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Abstract. An application of fuzzy modeling to the problem of telecommunications time-series pre-
diction is proposed in this paper. The model building process is a two-stage sequential algorithm,
based on Subtractive Clustering (SC) and the Orthogonal Least Squares (OLS) techniques. Par-
ticularly, the SC is first employed to partition the input space and determine the number of fuzzy
rules and the premise parameters. In the sequel, an orthogonal estimator determines the input terms
which should be included in the consequent part of each fuzzy rule and calculate their parame-
ters. A comparative analysis with well-established forecasting models is conducted on real world
telecommunications data, where the characteristics of the proposed forecaster are highlighted.
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1. Introduction

During the last two decades, telecommunications services have become an emerging in-
dustry. Since the primary motive for telecommunications service provision is profit, charg-
ing and billing, along with the reduction of unnecessary cost, are vital in this business.
Carriers must rely on data to monitor, analyze and optimize their systems in order to map
future trends and usage patterns, so forecasting can be a valuable aid for managers, since
it can be used for infrastructure optimization and planning, as well as network traffic man-
agement. Therefore creating reasonably accurate forecasts of the call volume by making
use of historical data can be considered as a significant and a challenging issue.

In this perspective, a case of a large University is investigated in the present work.
Due to the continuous increase of the faculty members and staff, new telephone numbers
are added daily, and an increasing demand for outgoing trunks exists. It is obvious that
the changes in call volume are vital to the planning of future installations. The University
holds an extended database which includes information such as the call origin, the area
code and exchange, and the duration of each telephone call. The database is mainly used
to determine the total number, as well as the number of the national, the international
and the mobile calls per employee per month. It is noticed that the call classification, into
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different categories, reveals certain and different patterns between destinations. Calls to
national destinations comprise almost half the volume of the total outgoing calls from
the campus. Traditionally, the forecasting ability of well established statistical methods
on the University’s call traffic has been studied (Hilas et al., 2006). In order to forecast
trends in telecommunicationsdata by the ITU Recommendation E.507, linear models have
been employed (Madden and Joachim, 2007). The authors made a first attempt to employ
computational intelligence models (Mastorocostas and Hilas, 2010, 2012), proposing re-
current neurofuzzy networks with internal feedback connections in the consequent part of
the fuzzy rules. These approaches produced efficient predictions, which were significantly
ameliorated compared to traditional models.

In this context, a fuzzy forecasting system, entitled Subtractive Clustering-Orthogonal
Least Squares based Fuzzy Forecasting Model (SCOLS-FuM), is proposed in this work.
Its performance is compared with familiar forecasting approaches, like a series of sea-
sonally adjusted linear extrapolation methods, Exponential Smoothing Methods, the
SARIMA method, along with above mentioned recurrent neurofuzzy forecasting systems,
namely the LR-NFFS and the ReNFFOR models. All comparisons are performed on real
world data.

The rest of the paper is organized as follows: in Section 2, a brief presentation of the
classical forecastingmethods is given. The SCOLS-FuM and the two-stage model building
algorithm are described in Sections 3 and 4, respectively. In Section 5 the operation of
SCOLS-FuM and the outcome of the comparative analysis of the methods are presented.

2. Forecasting Methods

The traditional forecasting methods that used to be applied to this particular problem are
mostly statistical: The first method employed is the Naïve Forecast 1 (NF1, Makridakis et

al., 1998), which takes the most recent observation as a forecast for the next time interval.
Another simple method which takes into account the seasonal factors was applied: The
seasonality is removed from the original data, and the remaining trend-cycle component is
used to forecast the future values of the series by means of linear extrapolation. Then, the
projected trend-cycle component is adjusted using of the identified seasonal factors (Hilas
et al., 2006). When multiplicative seasonality is assumed, the method is called LESA-M
(Linear Extrapolation with Seasonal Adjustment-Multiplicative), while the presence of
additive seasonality leads to LESA-ADD.

A second familiar group of time series analysis methods comprise the exponential
smoothing methods, where a particular observation of the time series is expressed as a
weighted sum of the previous observations. The weights for the previous data values con-
stitute a geometric series and become smaller as the observations move further into the
past. Simple Exponential Smoothing (SES) applies to processes without trend, while lin-
ear trend is accommodated by Holt’s (1957) method, and the Winters’ (1960) method
copes with seasonal data. Additionally, multiplicative seasonal models (Winters’ MS) as
well as additive seasonal models (Winters’ AS) exist (Gardner, 1985).

When time series that exhibit damped trend are concerned, some modifications of SES
can be applied in order to deal with complex types of trend. A damped trend refers to a
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regression component for the trend in the updating equation, which is expressed by means
of a dampening factor. An exponential smoothing model with damped trend and addi-
tive seasonality (DAMP AS) and its multiplicative seasonality counterpart (DAMP MS)
also exist. Moreover, a damped trend model on time series with no seasonality (DAMP
NoS) can be fitted (Gardner, 1985). These methods are popular in industry due to their
simplicity and the accuracy that can be obtained with minimal effort in model identifica-
tion. Finally, Box and Jenkins developed the Auto Regressive Integrated Moving Average
method (ARIMA) to analyze stationary univariate time series data, which presumes weak
stationarity, equally spaced intervals or observations, and at least 30 to 50 observations
(Box and Jenkins, 1976). The Seasonal ARIMA (SARIMA) also exists.

A first attempt to tackle the problem with a computational intelligence model was made
by the authors in Mastorocostas and Hilas (2010) and Mastorocostas and Hilas (2012),
where generalized Takagi–Sugeno–Kang (Takagi and Sugeno, 1985) neurofuzzy systems
were proposed. In the first work the LR-NFFS was presented: the consequent part of each
rule consist of a three-layer recurrent neural network, with internal feedback at the neu-
rons of the hidden and output layers, and a single input common to the premise and con-
sequent parts. The second paper proposed the ReNNFOR, which is a reduced complexity
respective recurrent system, with unit feedback at the hidden layer’s neurons. The models
exhibited significantly ameliorated prediction capabilities with respect to the traditional
statistical methods.

3. Fuzzy Inference System

The proposed model is based on Takagi–Sugeno–Kang (TSK) fuzzy rules, which can be
represented by the following general form:

R(j): IF z1 is A
j
1 AND . . .AND zm is A

j
m

THEN gj = w
j

0 + w
j

1u
j

1 + · · · + w
j
qj

u
j
qj

. (1)

The IF preconditional statements define the premise parts while the THEN rule func-
tions constitute the consequent parts of the fuzzy rules. z = [z1, . . . , zm]T is the input
vector of the premise part, and A

j
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j

1, . . . , u
j
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, (2)

where mij and σij are the mean value and the standard deviation of the Gaussian type
membership function, respectively.
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The firing strength of rule R(j) is given by:

µj (z) = µ
A

j

1

(z1) · µ
A

j

2

(z2) · · ·µ
A

j
m
(zm). (3)

Given the input vectors z and uj , j = 1, . . . ,M , the final output of the fuzzy system
is inferred by taking the weighted average of the local outputs gj (u

j )

y =

M
∑

j=1

vj (z) · gj (u
j ) (4)

where M denotes the number of rules and vj (z) is the normalized firing strength of R(j),
which is defined as

vj (z) =
µj (z)

∑M
j=1 µj (z)

. (5)

With regard to the rule structure considered in (1), the following comments are in
order:

(a) The SCOLS-FuM has separate input sets for the premise and the consequent part.
Particularly, the premise part is excited by z and is common to all fuzzy rules; it
establishes the premise space where the fuzzy regions are defined. Furthermore,
the consequent part of each rule is associated with a particular input vector uj ,
j = 1, . . . ,M . These vectors comprise a certain number and kind of variables which
may differ from the ones corresponding to other rules. All input terms belong to a
composite candidate set denoted as U c.

(b) Since the basic principle underlying the TSK models is to decompose the premise
space into fuzzy regions and approximate the system’s behavior in every region
by a simple model, the overall model can be regarded as a combination of fuzzily
interconnected linear submodels with simpler structure.

4. Model-Building Algorithm

The structure identification process of TSK fuzzy systems involves: (a) Input space parti-
tion into fuzzy regions and extraction of the number of rules (premise part identification).
(b) Determination of the consequent submodels (consequent part identification); that is,
given an input candidate set, decide which input variables should participate in the con-
sequent part of each rule so that the system dynamics in the respective fuzzy region is
adequately captured. (c) Parameter learning, that is performed in order to calculate the
model parameters.

In the present work a two-stage identification process is proposed:

• In order to implement step (a), the fuzzy region described by (3) is regarded as a
fuzzy hyper-cell centered at cj = {m1j , . . . ,mmj }, with the respective fuzzy sets
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representing its coordinates along each axis. In view of the above consideration,
the premise part identification problem can be stated as follows: Given a train-
ing data set, find the number of hyper-cells and their locations so that the premise
space is sufficiently covered. This task is achieved here using the Subtractive Clus-
tering method (SC, Chiu, 1994). Once SC partitions the input space, the premise
parameters are determined. The particular clustering method, which is an exten-
sion of the Mountain Clustering method (Yager and Filev, 1994), is selected due to
the fact that it constitutes a simple but very effective algorithm, having attained a
great deal of attention over the years an having been employed in a variety of ap-
plications (Guillaume, 2001; Angelov and Filev, 2004; Angelov and Zhou, 2008;
Xu et al., 2008).

• Having determined the number of rules, steps (b) and (c) are implemented by use
of Orthogonal Least Squares technique (OLS, Chen et al., 1991). It is employed to
determine the input variables to the consequent part of each rule. In the beginning,
all members of the input candidate set, U c , are considered as inputs in every sub-
model. As the OLS algorithm proceeds, the most significant input terms are selected
from U c and assigned to the proper submodels. In this way, the consequent part of
each rule contains a limited number of variables, which contribute to the approx-
imation of the part of the data set covered by the corresponding hyper-cell most
effectively.

The OLS technique has been used previously for constructing the consequent parts of
TSK fuzzy rules in two cases: (i) Wang and Langari (1995) initially employed OLS, but
they used the same input vectors for the premise and consequent parts of the fuzzy rule, not
being benefited by the advantages of using input vectors with different size and content.
(ii) Mastorocostas et al. (1999) proposed a fuzzy model for short-term load forecasting,
where the OLS method was employed twice and consecutively, for determining both parts
of a TSK fuzzy rule. They used a reduced input vector for the premise part of the fuzzy
rule and they let the OLS determine the terms that would be included in the consequent
parts of the fuzzy rule base, leading to rules with different number and kind of consequent
terms. In this perspective, the present learning scheme shares the same philosophy and
objectives, consisting however of a different technique for input space partition.

Summarizing, the modeling method is a two-stage procedure where the premise and
consequent identification are separately performed. During the first stage (Stage-1), sub-
tractive clustering is employed to partition the input space of the premise part and define
its parameters. At the second stage (Stage-2), the OLS is applied to select the appropriate
inputs for the consequent parts and estimate their parameters.

4.1. Stage-1: Subtractive Clustering for the Premise Part

Let N denote the number of input/output pairs that constitute the training data set. As
mentioned above, the premise part partition consists of finding the number of hyper-cells,
µj (z) and determining their centers, cj , within the premise space. The centers are defined
on the basis of the input training data. The key objective is to choose the proper centers



226 P.A. Mastorocostas, C.S. Hilas

so that the respective fuzzy regions adequately cover the input domain. Therefore, the SC
algorithm is employed to achieve this task:

Step 1:

Each data point is considered as a potential hyper-cell center and a measure of potential
of the data point zi as

Pi =

N
∑

i=1

exp
(

− a · ‖zi − zj‖
2
)

, (6)

where a = 4
r2
a
, ‖ · ‖ denotes the Euclidean distance and ra is a positive constant. Thus, the

measure of the potential for a data point is a function of its distances from all other data
points. A data point with many neighboring data points will have a high potential value.
The constant ra is effectively the radius defining a neighborhood; data points outside this
radius have little influence on the potential.

Let P ∗
1 = maxi∈{1,...,N)(Pi) be the highest potential. The respective data point is se-

lected as the first cluster c1 ∈ {z1,z2, . . . ,zN } be the location of the first hyper-cell center
and P ∗

1 be its potential value. The potential of each data point is then revised by the for-
mula:

Pi ⇐ Pi − P ∗
1 exp

(

− β · ‖zi − c1‖
2
)

, (7)

where β = 4

r2
b

and rb is a positive constant. Thus, an amount of potential is extracted

from each data point, which is a function of its distance from the first hyper-cell center.
The data points near the first hyper-cell center will have significantly reduced potential,
and therefore will unlikely be selected as the next cluster center. Constant rb is the radius
defining the neighborhood which will have measurable reductions in potential. To avoid
obtaining closely spaced hyper-cell centers, rb is set to be somewhat greater than ra .

Step 2—Ms :

According to the process described above, at the end of the k-th step, where the k-th
hyper-cell center has been obtained, the potential of each data point is reduced according
to their distance from the k-th hyper-cell center. In general, after, the potential of each data
point is revised by the formula:

Pi ⇐ Pi − P ∗
k · exp

(

− β · ‖zi − ck‖
2
)

, (8)

where ck is the location of the k-th hyper-cell center and P ∗
k is its potential value.

The process of acquiring a new hyper-cell center and revising potentials is repeated
until the Ms -th epoch, where the remaining potential of all data points falls below some
fraction of the potential of the first hyper-cell center P ∗

1 . In addition to this criterion for
ending the clustering process, there are criteria for accepting and rejecting hyper-cell cen-
ters, such that marginal hyper-cell centers are avoided. The termination scheme is de-
scribed in pseudocode as follows:
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IF P ∗
i > εH · P ∗

1
The corresponding ci becomes the center of a new hyper-cell

ELSE IF P ∗
i

< εL · P ∗
1

ci is rejected
END of the clustering process

ELSE

dmin = min{‖c1 − ci‖,‖c2 − ci‖,‖ci−1 − ci‖}

IF
dmin
ra

+
P ∗

i
P ∗

1
> 1

The corresponding ci becomes the center of a new hyper-cell
ELSE

ci is rejected
P ∗

i
= 0

Do not revise the potential of other data points
Select the data point with the next highest potential as the new ci and re-test

ENDIF

ENDIF

As mentioned in the literature (Dubois et al., 1997), the term εH specifies a threshold
for the potential, above which we will definitely accept the data point as a cluster center.
Accordingly, εL specifies a threshold, below which we will definitely reject the data point.
Good default values are 0.5 and 0.15, respectively. If the potential falls in the gray region,
we check if the data point offers a good trade-off between having a sufficient potential and
being sufficiently far from existing cluster centers.

At the end of the SC process, a partition of the input space is accomplished, since the
number of rules (hyper-cells) is determined, their centers are set and their corresponding
standard deviations are calculated from the radius, specifying the range of influence of a
hyper-cell center in each of the data dimension.

4.2. Stage-2: The Orthogonal Least Squares Method for the Consequent Part

Having determined the premise structure, the next task is to identify the structure and
estimate the parameters of the linear submodels in the consequent parts of the fuzzy rules
(Stage-2). Let q denote the number of input variables that form the input candidate set U c .
Initially, we consider that all members of U c are inputs to every rule submodel. From (1)
and (4) we have

y =

M
∑

j=1

vj (z) ·
(

w
j

0 + w
j

1u1 + · · · + w
j
quq

)

, (9)

where M = Ms determined at Stage-1. Equation (9) is linear with respect to the conse-
quent inputs. In order to express the system output in a more compact form, we define the
following vectors:

V = [V1, . . . , VQ] = [v1, . . . , vM , v1u1, . . . , vMu1, v1uq , . . . , vMuq ], (10a)

W = [W1, . . . ,WQ] =
[

w1
0, . . . ,wM

0 ,w1
1, . . . ,w

M
1 ,w1

q , . . . ,wM
q

]

, (10b)

where Q = M(q + 1).
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Then, Eq. (9) can be rewritten as

y = V T · W. (11)

In order to illustrate how this method works, it is essential to consider the fuzzy sys-
tem (9) as a special case of the linear regression model

d [p] =

M
∑

j=1

p
[p]

j · gj + e[p], p = 1, . . . ,N, (12)

where d [p] is the desired system output and gj = Wj are real parameters to be estimated.
Since the premise part parameters have already been determined, the degrees of fulfill-
ment are considered to be constant values instead of functions of the inputs. The func-
tions p

[p]

j = Vj (zp,U c) are known as the regressors and are formulated by combining

the fuzzy hyper-cell of a rule, v1, . . . , vM , with an input variable u
[p]

i , i = 1, . . . , q be-
longing to U c. Hence, a candidate regressor set is generated for the consequent part com-
prising M · (q + 1) regressors. The error signal e[p] is assumed to be uncorrelated with
the regressors.

The OLS is a numerically reliable and computationally simple algorithm which can
be employed to perform structure identification of the consequent part by managing two
objectives, simultaneously: (a) From a large set of candidate regressors, select which input
terms should be included in the consequent part of each rule. Particularly, from the total
set of M · (q + 1) regressor terms a subset comprising the Qs most significant regressors
is selected. Each regressor is assigned to a certain rule and is associated with a particular
input variable, including the constant term and u1, . . . , uq . Hence, the OLS algorithm au-
tomatically detects those inputs that are significant for the consequent part of each rule and
leads to economical and efficient fuzzy models. (b) Determine the parameter estimates gj .

Because different regressors are generally correlated, it is not clear how an individual
regressor contributes to the total output energy. This problem is alleviated by transform-
ing (12) into an equivalent regression form:

d [p] =

M
∑

j=1

f
[p]

j · θj + e[p], (13)

where the regressors f
[p]

j are orthogonal to one another. The orthogonal regressors f
[p]

j

are related to the original regressors p
[p]

j through the Gram–Schmidt transformation re-
lationships (Bjöck, 1967):

f
[p]

1 = p
[p]

1 , (14a)

f
[p]

k = p
[p]

k −

k−1
∑

i=1

aik · p
[p]

i , k = 2, . . . ,M, p = 1, . . . ,N, (14b)
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where

aik =

∑N
p=1 f

[p]

i · p
[p]

k
∑N

p=1(f
[p]

i )2
, 1 6 i < k. (15)

The least squares estimates θj are derived by

θj =

∑N
p=1 f

[p]

j · d [p]

∑N
p=1(f

[p]

j )2
, 1 6 i < k. (16)

The weight estimates gj of the original system are easily obtained using the formulae:

gM = θM , gi = θi −

M
∑

j=i+1

aij · θj , i = M − 1, . . . ,1. (17)

A key tool for the implementation of the OLS is the so-called error reduction ratio,
defined as

[err]j = θ2
j ·

∑N
p=1(f

[p]

j )2

∑N
p=1(d

[p])2
. (18)

[err]j represents the portion of the desired output energy (denominator of Eq. (18)), which

is described by the regressor f
[p]

j alone (numerator of Eq. (18)). This ratio offers a simple
and effective means of seeking a subset of significant regressors in a forward-regression
manner.

The OLS is an iterative algorithm that proceeds as follows: Initially, we consider the
entire set of candidate regressors, that is, M = N . At the k-th step, the dimension of the
space spanned by the selected regressors is increased from k − 1 to k by introducing a
new regressor. For the remaining (N −k) candidate regressors, f [p]

j , θj and the respective
[err]j are computed using Eq. (14), (16) and (18). Then, the most significant regressor
is selected, which exhibits the maximum error reduction ratio. Thus, the newly added
regressor maximizes the increment of the desired output energy.

Once a regressor is selected, it is extracted from the regressor set and the algorithm is
applied at the next step to the remaining regressors of the set. The procedure is terminated
at the Qs -th step when the Error Reduction Ratio Criterion (ERRC), introduced by Chen
et al. (1991), EERC = 1 −

∑Qs

j=1[err]j < p is fulfilled, where 0 < p < 1 is a chosen
tolerance. From Eq. (13) and (18) it can be seen that ERRC is the unexplained part of the
desired output energy described by the model residuals.
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5. Experimental Results

5.1. Data Presentation and Accuracy Measures

The call data come from the Call Detail Records (CDR) of the Private Branch Exchange
(PBX) of a large University with more than 6.000 employees and 70.000 students, and an
extended telecommunications infrastructurewith more than 5.500 telephones. The data set
covers a period of 10 years, January 1998 to December 2007, and consists of the monthly
calls to national and mobile destinations. It is divided into two subsets: The training set,
which is used to the model-building processes of the SCOLS-FuM, and the validation set,
which is used for the evaluation of the forecasts. The training set is chosen to be 9 years
(108 months) long and the validation set 1 year (12 months) long.

Due to the variation of days belonging in different months, i.e. February has 28 while
January has 31 days, all data are normalized according to:

Wt = Xt
365.25/12

no of days in month t
. (19)

The parameters, which are estimated during the fitting procedure, are used to forecast
future values of each series. Since the validation set is not used in the model fitting, these
forecasts are genuine forecasts, and can be used to evaluate the forecasting ability of each
model. The forecasting accuracy can be evaluated by means of three accuracy measures:
the Root Mean Squared Error (RMSE), the Mean Absolute Percentage Error (MAPE) and
Theil’s U -statistic. The latter allows a relative comparison of formal methods with naïve
approaches and also squares the errors involved so that large errors are given much more
weight than small errors, and is given by

U =

√

∑n−1
t=1 (FPEt+1 − APEt+1)2

√

∑n−1
t=1 (APEt+1)2

, (20)

where FPEt+1 =
Ft+1−Xt

Xt
is the forecast relative error and APEt+1 =

Xt+1−Xt

Xt
is the actual

relative error. This statistic is employed due to the fact that it allows a relative comparison
of formal methods with naïve approaches and also squares the errors involved so that large
errors are given much more weight than small errors.

The time series of national and mobile calls are hosted in Figs. 1(a) and 1(b), respec-
tively. From the visual observation it becomes evident that there exists a distinct seasonal
pattern, which is made prevalent from the minimum that occurs in August. Apart from
that, the number of calls to mobile destinations shows an increasing trend which com-
ports with reports on mobile services penetration (ITU Report, 2010).

5.2. SCOLS-FuM Implementation

The selection of the relevant input variables is a major task in building an efficient forecast-
ing model and can be stated as follows: among a large set of potential input candidates,
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a) 
(a)

    b) 

(b)

Fig. 1. Monthly number of outgoing calls to (a) national and (b) mobile destinations.

choose those variables which highly affect the model output. The suggested modeling
approach provides a simple and automated procedure for determining the proper model
inputs from an input candidate set of arbitrary size. A primary objective is to generate
economical fuzzy models with optimal structure. Hence, two input vectors are considered
for each model; one for the premise part and one for the consequent part. The premise
part input vector is fixed and common to all fuzzy models: it comprises the following
variables: z = [z1, z2]

T = [u(t − 1), u(t − 12)]T , where t denotes the present month. The
choice of these particular inputs is motivated by the fact that they are highly correlated
with the desired model output u(t) for all months of the year. In this respect, they carry
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out a considerable amount of information and their choice facilitates the development of
an economic forecaster.

The linear submodels of the consequent parts will be formed by use of terms that will
be extracted by a larger vector, which comprises 8 input variables: U c = [u(t − 1), u(t −

2), u(t − 3), u(t − 4), u(t − 5), u(t − 6), u(t − 12), u(t − 24)]T .
According to the suggested method, generation of the SCOLS-FuM proceeds as fol-

lows:

(a) Apply the SC algorithm to determine the number of rules and locate the fuzzy sets
within the premise space (premise identification). The number of rules depends on
the value of radius ra specified by the user, since the smaller the ra the larger the
number of rules generated. This radius specifies the range of influence of a hyper-
cell center in each of the data dimensions and in this work is common to all dimen-
sions.

(b) Based on the fuzzy hyper-cells obtained at Stage-1 and the input candidate set,
generate the set of candidate regressors for the consequent part. Reformulate model
equations and apply OLS to perform consequent structure learning. This process is
repeated for several steps until ERRC attains a value lower than a prescribed error
tolerance. At each stage, a certain regressor, corresponding to a particular input
variable, is selected and is assigned to the consequent part of a single rule. In this
manner, an input sequence is generated, showing the degree of significance of the
incoming terms. Input terms entering during the early stages are significant inputs
and carry out a large amount of information submerged within the historical training
data. On the other hand, input terms appearing at lower positions in the sequence are
less significant input variables. Hence, the OLS automatically detects the important
inputs from Uc and formulates the proper submodels so that the dynamics of the
process in each fuzzy region is sufficiently captured. At the end of Stage-2 only a
few input terms out of 8 candidate inputs are selected for each rule.

In order to provide a clear view of the modeling process, the case of national calls
is detailed: First, the SC is applied to determine the number of rules and to perform the
premise part’s input space partition. The radius is set to 0.4, therefore the standard de-
viations of the fuzzy sets will be 6265 for input u(t − 1) and 6683 for input u(t − 12).
Obviously these values for the standard deviations refer to the denormalized (actual) data
values.

Applying the SC method a four-rule rule-base is created. The scatter diagram of
u(t − 1) versus u(t − 12) is shown in Fig. 2. Moreover, the 0.15 alpha-cuts of the hyper-
cells are also plotted (the 0.15-cut denotes the set of all input points which exhibit a degree
of membership greater than 0.15 – Chen and Pham, 2006). As it can be seen, the input
space is effectively partitioned via SC, since the selected rules cover the data points with
a degree of fulfillment greater than 0.15.

In the second stage of the model-building process, the OLS estimator is employed to
perform the input selection for the consequent part submodels and determine the degree
of significance of the entering input terms. The regressor set comprises a total number of



SCOLS-FuM: A Hybrid Fuzzy Modeling Method for Telecommunications 233

-1 0 1 2 3 4 5 6

x 10
4

-1

0

1

2

3

4

5

6
x 10

4

Fig. 2. Input space partition (national calls) 

!

Fig. 2. Input space partition (national calls).

Table 1
Ordering of the consequent terms and parameters’ estimates (national calls).

Term
No.

Rule
No.

Term
meaning

ERRC Consequent
parameter

1 1 u(t − 1) 0.414269 1.1003
2 2 u(t − 1) 0.202541 0.5820
3 4 u(t − 2) 0.080521 0.3080
4 3 u(t − 24) 0.038427 0.7805
5 2 u(t − 12) 0.036121 1.1857
6 1 u(t − 24) 0.033728 1.1862

4 × 8 = 32 candidate regressors. The respective tolerance ρ is set to 0.03 and is attained
at the sixth epoch of the algorithm, leading to a consequent parameter set of six terms.
Table 1 shows the ordering of the consequent variables and the respective values of the
ERRC.

According to Table 1, the following comments are in order:

(a) The first four most significant consequent terms correspond to the four rules of the
rule base, therefore all system’s submodels are activated.

(b) The input u(t − 24) appears in two of the selected terms, indicating an annual
pattern.

(c) The constant terms do not appear at all, as well as the inputs u(t −2), u(t −3), u(t −

4), u(t − 5), u(t − 6), leading to the conclusion that the time-series is primarily
correlated to the previous month’s value and the same month’s values over the
years.

The resulting rule base is cited in Table 2. The premise part of each rule includes the
fuzzy sets of the variables z1, z2, while the consequent part is expressed in terms of the
relevant inputs according to Table 2.

It should be noted that both ra and ρ are properly selected by the user such that the
following conditions are met: (i) the resulting fuzzy model should exhibit an acceptable
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Table 2
Fuzzy rule base (national calls).

Rule 1:

IF u(t − 1) is exp
(

− 1
2

·
[u(t−1)−31035]2

62652

)

and u(t − 12) is exp
(

− 1
2

·
[u(t−12)−30903]2

66832

)

THEN g1 = 1.1003 · u(t − 1) + 1.1862 · u(t − 24)

Rule 2:

IF u(t − 1) is exp
(

− 1
2

·
[u(t−1)−4060]2

62652

)

and u(t − 12) is exp
(

− 1
2

·
[u(t−12)−3945]2

66832

)

THEN g2 = 0.5820 · u(t − 1) + 1.1857 · u(t − 12)

Rule 3:

IF u(t − 1) is exp
(

− 1
2

·
[u(t−1)−3393]2

62652

)

and u(t − 12) is exp
(

− 1
2

·
[u(t−12)−1382]2

66832

)

THEN g3 = 0.7805 · u(t − 24)

Rule 4:

IF u(t − 1) is exp
(

− 1
2

·
[u(t−1)−1731]2

62652

)

and u(t − 12) is exp
(

− 1
2

·
[u(t−12)−3880]2

66832

)

THEN g4 = 0.3080 · u(t − 2)

level of accuracy, and (ii) the number of selected regressors should not be excessively
large, leading to an economical fuzzy model. Our primary goal at Stage-1 is to determine
the most representative fuzzy regions; hence, a moderate value of ra is chosen. However, at
Stage-2 a considerably smaller precision threshold for ρ is selected, since we are dealing
with the actual TSK fuzzy model which should match the desired data. For the case of
mobile calls, ra and ρ are set to 0.3 and 0.03, respectively, leading to a four-rule fuzzy
rule base with five consequent terms.

5.3. Comparative Analysis

In order to compare the proposed forecaster with existing established forecasters that were
applied to this particular problem in the past, a comparative analysis with to thirteen other
models is conducted, on the basis of the accuracy measures mentioned in Section 5.1.
A smaller value of each statistic indicates a better fit of the method to the observed data.
Two of the models are recurrent neurofuzzy systems, namely the LR-NFFS and the ReNF-
FOR, while the other eleven are well established statistical forecasting models. The results
for each one of these models are presented in Table 3; bold numbers indicate best fit. The
performance of the competing rivals is taken from the corresponding references.

The best fit models for each data set are depicted in the following plots. We choose to
present the forecasts produced by the proposed SCOLS-FuM model, along with its closest
neurofuzzy and its closest classic competitors.

In Fig. 3 the reader may see a comparison for the best fit models for the case of na-
tional calls. The plot reveals that the SCOLS-FuM manages to accurately forecast the
significance of the minimum in August which the ReNFFOR misses. Apart from this, the
proposed model follows the original data more closely, a fact that is also evident from its
better performance statistics. In the same plot the 95% upper (UCL) and lower (LCL) con-
fidence levels are depicted. These were estimated during the SARIMA fitting process. It
should also be stressed that all three forecasts fit well within the 95% confidence intervals
and would bear scrutiny with even tighter confidence.
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Table 3
Comparative analysis (testing data set).

Model National calls Mobile calls

RMSE MAPE Theil’s U RMSE MAPE Theil’s U

SCOLS-FuM 4366 12.995 0.344 7436 19.42 0.501
ReNFFOR 5102 14.890 0.380 7368 19.67 0.452

LR-NFFS 5124 15.072 0.381
NF1 8914 23.846 1.000 12009 28.875 1.000
LESA-M 8570 24.391 0.722 9915 23.046 0.747
LESA-ADD 8418 24.798 0.713 10271 27.218 0.699
SES 6748 20.943 0.515 9671 24.698 0.569
Holt’s Linear 6753 27.552 0.506 11191 35.507 0.663
Winter’s MS 7120 18.415 0.578 9114 20.475 0.665
Winter’s AS 6903 17.741 0.553 8495 21.875 0.573
Damped NoS 6862 21.422 0.512 11962 31.756 0.715
Damped MS 7080 19.072 0.573 7419 15.958 0.524
Damped AS 7194 19.838 0.571 9020 23.584 0.599
SARIMA 6064 15.959 0.513 10102 20.793 0.775

 

Fig. 3. Comparison of the forecasting ability of the SCOLS-FuM with the best rival models and the Fig. 3. Comparison of the forecasting ability of the SCOLS-FuM with the best rival models and the actual
number of calls to national destinations. The upper and lower 95% confidence levels are also depicted.

Visual observation of Fig. 4 reveals the differences between the proposed SCOLS-FuM
and its best rivals for the case of mobile calls. The SCOLS-FuM gives better forecast, in
the sense that it follows the evolution of the series more closely, identifies the first two local
minima that appear in February and April, but misses the significance of the minimum
in August. Although two of the ReNFFOR statistics are slightly better than those of the
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Fig. 4. Comparison of the forecasting ability of the SCOLS-FuM with the best rival models and the Fig. 4. Comparison of the forecasting ability of the SCOLS-FuM with the best rival models and the actual
number of calls to mobile destinations. The upper and lower 95% confidence levels are also depicted.

SCOLS-FuM, the ReNFFOR fails to follow the fluctuations in the mobile call volume.
The 95% confidence intervals for the forecasts were estimated during the fitting process
of the Damped MS model.

Interestingly, the Damped MS for the mobile calls was the best fit model indicated for
the same type of calls in a past analysis (Hilas et al., 2006) and was attributed to “the high
cost of mobile calls, which refrains users from making many calls to mobile destinations
and retards the upward tendency”. Another interesting remark is that a recent review of
forecasting in operational research concludes that the damped trend can “reasonably claim
to be a benchmark forecasting method for all others to beat” which was the case with our
SCOLS-FuM approach for the mobile data as regards the Theils-U statistic (Fildes et al.,
2008).

6. Conclusions

In this paper a Subtractive Clustering – Orthogonal Least Squares based Fuzzy Forecast-
ing Model (SCOLS-FuM) has been proposed and has been evaluated by applying it on
real world telecommunications data. Additionally, its modeling qualities have been inves-
tigated through a comparative analysis with a series of well-established forecasting models
and recent neurofuzzy forecasters.

A two-stage model building process has been developed, providing local models (fuzzy
rules) with variable number of inputs, thus leading to fuzzy forecasters with a limited
number of parameters.
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Two different types of calls, according to their destination, were examined. These are
calls to national and calls to mobile destinations. The former represent more than 50% of
the outgoing call volume while the later corresponds to more than 1/3 of the telecommu-
nications costs for the organization under study. Separate forecasts were made on these
data sets due to the different restrictions of use and their different tariffs. Given the out-
come of such an analysis the organization may decide to employ different strategies when
allotting telephony services to its employees.

It should also be noted that in the analysis only the observed time series were used. That
is, tariff policies, different policies on the allotment of telephony service to employees, the
rate of new employments and retirements, or other factors that may affect the fluctuation
of call volume were not taken into account. This is because many of these factors may
not be known, may not be available or may are difficult to be quantified. Adding to this,
working with the plain data set gives a basis for useful comparisons.

Telecommunications managers may benefit from accurate call volume predictions in
two ways. First, the managers of telecommunications service providers may not only pre-
dict future profit but may also be able to forecast future call volume and make educated
decisions on appropriate investments for their company’s expansion. On the other hand,
the managers of large companies and organizations, who are actually the big customers of
service providers, will be able to make specific decisions as regards the telecommunica-
tions and financial strategies of their organization, with the primary mission of providing
cost effective voice communication services by controlling telecommunications costs.

The application of the proposed method to data traffic or the comparison between voice
and data traffic may also provide with valuable results.

According to the results, SCOLS-FuM forecaster is a promising non-linear approach
to the problem of telecommunications data forecasting, since it is built via an automated
procedure and provides quite accurate forecasts. A future expansion of this approach could
be the employment of higher-order polynomials to the consequent parts of the fuzzy rules.
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SCOLS-FuM: Hibridinis neraiškusis modelis laiko eilutėms ryšio

sistemose prognozuoti

Paris A. MASTOROCOSTAS, Constantinos S. HILAS

Šiame straipsnyje laiko eilutėms prognozuoti pasiūlytas neraiškusis modeliavimas. Modeliui
sudaryti suformuluotas dviejų żingsnių algoritmas, naudojantis atimtimi grįstą klasterizavimą ir
mażiausių ortogonalių kvadratų metodą. Klasterizavimas panaudojamas reikšmių erdvei suskaidyti
į sritis bei jų parametrų pradinėms reikšmėms nustatyti. Pritaikius mažiausiųjų ortogonaliųjų
kvadratų metodą, kiekviena sritis yra aprašoma tiesinio modelio parametrais. Siekiant išryškinti
pasiūlytojo modelio privalumus, atlikta palyginamoji analizė su kitais prognozės metodais, naudo-
jant realius ryšių sistemų duomenis.


