections 2 and 4.3 that the embedded dynamical system of LIRMA is
estimated by applying all training samples in a batch form. Therefore, the result of our pro-
posed method is robust to the noise and minor disordering. Additionally, LIRMA presents
an acceptable tradeoff between train and test sets with respect to the experiments which
are presented in Fig. 7 and Table 3. Another advantage is that LRMA has low variance
when different methods are applied to find the order of patterns. However, in case of Seg-
ment dataset, low number of samples increases the sensitivity to dis-ordering (Fig. 7(f)
and Table 3). Similar to Segment, Face includes low number of samples. However, by con-
sidering the ratio between variance to mean, its variance ratio for comparison methods is
lower than Segment (Table 3). As a result, LIRMA confronts less dis-ordering in case of
Face dataset.

As explained in Sections 1 and 2, one of the disadvantages of applying graph based
methods is missed training samples. The number of missed training samples for LLE and
ISOMAP are 3 (MNIST), 2 (Forest), 426 (CIOL100), 8 (Face), 742 (Robot), 4 (Segment)
and 6 (MFeat). In case of LE, the number of missed training samples are 126 (CIOL100)
and 742 (Robot). The other methods have no missed samples.

Although experimental results confirm that LIRMA is a topology preserving method
according to quantitative measures, we do not claim that our proposed method is the opti-
mal candidate for dimensionality reduction. For example, it would be better to apply graph
based methods for datasets which are not compatible with Riemannian manifold assump-
tion (e.g. open cube). Additionally, when inductivity of a manifold is not important in a
special task, an over-fitted graph based approach is a better option.

6. Conclusion and Future Works

In this paper, we presented a method for Learning Inductive Riemannian Manifold in Ab-
stract form (LIRMA) by modeling embedded dynamical system. By taking the advantage
of LIRMA, the global underlying structure of dataset is determined using a weighted sum-
mation of rich set of functions (i.e. tα exp(λt), tα exp(at) sin(bt) and tα sin(bt) (α ∈ Z+

and λ,a, b ∈ R)). LIRMA is applied for high dimensional, complex, real world datasets
which is a challenging task for methods such as principal surfaces and polynomial PCA.
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Fig. 7. Figures (a) to (g) illustrate the performance of Kernel PCA, ISOMAP, LLE, LE, LTSA and LIRMA to train and test of 

Fig. 7. (a)–(g) illustrate the performance of Kernel PCA, ISOMAP, LLE, LE, LTSA and LIRMA to train and
test of MNIST, Forest, CIOL100, Face, Robot, Segment and MFeat respectively. The order of patterns in LIRMA
is estimated using the comparison methods (i.e. LIRMA + ISOMAP, LIRMA + LLE, etc.).
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Table 3
Mean and standard deviation of MRED measures computed for LIRMA and the other comparison methods.

MRED MNIST Forest COIL100 Face Robot Segment MFeat

Tr-Other 2013.6 ± 325.6 1290.4 ± 862.1 5032.6 ± 1891.1 4119.4 ± 427.9 5.20 ± 1.4 82.32 ± 27.0 1930.5 ± 1020.8

Tr-LIRMA 1986.6 ± 22.4 1095.1 ± 14.0 5025.0 ± 185.3 4116.6 ± 27.9 5.29 ± 0.1 97.14 ± 22.8 981.4 ± 92.2

Ts-Other 2615.5 ± 60.0 3607.3 ± 955.8 8770.4 ± 262.4 5544.8 ± 104.4 8.61 ± 0.2 165.0 ± 8.0 3872.9 ± 457.1

Ts-LIRMA 2456.0 ± 17.6 1114.8 ± 4.8 5599.0 ± 224.7 4645.0 ± 81.5 6.25 ± 0.1 111.02 ± 25.2 1138.4 ± 112.9

Tr: Train set. Ts: Test set. Other: mean and standard deviation is computed on MRED of Kernel PCA, ISOMAP,
LE, LLE and LTSA. LIRMA: mean and standard deviation is computed on MRED of LIRMA + Kernel PCA,
LIRMA + ISOMAP, LIRMA + LE, LIRMA + LLE and LIRMA + LTSA.

With respect to the abstract form of the underlying structure, LIRMA is used inductively
with low computational and memory complexities. Unlike non-linear graph based ap-
proaches, LIRMA represents all of patterns in low dimensional space without missed
samples. The proposed method is able to predict the structure of a dataset even beyond
the range of training samples which is a unique ability in comparison to the state of the
art non-linear dimensionality reduction methods.

In this paper also Mean Relative Euclidian Distances (MRED) is introduced as a lo-
cal quantitative measure to evaluate the performance of a dimension reduction method.
MRED is defined based on Euclidian distance which holds more topological information
in comparison to the rank measurement. Additionally, MRED does not have the effect of
false ranking of Mean Relative Rank Errors (MRRE). As a result, it is a proper option to
evaluate how much a dimension reduction method preserves local topological information
of a dataset.

With respect to the MRED measurement, LIRMA presents an acceptable tradeoff be-
tween train and test sets in real world datasets. Its performance as an inductive manifold
is considerably better than the other methods for test sets. Since the embedded dynamical
system is estimated with respect to all of the training samples in a batch form, the estimated
AR model is robust to the noise and dis-orderings in the sequence of patterns. Therefore,
LIRMA results lower variance when it is applied with different methods for finding the
order of patterns. Applying LIRMA in classification task is one of the proposed future
works. Additionally, using non-linear assumptions for modeling the embedded dynamical
system can increase the performance of LIRMA.
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Karbauskaitė, R., Dzemyda G. (2009). Topology preservation measures in the visualization of manifold-type

multidimensional data. Informatica, 20(2), 235–254.
Kayo, O. (2006). Locally Linear Embedding Algorithm Extensions and Applications. Faculty of Technology,

Department of Electrical and Information Engineering, University of Oulu.
Kietzmann, T. C., Lange, S., Riedmiller, M. (2008). Incremental GRLVQ: learning relevant features for 3D

object recognition. Neurocomputing, 71(13–15), 2868–2879.
Law, H.Ch. (2006). Clustering, dimensionality reduction and side information. PhD thesis, Department of Com-

puter Science and Engineering, Michigan State University.
Lee, J.A., Verleysen, M. (2007). Nonlinear Dimensionality Reduction. Springer, New York.
Li, H., Jiang, H., Barrio, R., Liao, X., Cheng, L., Su, F. (2011). Incremental manifold learning by spectral

embedding methods. Pattern Recognition Letters, 32(10), 1447–1455.
Lin, T., Zha, H. (2008). Riemannian manifold learning. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 30(5), 796–809.
Ljung, L., Glad, T. (1994). Modeling of Dynamic Systems. Prentice Hall, New York.
Masahiro, M. (2004). Dimension reduction methods. Humboldt-Universität Berlin, Center for Applied Statistics

and Economics (CASE) 2004(15). http://hdl.handle.net/10419/22189.
McGuire, G., O’Farrell, A.G., Redmond, D.B., Watson, R.O., Wraith, D.J. (2002). Maynooth Mathematical

Olympiad Manual. Logic Press.
MNIST dataset. http://yann.lecun.com/exdb/mnist/.
MTDR v0.8b (2012). Matlab Toolbox for Dimensionality Reduction (v0.8b). By Maaten, L.V.D., Delft University

of Technology.
Nene, S.A., Nayar, Sh.K., Murase, H. (1996). Columbia Object Image Library (COIL 100). Technical report

No. CUCS-006-96, Department of Computer Science, Columbia University.
Ogata, K. (1995). Discrete Time Control Systems, 2nd ed. Prentice Hall, New York.
Ogata, K. (2002). Modern Control Engineering, 4th ed. Prentice Hall, New York.
Ozertem, U., Erdogmus, D. (2011). Locally defined principal curves and surfaces. Journal of Machine Learning

Research, 12, 1249–1286.
Raducanu, B., Dornaika, F., (2012). A supervised non-linear dimensionality reduction approach for manifold

learning. Pattern Recognition, 45(6), 2432–2444.
Sharma, A., Paliwal, K.K. (2007). Fast principal component analysis using fixed-point algorithm. Pattern Recog-

nition Letters, 28(10), 1151–1155.
Sheldon, A., (1997). Linear Algebra Done Right. 2nd ed. Springer, Berlin.
Sishwick, P.A., (2007). Hand Book of Dynamic System Modeling, Taylor & Freancis, London.
Stewart, G. W. (1998). Matrix Algorithms, Vol. 1: Basic Decompositions. SIAM, Philadelphia.
Strang, G. (1988). Linear Algebra and Its Applications, 3rd ed. Harcourt Brace Jovanovich College Publishers.
Theodoridis, S., Koutroumbas, K. (2003). Pattern Recognition, 2nd ed. Elsevier Academic, Amsterdam.
Tuzel, O., Porikli, F., Meer, P. (2008). Pedestrian detection via classification on Riemannian manifolds. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 30(10), 1713–1727.
UCI repository (2013). http://archive.ics.uci.edu/ml/.
Vapnik, V. N. (1998). Statistical Learning Theory. Wiley, New York.
Zhang, P., Qiao, H., Zhang, B. (2011). An improved local tangent space alignment method for manifold learning.

Pattern Recognition Letters, 32(2), 181–189.
Zhang, Zh., Zha, H. (2004). Principal manifolds and nonlinear dimension reduction via local tangent space

alignment. SIAM Journal Scientific Computing, 26(1), 313–338.

E. Bavafaye Haghighi is PhD student in Artificial Intelligence at Computer Engineering
department of Amirkabir University of Technology. Her MSc (in artificial intelligence)
and BSc (in software engineering) degrees are from Tehran University and Amirkabir
University of Technology respectively. She is semifinalist in Iranian National Olympiad in
Mathematics (INOM-1996) and Iranian National Olympiad in Informatics (INOI-1997).



384 E. Bavafaye Haghighi et al.

She received bronze medal in INOM-1997. In addition to Artificial Intelligence, she
passed several courses in the field of system identification, modeling and control of lin-
ear and non-linear dynamical systems. Her research interests include pattern recognition
and machine learning (supervised and non-supervised learning, dimensionality reduction,
theoretical aspects of machine learning and the advantages of applying dynamical systems
in machine learning), image processing, bioinformatics, modeling non-linear dynamical
systems and chaos.

M. Rahmati received the MSc in Electrical Engineering from the University of New Or-
leans, USA in 1997 and the PhD degree in Electrical and Computer Engineering from Uni-
versity of Kentucky, Lexington, KY USA in 2003. He is currently an associate professor
at the Computer Engineering Department, Amirkabir University of Technology (Tehran
Polytechnic). His research interests are in the fields of pattern recognition, image process-
ing, bioinformatics, video processing, and data mining. He is the research coordinator of
the department and he is a member of IEEE Signal Processing Society.

G. Palm studied mathematics at the Universities of Hamburg and Tübingen. After his
graduation in mathematics he worked at the Max-Planck-Institute for Biological Cyber-
netics in Tübingen on the topics of nonlinear systems, associative memory and brain the-
ory. In 1983/1984, he was a fellow at the Wissenschaftskolleg in Berlin. From 1988 to
1991 he was professor for Theoretical Brain Research at the University of Düsseldorf.
Since then he is professor for computer science and director of the Institute of Neural In-
formation Processing at the University of Ulm. His research topics in computer science
include information theory and applications of artificial neural networks in speech, vision,
robotics, sensor-fusion and pattern recognition.

S. Shiry Ghidary is an assistant prof. at Amirkabir University of Technology.He received
his BSc degree in Electronic engineering from Amirkabir University of Technology in
1990, his MSc degree in computer architecture from same university in 1994 and his
PhD in Artificial Intelligent Systems from Kobe University in 2002. He is in charge of
Amirkabir Robotic Research Center. His research interests include Machine Learning,
AI, Robotics, Mechatronics, Machine Vision, and Cognitive science.

Induktyvios abstrakčios formos Rymano daugdaros mokymasis,
modeliuojant įterptąsias dinamines sistemas

Elham BAVAFAYE HAGHIGHI, Mohamad RAHMATI, Guenther PALM,
Saeed SHIRY GHIDARY

Daugdaros mokymosi algoritmai negali išgauti duomenų aibių struktūrų abstrakčios formos. Be to,
algoritmai nėra našūs analizuojant sudėtingus duomenis. Šiame straipsnyje pasiūlytas induktyvios
abstrakčios formos Rymano daugdaros mokymosi metodas, kuriame šablonų struktūra nustatoma,
sprendžiant įterptąją dinaminę sistemą. Siekiant sumodeliuoti atitinkamą sistemą, šablonų sekų tin-
kamumas įvertinamas topologijos išlaikymo metodu. Pasiūlytas metodo privalumas yra tas, kad tai
nesudėtingas induktyvus metodas. Be to, eksperimentais patvirtinta, kad pagal vertintą kokybinį
matą, metodas išlaiko topologiją.


