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Abstract. We present a new aggregation operator called the generalized ordered weighted propor-
tional averaging (GOWPA) operator based on an optimal model with penalty function, which ex-
tends the ordered weighted geometric averaging (OWGA) operator. We investigate some properties
and different families of the GOWPA operator. We also generalize the GOWPA operator. The key
advantage of the GOWPA operator is that it is an aggregation operator with theoretic basis on ag-
gregation, which focuses on its structure and importance of arguments. Moreover, we propose an
orness measure of the GOWPA operator and indicate some properties of this orness measure. Fur-
thermore, we introduce the generalized least squares method (GLSM) to determine the GOWPA
operator weights based on its orness measure. Finally, we present a numerical example to illustrate
the new approach in an investment selection decision making problem.

Key words: group decision making, aggregation operator, OWA operator, generalized least squares
method.

1. Introduction

The increasing complexity of the socio-economic environment makes it less and less pos-
sible for a single expert or decision maker to consider all relevant aspects of a problem.
Therefore, some complex decision making problems should be conducted by integrating a
group of experts’ knowledge and experiences. In general, the practice of multiple attribute
group decision making is to evaluate each attribute of every alternative individually and
to obtain the best solution(s) (Pérez et al., 2011; Wang and Parkan, 2005). The funda-
mental prerequisite of decision making is how to aggregate individual experts’ preference
information on alternatives. Information aggregation is a process that combines individual
experts’ preferences into an overall one by using a proper aggregation technique. Recently,
the investigation on information aggregation has received surprisingly extensive attention
from practitioners and researchers due to its practical and academic significance (Ahn,
2006; Merigó, 2010, 2011; Merigó and Casanovas, 2009, 2010, 2011a, 2011b, 2011c;
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Merigó and Gil-Lafuente, 2009, 2010; Merigó et al., 2010, 2011; Yager, 2003; Yager
and Filev, 1999; Zhou and Chen, 2011). A very common aggregation method for aggre-
gating the information is the ordered weighted averaging (OWA) operator introduced by
Yager (Yager, 1988; Yager and Kacprzyk, 1997). It provides a parameterized family of
aggregation operators that includes the maximum, the minimum and the average criteria.
Since its appearance, the OWA operator has been used in a wide range of applications
(Calvo et al., 2002; Merigó and Gil-Lafuente, 2010; Xu, 2004, 2006b; Xu and Xia, 2011;
Zhou and Chen, 2010). In the meantime, a lot of new aggregation operators and their ex-
tensions have been developed. For example, motivated by the OWA operator, in Chiclana
et al. (2000), Xu and Da (2002), the ordered weighted geometric averaging (OWGA) op-
erator was developed. Generally, Yager provided a generalization of the OWA operator
in Yager (2004), called the generalized ordered weighted averaging (GOWA) operator.
This operator added to the OWA operator an additional parameter, controlling the power
to which the argument values were raised and had some special cases such as the OWA
operator, the OWGA operator and the ordered weighted harmonic averaging (OWHA) op-
erator, and so on. Further studies on these generalization are found in Ahn (2006), Merigó
(2010, 2011), Merigó and Casanovas (2009, 2010, 2011a, 2011b, 2011c), Merigó and
Gil-Lafuente (2009, 2010), Merigó et al. (2010, 2011), Xu (2006b), Xu and Xia (2011),
Yager (1993, 1996, 2003, 2007, 2009a, 2009b), Yu et al. (2011), Zhou and Chen (2010,
2011). However, these aggregation operators may focus on their weighting patterns, not
their structures of aggregation and importance of arguments. It is necessary to introduce
the new aggregation operators with more effectively theoretic foundation, considering the
structure of aggregation.

An other important issue in the theory of OWA aggregation is the determination
of the associated weights. A number of approaches have been developed for obtain-
ing the OWA operator weights. O’Hagan (1988) was the first to determine OWA op-
erator weights and suggested a maximum entropy method, which formulated the OWA
operator weight problem as a constrained nonlinear optimization model. Motivated by
O’Hagan (1988), Wang and Parkan (2005) proposed a minimax disparity approach for
obtaining OWA operator weights. In Yager (1993), was suggested an interesting way to
compute the weights of the OWA operator using linguistic quantifiers. Filev and Yager
brought forward a learning method based on observed data and an exponential smooth-
ing method, which produced the exponential OWA operator and the operator weights
(Filev and Yager, 1998). Moreover, in Wang et al. (2007), developed two models to de-
termine the OWA operator weights called the least-squares method (LSM) and the chi-
square (χ2) method (CSM) without following a regular distribution. Numerous authors
have studied other developments concerning the OWA operator weights (Amin and Em-
rouznejad, 2010; Emrouznejad and Amin, 2010; Fullér and Majlender, 2001; Liu, 2008;
Liu and Chen, 2004; Wang et al., 2007; Wang and Parkan, 2007; Xu, 2005, 2006a; Yager,
1996, 2007, 2009a, 2009b; Zhou and Chen, 2010).

The aim of this paper is to analyze the structures of aggregation operators and present a
new aggregation operator called the generalized ordered weighted proportional averaging
(GOWPA) operator motivated by the idea of penalty function. We study some properties
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of the GOWPA operator and investigate some families of the GOWPA operator. The main
advantages of the GOWPA operator are not only that it is based on an optimal model, but
also that the weighting vector is related to the structure and importance of aggregation ar-
guments. Furthermore, we extend the GOWPA operator and obtain the generalized hybrid
proportional averaging (GHPA) operator.

In order to determine the GOWPA operator weights, we propose an orness measure of
the GOWPA operator and discuss some properties associated with this orness measure.
Furthermore, we propose a generalized least squares method (GLSM) based on the gen-
eralized least squares model. We also present an application of the new approach to group
decision making in an example of an investment selection problem. The prominent char-
acteristic of GLSM is that it does not follow a regular distribution and is also applicable
to different group decision making problems effectively, such as strategic management,
human resource selection and financial management.

This paper is organized as follows. In Section 2, we briefly review basic concepts of ag-
gregation operators. In Section 3, we present the GOWPA operator and study some prop-
erties of the GOWPA operator and different families of the GOWPA operator. Then we
extend the GOWPA operator. Section 4 introduces the orness measure of the GOWEMA
operator and some properties of its orness measure. In Section 5, we introduce the GLSM
to determine the GOWPA operator weights. In Section 6, we present a method for group
decision making with the GOWPA operator and Section 7 develops a numerical example
of the new approach. Finally, we summarize the main conclusions of the paper in Sec-
tion 8.

2. Preliminaries

In this section, we briefly describe the OWA operator, the GOWA operator and the penalty
function.

The OWA operator was introduced by Yager (1988), Yager and Kacprzyk (1997) and
has been used in a wide range of applications (Calvo et al., 2002; Merigó and Gil-Lafuente,
2010; Xu, 2004, 2006b; Xu and Xia, 2011; Zhou and Chen, 2010). It can be defined as
follows:

Definition 1. An OWA operator of dimension n is a mapping OWA : Rn → R that has
an associated weighting vector w of dimension n such that

∑n
j=1 wj = 1 and wj ∈ [0,1],

according to the following formula:

OWA(a1, a2, . . . , an) =

n
∑

j=1

wjbj , (1)

where bj is the j th largest of the ai .

The fundamental aspect of the OWA operator is the reordering step, in particular, an
argument ai is not associated with a particular weight wi , but rather the weight wi is
associated with a particular ordered position i of the arguments.
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As we can see, while the OWA operator can take its arguments values from the real
line, an important special case occurs when the arguments are drawn from the unit interval
I = [0,1]. For simplicity, aggregation operators discussed in this paper shall focus on this
special case.

Actually, in the aggregation process, assume that the aggregation operator of dimen-
sion n is a mapping f , then the usual weighted averaging operator can be presented by
the optimal model as follows:

min z1 =

n
∑

j=1

wj

[

f (a1, a2, . . . , an) − aj

]2
, (2)

where w = (w1,w2, . . . ,wn)
T is a weighting vector satisfying wj ∈ [0,1] for all j and

∑n
j=1 wj = 1. If we take the partial derivative with respect to f , then we have

∂z1

∂f
= 2

n
∑

j=1

wj (f − aj ).

Let ∂z1
∂f

= 0, then we obtain the usual weighted averaging operator as Eq. (3):

f (a1, a2, . . . , an) =

n
∑

j=1

wjaj . (3)

If we reorder arguments aj , then we can obtain the OWA operator as Eq. (1).
Furthermore, the generalized mean can be obtained by adding to the following model

an additional parameter λ:

min z2 =

n
∑

j=1

wj

[

f λ − aλ
j

]2
, (4)

and taking the partial derivative with respect to f with ∂z2/∂f = 0. Then the GOWA
operator can be defined as follows:

Definition 2. A GOWA operator of dimension n is a mapping GOWA : In → I de-
fined by an associated weighting vector w of dimension n such that wj ∈ [0,1] and
∑n

j=1 wj = 1, and a parameter λ ∈ (−∞,+∞), λ 6= 0, according to the following for-
mula:

GOWA(a1, a2, . . . , an) =

(

n
∑

j=1

wjb
λ
j

)
1
λ

, (5)

where bj is the jth largest of the ai .
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If we consider the possible values of the parameter r in the GOWA operator, we can
obtain a group of particular cases. For instance, the OWA operator, the OWGA opera-
tor, the OWHA operator and the ordered weighted quadratic averaging (OWQA) operator
(Yager, 2004) can be obtained as follows:

• The OWA operator is found if r = 1.
• The OWQA operator is found when r = 2.
• The OWGA operator is obtained when r → 0:

OWGA(a1, a2, . . . , an) =

n
∏

j=1

b
wj

j , (6)

• The OWHA operator is formed when r = −1:

OWHA(a1, a2, . . . , an) =
1

∑n
j=1 wj/bj

, (7)

Similarly, Zhou and Chen (2010) presented the following optimal model:

min z3 =

n
∑

j=1

wj

[

(lnf )λ − (lnaj )
λ
]2

. (8)

Letting ∂z3
∂f

= 0, then we have the generalized weighted logarithm averaging (GWLA)
operator as follows:

f (a1, a2, . . . , an) = exp

{(

n
∑

j=1

wj (logaj )
λ

)
1
λ
}

. (9)

By reordering the arguments ai , we have the generalized ordered weighted logarithm av-
eraging (GOWLA) operator as follows:

GOWLA(a1, a2, . . . , an) = exp

{(

n
∑

j=1

wj (logbj )
λ

)
1
λ
}

(10)

where bj is the jth largest of the ai and parameter λ ∈ (−∞,0) ∪ (0,+∞). Note that the
GOWLA operator is extension of the OWGA operator.

Aggregation function based on penalties has been studied in Calvo and Beliakov
(2010), Calvo et al. (2004), Grabisch et al. (2011), which can be defined as follows:

Definition 3. The function P : In+1 → I is a penalty function if and only if it satisfies:

(1) P(x, y)> 0 for all x ∈ In and y ∈ I .
(2) P(x, y) = 0 if x = y, y = (y, y, . . . , y) ∈ In.
(3) For every fixed x, the set of minimizers of P(x, y) is either a singleton or an inter-

val.
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It can be shown that the aggregation operators can be obtained by considering different
penalty functions. For example, z1 in the OWA operator, z2 in the GOWA operator and z3

in the GOWLA operator. In next section, we will develop a new aggregation operator by
constructing a new optimal model with penalty function.

3. The Generalized Ordered Weighted Proportional Aggregation Operators

In this section, we will present the GOWPA operator based on an optimal problem with
penalty function.

3.1. The GOWPA Operator

Let a1, a2, . . . , an be the aggregation arguments, and w = (w1,w2, . . . ,wn)
T be a weight-

ing vector satisfying wj ∈ [0,1] and
∑n

j=1 wj = 1. Assume that the aggregation operator
of dimension n is a mapping f determined by the formula as follows:

y = f (a1, a2, . . . , an). (11)

In the aggregation process, we hope that the deviation between the arguments ai and
the aggregation result y is as possible as small. In order to minimize the deviation between
y and aj , we can construct the optimal model as follows:

min z =

n
∑

j=1

wj

[

1 − (aj/y)λ
]2

, (12)

where λ is a parameter such that λ ∈ (−∞,+∞) and λ 6= 0. If we take the partial deriva-
tive with respect to y , then we have

∂z

∂y
=

n
∑

j=1

2wj

[

1 −

(

aj

y

)λ][

− λ

(

aj

y

)λ−1

×

(

−
aj

y2

)]

.

Let ∂z
∂y

= 0, then we obtain the formula as follows:

y =

(

n
∑

j=1

wja
2λ
j

/

n
∑

j=1

wja
λ
j

)1/λ

. (13)

Thus we can define the generalized weighted proportional averaging (GWPA) operator as
follows:
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Definition 4. A GWPA operator of dimension n is a mapping GWPA : In → I that has
associated with a weighting vector w = (w1,w2, . . . ,wn)

T , satisfying wj ∈ [0,1] and
∑n

j=1 wj = 1, according to the following formula:

GWPA(a1, a2, . . . , an) =

(

n
∑

j=1

wja
2λ
j

/

n
∑

j=1

wja
λ
j

)1/λ

, (14)

where λ is a parameter such that λ ∈ (−∞,0) ∪ (0,+∞).

If wj = 1/n for all j , then the GWPA operator becomes the usual generalized propor-
tional mean (GPM), which is expressed as the following formula:

GPM(a1, a2, . . . , an) =

(

n
∑

j=1

a2λ
j

/

n
∑

j=1

aλ
j

)1/λ

. (15)

Example 1. Assume the following arguments in an aggregation process: a1 = 0.4, a2 =

0.3, a3 = 0.5, a4 = 0.3. If we assume that w = (0.2,0.3,0.4,0.1)T and λ = 2, then the
aggregation formula is

GWPA(a1, a2, a3, a4)

=

(

0.2 × 0.42×2 + 0.3 × 0.32×2 + 0.4 × 0.52×2 + 0.1 × 0.32×2

0.2 × 0.42 + 0.3 × 0.32 + 0.4 × 0.52 + 0.1 × 0.32

)1/2

= 0.4456.

Furthermore, if we rearrange the arguments in the GWPA operator in descending order,
then we can define the generalized ordered weighted proportional averaging (GOWPA)
operator as follows:

Definition 5. A GOWPA operator of dimension n is a mapping GOWPA : In → I that
has associated with a weighting vector w = (w1,w2, . . . ,wn)

T , satisfying wj ∈ [0,1] and
∑n

j=1 wj = 1, according to the following formula:

GOWPA(a1, a2, . . . , an) =

(

n
∑

j=1

wjb
2λ
j

/

n
∑

j=1

wjb
λ
j

)1/λ

, (16)

where bj is the j th largest of the ai and λ is a parameter such that λ ∈ (−∞,0)∪(0,+∞).

Note that if we assume that

w̃j =
wjb

λ
j

∑n
j=1 wjb

λ
j

, (17)

then Eq. (16) can be rewritten as follows:
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Table 1
Aggregation result.

λ −1 0.0001 1/2 1 2

Aggregation 0.3422 0.3622 0.3740 0.3865 0.4116

GOWPA(a1, a2, . . . , an) =

(

n
∑

j=1

w̃jb
λ
j

)1/λ

, (18)

where
∑n

j=1 w̃j = 1 and w̃j ∈ [0,1] for all j .
It is obvious that the GOWPA operator can be considered as a GOWA operator, but w̃j ,

the GOWPA operator weights, can be viewed as a combination weights including the
weights wj , depending on the decision makers’ attitude, and the weights bλ

j /
∑n

j=1 bλ
j ,

relying on the argumentsbeing aggregated. Furthermore, from Eq. (16), we can see that the
GOWPA operator may focus on its structure and importance of arguments rather than the
weighting pattern, which leads to the fact that the GOWPA operator with more profound
theoretic basis is superior to other aggregation operators including the OWA operator, the
OWGA operator, the OWHA operator, etc.

Example 2. Take the collection of arguments in Example 1, then we have

b1 = a3 = 0.5, b2 = a1 = 0.4, b3 = a2 = b4 = a4 = 0.3.

With λ = 1,−1,1/2,2 and λ = 0.0001, respectively, and by Eq. (16) we have the aggre-
gations which are shown in Table 1.

3.2. Properties of the GOWPA Operator

The GOWPA operator is monotonic, commutative, idempotent and bounded, and these
properties can be proved in the following theorems.

Lemma 1. Let g1(x) and g2(x) be monotonic positive continuous functions.

(1) If g1(x) and g2(x) are both monotonically increasing, then g1 + g2 and g1 ·g2 are

also increasing monotonically.

(2) If g1(x) and g2(x) are both monotonically decreasing, then g1 +g2 and g1 ·g2 are

also decreasing monotonically.

Lemma 2. Let g(x) be monotonic continuous functions.

(1) If g > 0 for any x and k > 0, then monotonicity of the function kg(x) is the same

as function g(x).

(2) If g > 0 for any x and k < 0, then monotonicity of the function kg(x) is contrary

to function g(x).
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Theorem 1. (Monotonicity) Assume that f is the GOWPA operator. If ai > ci for i =

1,2, . . . , n, then

f (a1, a2, . . . , an)> f (c1, c2, . . . , cn). (19)

Proof. Assume that f is the GOWPA operator, then by Eqs. (17) and (18), we have that

f (a1, a2, . . . , an) =

(

n
∑

j=1

w̃jb
λ
j

)1/λ

,

where w̃j = wjb
λ
j /
∑n

j=1 wjb
λ
j for all j . Then

logf (a1, a2, . . . , an) =
1

λ
log

(

n
∑

j=1

w̃jb
λ
j

)

.

In the following, we will complete the proof in two cases.

Case 1. If λ > 0, on the one hand, we take the derivative of w̃j and obtain

∂w̃j

∂bj

=
λwjb

λ−1
j

∑n
j=1 wjb

λ
j − wjb

λ
j × λwjb

λ−1
j

(
∑n

j=1 wjb
λ
j )2

=
λwjb

λ−1
j

∑

i 6=j wib
λ
i

(
∑n

j=1 wjb
λ
j )2

> 0,

which implies that w̃j is monotonically increasing with respect to bj . On the other hand,
∂bλ

j /∂bj = λbλ−1
j > 0, which implies that bλ

j is also increasing with respect to bj . By

Lemma 1, we get that
∑n

j=1 w̃jb
λ
j is an increasing function. Since bj > 0 for all j and

λ > 0, then f is monotonically increasing. That is to say,

f (a1, a2, . . . , an)> f (c1, c2, . . . , cn).

Case 2. If λ < 0, on the one hand, we take the derivative of w̃j and get ∂w̃j/∂bj 6 0,
which implies that w̃j is monotonically decreasing with respect to bj . On the other hand,
∂bλ

j /∂bj 6 0, which implies that bλ
j is also decreasing with respect to bj . With the mono-

tonicity of logarithmic function and by Lemma 1, we obtain that log(
∑n

j=1 w̃jb
λ
j ) is a

monotonically decreasing function. Since bj > 0 for all j and λ < 0, then

log

(

n
∑

j=1

w̃jb
λ
j

)

> log

(

n
∑

j=1

(

w̃j × 1λ
)

)

= 0.

By Lemma 2, we have that f is monotonically increasing, i.e.,

f (a1, a2, . . . , an)> f (c1, c2, . . . , cn).

The theorem is proved. �
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Theorem 2. (Commutativity) Let f be the GOWPA operator, then

f (a1, a2, . . . , an) = f (c1, c2, . . . , cn), (20)

where (c1, c2, . . . , cn) is any permutation of the arguments (a1, a2, . . . , an).

Proof. Let

GOWPA(a1, a2, . . . , an) =

(

n
∑

j=1

wjb
2λ
j

/

n
∑

j=1

wjb
λ
j

)1/λ

and

GOWPA(c1, c2, . . . , cn) =

(

n
∑

j=1

wjd
2λ
j

/

n
∑

j=1

wjd
λ
j

)1/λ

.

Since (c1, c2, . . . , cn) is any permutation of the arguments (a1, a2, . . . , an), we have
dj = bj for all j , thus

f (a1, a2, . . . , an) = f (c1, c2, . . . , cn).

�

Theorem 3. (Idempotency) Let f be the GOWPA operator and if ai = a for all i , then

f (a1, a2, . . . , an) = a. (21)

Proof. Let

f (a1, a2, . . . , an) =

(

n
∑

j=1

wjb
2λ
j

/

n
∑

j=1

wjb
λ
j

)1/λ

.

If ai = a for all i and
∑n

j=1 wj = 1, then

f (a1, a2, . . . , an) =

(

n
∑

j=1

wja
2λ
/

n
∑

j=1

wja
λ

)1/λ

=

(

a2λ
n
∑

j=1

wj

/

(

aλ
n
∑

j=1

wj

))1/λ

=
(

aλ
)1/λ

= a. �

Theorem 4. (Boundedness) Let f be the GOWPA operator. If maxi ai = amax and

mini ai = amin, then

amin 6 f (a1, a2, . . . , an)6 amax. (22)
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Proof. If maxi ai = amax and min iai = amin, then by Theorems 1 and 3, we have

f (a1, a2, . . . , an)6

(

n
∑

j=1

wja
2λ
max

/

n
∑

j=1

wja
λ
max

)1/λ

= amax,

and

f (a1, a2, . . . , an)>

(

n
∑

j=1

wja
2λ
min

/

n
∑

j=1

wja
λ
min

)1/λ

= amin.

Therefore, amin 6 f (a1, a2, . . . , an)6 amax. �

Moreover, the GOWPA operator is monotonic with respect to the parameter λ.
The property can be expressed as the following theorem.

Lemma 3. (Cauchy–Schwarz inequality) Let x1, x2, . . . , xn and y1, y2, . . . , yn be any real

numbers, then

(

n
∑

j=1

x2
j

)(

n
∑

j=1

y2
j

)

>

n
∑

j=1

(xjyj )
2. (23)

Lemma 4. Let h(p) be a differentiable and increasing function with p, then

H(p) =
1

p

∫ 2p

p

h(t) dt (24)

is also increasing.

Proof. Take the derivative of H , we have

dH(p)

dp
=

1

p2

[

2ph(2p) − ph(p) −

∫ 2p

p

h(t) dt

]

.

Let ϕ(p) = 2ph(2p) − ph(p) −
∫ 2p

p
h(t) dt , then we will prove the result in two cases:

(1) If p > 0, then 2p > p > 0, which implies that h(2p) > h(p). Thus, by the mean
value theorem of integral and the monotonicity of function h, we have that

ϕ(p) = ph(2p) + ph(2p) − ph(p) −

∫ 2p

p

h(t) dt

> ph(2p) −

∫ 2p

p

h(t) dt

= ph(2p) − ph(ξ1)> 0,

where p 6 ξ1 6 2p.
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(2) If p < 0, then 2p < p < 0, which implies that h(2p)6 h(p) and ph(2p) > ph(p).
Thus, by the mean value theorem of integral and the monotonicity of function h, we have
that

ϕ(p) = ph(2p) + ph(2p) − ph(p) −

∫ 2p

p

h(t) dt

> ph(2x) −

∫ 2p

p

h(t) dt

= ph(2p) − ph(ξ2)> 0,

where 2p 6 ξ2 6 p.
Therefore, ϕ(p) > 0, i.e., dH(p)/dp > 0, which completes the lemma. �

Theorem 5. (Monotonicity with respect to parameter λ) Let f be the GOWPA operator.

If λ1 > λ2, then

f (λ1)> f (λ2). (25)

Proof. Let

f (a1, a2, . . . , an) =

(

n
∑

j=1

wjb
2λ
j

/

n
∑

j=1

wjb
λ
j

)1/λ

and g(t) =
∑n

j=1 wjb
t
j , then by taking the natural logarithm of f , we have

logf =
1

λ

(

log

(

n
∑

j=1

wjb
2λ
j

)

− log

(

n
∑

j=1

wjb
λ
j

))

=
1

λ

∫ 2λ

λ

g′(t)

g(t)
dt.

In order to establish the monotonicity of f , we take the derivative with respect to t and
obtain

d

dt

(

g′(t)

g(t)

)

=
g′′(t)g(t) − (g′(t))2

g2(t)
.

Since g′(t) =
∑n

j=1 wjb
t
j logbj and g′′(t) =

∑n
j=1 wjb

t
j (logbj )

2, then by Lemma 3, we
get

g′′(t)g(t) =

n
∑

j=1

wjb
t
j (logbj )

2 ×

n
∑

j=1

wjb
t
j >

(

n
∑

j=1

(wjb
t
j )

1/2(wjb
t
j )

1/2 logbj

)2

=

(

n
∑

j=1

wjb
t
j logbj

)2

=
(

g′(t)
)2

.
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Thus we have d
dt

(
g′(t)
g(t)

) > 0, which implies that g′(t)
g(t)

is increasing with t . Therefore, by
Lemma 4, logf is increasing with λ, i.e., f is increasing with λ. The theorem is proved.�

Similar to Xu and Da (2002), if we distinguish between the descending generalized
ordered weighted proportional averaging (DGOWPA) operator and the ascending gen-
eralized ordered weighted proportional averaging (AGOWPA) operator, we would have
w∗

j = wn−j+1 (j = 1,2, . . . , n), where wj is the j th weight of the DGOWPA operator
and w∗

j is the j th weight of the AGOWPA operator.

3.3. Families of GOWPA Operators

By using a different cases of the parameter λ and the weighting vector w, we are able to ob-
tain different types of GOWPA operators, including the maximum, the minimum, the step-
GOWPA operator, the GOWPA median, the olympic-GOWPA operator, the s-GOWPA
operator, the window-GOWPA operator and the center-GOWPA operator. Note that these
results can be obtained both for the DGOWPA operator and the AGOWPA operator.

Remark 1. If λ = 1, then we get the OWPA operator:

OWPA(a1, a2, . . . , an) =

n
∑

j=1

wjb
2
j

/

n
∑

j=1

wjbj . (26)

If λ = −1, we form the ordered weighted harmonic proportional averaging (OWHPA)
operator:

OWHPA(a1, a2, . . . , an) =
1

∑n
j=1 wj/b

2
j/
∑n

j=1 wj/bj

. (27)

And if we choose the parameter λ as 1/2, then the GOWPA operator becomes the ordered
weighted square root proportional averaging (OWSPA) operator:

OWSPA(a1, a2, . . . , an) =

(

n
∑

j=1

wjbj

/

n
∑

j=1

wj

√

bj

)2

. (28)

If λ → 0, let f be the GOWPA operator. Take the natural logarithm of f , and by the
L’Hôpital’s rule, we get

lim
λ→0

logf = lim
λ→0

log(
∑n

j=1 wjb
2λ
j ) − log(

∑n
j=1 wjb

λ
j )

λ

= lim
λ→0

1
∑n

j=1 wj b2λ
j

∑n
j=1 wjb

2λ
j logb2

j − 1
∑n

j=1 wj bλ
j

∑n
j=1 wjb

λ
j logbj

1

=

n
∑

j=1

wj logbj = log

n
∏

j=1

b
wj

j .

Hence, limλ→0 f =
∏n

j=1 b
wj

j , which is the OWGA operator.
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Remark 2. If λ → +∞, then we get the maximum. And if λ → −∞, then we get the
minimum. These properties can be illustrated as follows:

Let f be the GOWPA operator, i.e.,

f (a1, a2, . . . , an) =

(

n
∑

j=1

wjb
2λ
j

/

n
∑

j=1

wjb
λ
j

)1/λ

.

Ifλ → +∞, then with the monotonicity and the idempotency of the GOWPA operator, we
get

f (a1, a2, . . . , an)6 f (b1, b1, . . . , b1) = b1.

Since λ > 0, then
∑n

j=1 wjb
2λ
j > w1b

2λ
1 and

∑n
j=1 wjb

λ
j 6

∑n
j=1 wjb

λ
1 . It follows that

n
∑

j=1

wjb
2λ
j

/

n
∑

j=1

wjb
λ
j > w1b

2λ
1

/

n
∑

j=1

wjb
λ
1 .

Then, we obtain

(

n
∑

j=1

wjb
2λ
j

/

n
∑

j=1

wjb
λ
j

)1/λ

>

(

w1b
2λ
1

/

n
∑

j=1

wjb
λ
1

)1/λ

= b1w
1/λ
1 .

Thus, f (a1, a2, . . . , an)> b1w
1/λ

1 . Therefore,

b1w
1/λ

1 6 f (a1, a2, . . . , an) 6 b1.

Denoting λ → +∞, and with limλ→+∞ w
1/λ

1 = 1, we get the maximum:

lim
λ→+∞

f = b1 = max
i

ai .

A similar proof can be given for the other part of Remark 3.

Remark 3. The maximum, the minimum, the step-GOWPA operator and the usual gen-
eralized proportional mean (GPM) are obtained as follows:

• The maximum is found if w1 = 1 and wi = 0 for all i 6= 1.
• The minimum is formed when wn = 1 and wi = 0 for all i 6= n.
• Generally, if wk = 1 and wi = 0 for all i 6= k, then we get the step-GOWPA operator.
• The usual GPM is obtained when wj = 1/n for all j .

Remark 4. Another particular case is the GOWPA median, which are expressed as fol-
lows:
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• If n is odd, we assign w(n+1)/2 = 1 and wj = 0 for j 6= (n + 1)/2.
• If n is even, we assume wn/2 = wn/2+1 = 0.5 and wj = 0 for all other values.

Remark 5. Another group of interesting families are the olympic-GOWPA operator,
the general olympic-GOWPA operator, the window-GOWPA operator, the generalized s-
GOWPA operator and the centered GOWPA operator based on the OWA literature (Yager,
1993).

• The olympic-GOWPA operator (w1 = wn = 0 and wj = 1/(n − 2) for all others).
• The general olympic-GOWPA operator (wj = 0 for j = 1,2, . . . , k,n,n−1, . . . , n−

k + 1; and for all others wj = 1/(n − 2k), where k < n/2).
• The window-GOWPA operator (wj = 1/m for k 6 j 6 k + m − 1, and wj = 0 for

j > k + m and j < k).
• The generalized s-GOWPA operator (wk = (1 − (α + β))/n + α, wt = (1 − (α+

β))/n + β , and wj = (1 − (α + β))/n for all j 6= k, t , where ak = maxi{ai}, at =

min i{ai} and α + β 6 1 with α,β ∈ [0,1]).
• The centered GOWPA operator (it is symmetric when wj = wj+n−1 . It is strongly

decaying when i < j 6 (n + 1)/2 then wi < wj and when i > j > (n + 1)/2 then
wi < wj . It is inclusive if wj > 0).

Remark 6. Using a similar methodology, other families of the GOWPA operator could
be found following the literatures (Xu, 2006a; Yager, 1996, 2007, 2009a).

3.4. Generalized Hybrid Proportional Aggregation Operators

We can develop further extensions by adding the balance factor ω and get the generalized
hybrid proportional averaging (GHPA) operator.

Definition 6. An GHPA operator of dimension n is a mapping GHPA : R+n → R+ that
defined by an associated weighting vector w = (w1,w2, . . . ,wn)

T of dimension n such
that wj ∈ [0,1] and

∑n
j=1 wj = 1 and a parameter λ ∈ (−∞,+∞) and λ 6= 0, according

to the following formula:

GHPA(a1, a2, . . . , an) =

(

n
∑

j=1

wjb
2λ
j

/

n
∑

j=1

wjb
λ
j

)1/λ

, (29)

where bj is the j th largest of âi (âi = nωiai , i = 1,2, . . . , n). ω = (ω1,ω2, . . . ,ωn)
T is

the weighting vector of the ai called the balance factor, with ωi ∈ [0,1] and
∑n

i=1 ωi = 1.

Example 3. Take the same information in Example 1, and set ω = (0.3,0.2,0.2,0.3)T .
Based on the parameter vector ω, we get

â1 = 4 × 0.3 × 0.4 = 0.48, â2 = 4 × 0.2 × 0.3 = 0.24,

â3 = 4 × 0.2 × 0.5 = 0.4, â4 = 4 × 0.3 × 0.3 = 0.36.
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Table 2
Aggregation result.

λ −1 0.0001 1/2 1 2

Aggregation 0.3561 0.3779 0.3870 0.3950 0.4088

Then we have

b1 = â1 = 0.48, b2 = â3 = 0.4, b3 = â4 = 0.36, b4 = â2 = 0.24.

With λ = 1,−1,1/2,2 and λ = 0.0001, respectively, we obtain the aggregations which
are shown in Table 2.

Especially, if the balance factor ω = (1/n,1/n, . . . ,1/n)T , then the GHPA operator
is reduced to the GOWPA operator.

Similarly, if we consider different cases of the parameter λ and ω in the GHPA operator
following the methodology explained in Section 3.3, we can obtain a group of aggrega-
tion operators, including the hybrid proportional averaging (HPA) operator, the hybrid
harmonic proportional averaging (HHPA) operator, hybrid square root proportional av-
eraging (HSPA) operator, hybrid geometric averaging (HGA) operator and the GOWPA
operator. For example, we could analyze the following cases:

• The hybrid proportional averaging (HPA) operator: when λ = 1.
• The hybrid harmonic proportional averaging (HHPA) operator: when λ = −1.
• The hybrid square root proportional averaging (HSPA) operator: when λ = 1/2.
• The hybrid geometric averaging (HGA) operator: when λ → 0.
• The GOWPA operator: when ω = (1/n,1/n, . . . ,1/n)T .

Note that some other interesting extensions can be investigated following (Merigó,
2011; Merigó and Casanovas, 2011a, 2011b, 2011c; Mesiar and Pap, 2008; Mesiar and
Spirkova, 2006; Pereira and Ribeiro, 2003), such as the heavy GOWPA operator, the in-
finitary GOWPA operator, the mixture GOWPA operator, etc.

4. An Orness Measure for the GOWEPA Operator

In (1993), Yager introduced the orness measure, associated with the weighting vector w

of the OWA operator, which can be defined as follows:

orness(w) =

n
∑

j=1

n − j

n − 1
wj . (30)

It can be shown that when w = (1,0, . . . ,0), orness(w) = 1. For w = (0,0, . . . ,1),
orness(w) = 0. For w = (1/n,1/n, . . . ,1/n), orness(w) = 0.5.
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Furthermore, the orness measure also can be regarded as the OWA aggregation of the
arguments aj = (n − j)/(n − 1) for j = 1,2, . . . , n. By using this method, Yager (2004)
defined the orness measure for the GOWA operator as follows:

orness(w) =

(

n
∑

j=1

wj

(

n − j

n − 1

)r)1/r

. (31)

It is apparent that when r = 1, the orness measure of the GOWA operator reduces to the
orness measure of the OWA operator.

Following (2004), we can define the orness measure of the GOWPA operator as fol-
lows:

ornessλ(w) =

(
∑n

j=1 wj (
n−j
n−1

)2λ

∑n
j=1 wj (

n−j
n−1

)λ

)1/λ

. (32)

From Theorems 1 and 3, we can get Theorem 6 as follows:

Theorem 6. 0 6 ornessλ(w)6 1.

Moreover, we can obtain the following theorem:

Theorem 7. limλ→+∞ ornessλ(w) = 1 and limλ→−∞ ornessλ(w) = 0.

Proof. If we let aj = (n− j)/(n− 1) for j = 1,2, . . . , n, then by Remark 2, we have that

lim
λ→+∞

ornessλ(w) = max
i

ai = (n − 1)/(n − 1) = 1

and

lim
λ→−∞

ornessλ(w) = min iai = (n − n)/(n − 1) = 0. �

From Theorem 5, we can also get the following theorem:

Theorem 8. If λ1 > λ2, then

ornessλ1
(w)> ornessλ2

(w). (33)

It is also can be analyzed that the GOWPA operator and its orness measure are mono-
tonic with respect to the weighting vector. The property can be illustrated by the following
theorems.

Lemma 5. Let x = (x1, x2, . . . , xn) be the ordered vector, which satisfies that x1 >

x2 > · · · > xn > 0, and let α = (α1, α2, . . . , αn) be the vector satisfying αi > 0 for
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i = 1,2, . . . , n. If weighting vector w = (w1,w2, . . . ,wn) satisfies w1 > w2 > · · · > wn,

then

(
∑n

j=1 αjwjx
2λ
j

∑n
j=1 αjwjx

λ
j

)1/λ

>

(
∑n

j=1 αjx
2λ
j

∑n
j=1 αjx

λ
j

)1/λ

, (34)

where λ ∈ (−∞,∞) and λ 6= 0. And if w1 6 w2 6 · · ·6 wn, the inequality is reversed.

Proof.

∑n
j=1 αjwjx

2λ
j

∑n
j=1 αjwjx

λ
j

−

∑n
j=1 αjx

2λ
j

∑n
j=1 αjx

λ
j

=

∑n
j=1 αjwjx

2λ
j ×

∑n
j=1 αjx

λ
j −

∑n
j=1 αjx

2λ
j ×

∑n
j=1 αjwjx

λ
j

∑n
j=1 αjwjx

λ
j ·
∑n

j=1 αjx
λ
j

=

∑n
i=1 αiwix

2λ
i ×

∑n
j=1 αjx

λ
j −

∑n
i=1 αix

2λ
i ×

∑n
j=1 αjwjx

λ
j

∑n
j=1 αjwjx

λ
j ·
∑n

j=1 αjx
λ
j

=

∑n
i=1

∑n
j=1 αiαjx

2λ
i xλ

j (wi − wj )
∑n

j=1 αjwjx
λ
j ·
∑n

j=1 αjx
λ
j

=

∑

i<j αiαjx
2λ
i xλ

j (wi − wj ) +
∑

i>j αiαjx
2λ
i xλ

j (wi − wj )
∑n

j=1 αjwjx
λ
j ·
∑n

j=1 αjx
λ
j

=

∑

i<j αiαjx
2λ
i xλ

j (wi − wj ) +
∑

i<j αjαix
2λ
j xλ

i (wj − wi)
∑n

j=1 αjwjx
λ
j ·
∑n

j=1 αjx
λ
j

=

∑

i<j αiαjx
λ
i xλ

j (wi − wj )(x
λ
i − xλ

j )
∑n

j=1 αjwjx
λ
j ·
∑n

j=1 αjx
λ
j

.

If w1 > w2 > · · · > wn, then wi − wj > 0 for i < j . By choosing different λ, we will
obtain the same results in the following two cases:

(1) If λ > 0, with the fact that x1 > x2 > · · ·> xn > 0, which leads to xλ
i − xλ

j > 0 for
i < j , then we have

∑n
j=1 αjwjx

2λ
j

∑n
j=1 αjwjx

λ
j

>

∑n
j=1 αjx

2λ
j

∑n
j=1 αjx

λ
j

.

Thus,

(
∑n

j=1 αjwjx
2λ
j

∑n
j=1 αjwjx

λ
j

)1/λ

>

(
∑n

j=1 αjx
2λ
j

∑n
j=1 αjx

λ
j

)1/λ

.
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(2) If λ < 0, with the fact that x1 > x2 > · · ·> xn > 0, which leads to xλ
i − xλ

j 6 0 for
i < j , then we have

0 6

∑n
j=1 αjwjx

2λ
j

∑n
j=1 αjwjx

λ
j

6

∑n
j=1 αjx

2λ
j

∑n
j=1 αjx

λ
j

.

Thus,

(
∑n

j=1 αjwjx
2λ
j

∑n
j=1 αjwjx

λ
j

)1/λ

>

(
∑n

j=1 αjx
2λ
j

∑n
j=1 αjx

λ
j

)1/λ

.

A similar proof can be given for the other part of Lemma 5. �

If we set α1 = α2 = · · · = αn = 1 in Lemma 5, then we will obtain Corollary 1.

Corollary 1. For ordered vector x = (x1, x2, . . . , xn), x1 > x2 > · · ·> xn > 0 and vector

w = (w1,w2, . . . ,wn). If w1 > w2 > · · ·> wn, then

(
∑n

j=1 wjx
2λ
j

∑n
j=1 wjx

λ
j

)1/λ

>

(
∑n

j=1 x2λ
j

∑n
j=1 xλ

j

)1/λ

, (35)

where λ ∈ (−∞,∞) and λ 6= 0. And if w1 6 w2 6 · · ·6 wn, the inequality is reversed.

Theorem 9. Let f be the GOWPA operator, and w = (w1,w2, . . . ,wn) be the weighting

vector satisfying
∑n

i=1 wi = 1 and wi ∈ [0,1] for i = 1,2, . . . , n. If w1 > w2 > · · ·> wn,

then

f (a1, a2, . . . , an)>

(

n
∑

j=1

a2λ
j

/

n
∑

j=1

aλ
j

)1/λ

, (36)

and

ornessλ(w)>

(
∑n−1

j=0(j/(n − 1))2λ

∑n−1
j=0(j/(n − 1))λ

)1/λ

. (37)

And if w1 6 w2 6 · · ·6 wn, then the inequalities are reversed.

Proof. Let

f (a1, a2, . . . , an) =

(

n
∑

j=1

wjb
2λ
j

/

n
∑

j=1

wjb
λ
j

)1/λ

,
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where bj is the j th largest of arguments a1, a2, . . . , an. Then we have b1 > b2 > · · · >

bn > 0. If w1 > w2 > · · ·> wn, then by Corollary 1, we get that

(

n
∑

j=1

wjb
2λ
j

/

n
∑

j=1

wjb
λ
j

)1/λ

>

(

n
∑

j=1

b2λ
j

/

n
∑

j=1

bλ
j

)1/λ

=

(

n
∑

j=1

a2λ
j

/

n
∑

j=1

aλ
j

)1/λ

.

If we let aj = j/(n − 1) for j = 0,1,2, . . . , n − 1, we can get

ornessλ(w)>

(
∑n−1

j=0(j/(n − 1))2λ

∑n−1
j=0(j/(n − 1))λ

)1/λ

.

The other case of Theorem 12 can be proved in a similar way. �

Theorem 10. For weighting vector w = (w1,w2, . . . ,wn) and w′ = (w′
1,w

′
2, . . . ,w

′
n),

which satisfy
∑n

i=1 wi = 1,
∑n

i=1 w′
i = 1 and wi > 0, w′

i > 0 for i = 1,2, . . . , n. If wi

wi+1
>

w′
i

w′
i+1

for i = 1,2, . . . , n − 1, then

GOWPAw(a1, a2, . . . , an)> GOWPAw′(a1, a2, . . . , an), (38)

and

ornessλ(w)> ornessλ

(

w′
)

. (39)

Proof. If wi/wi+1 > w′
i/w

′
i+1 for i = 1,2, . . . , n − 1, then we get wi/w

′
i > wi+1/w

′
i+1

for i = 1,2, . . . , n − 1. Assume that wi/w
′
i = βi , then wi = βiw

′
i and βi > βi+1 for i =

1,2, . . . , n − 1, which means that βi > βj for i < j . Thus, we have that

∑n
j=1 wjb

2λ
j

∑n
j=1 wjb

λ
j

−

∑n
j=1 w′

jb
2λ
j

∑n
j=1 w′

jb
λ
j

=

∑n
j=1 wjb

2λ
j ×

∑n
j=1 w′

jb
λ
j −

∑n
j=1 w′

jb
2λ
j ×

∑n
j=1 wjb

λ
j

∑n
j=1 wjb

λ
j ·
∑n

j=1 w′
jb

λ
j

=

∑n
i=1 wib

2λ
i ×

∑n
j=1 w′

jb
λ
j −

∑n
j=1 w′

jb
2λ
j ×

∑n
i=1 wib

λ
i

∑n
j=1 wjb

λ
j ·
∑n

j=1 w′
jb

λ
j

=

∑n
i=1 βiw

′
ib

2λ
i ×

∑n
j=1 w′

jb
λ
j −

∑n
j=1 w′

jb
2λ
j ×

∑n
i=1 βiw

′
ib

λ
i

∑n
j=1 wjb

λ
j ·
∑n

j=1 w′
jb

λ
j

=

∑n
i=1

∑n
j=1 βiw

′
iw

′
jb

λ
i bλ

j (bλ
i − bλ

j )
∑n

j=1 wjb
λ
j ·
∑n

j=1 w′
jb

λ
j

=

∑

i<j βiw
′
iw

′
jb

λ
i bλ

j (bλ
i − bλ

j ) +
∑

i>j βiw
′
iw

′
jb

λ
i bλ

j (bλ
i − bλ

j )
∑n

j=1 wjb
λ
j ·
∑n

j=1 w′
jb

λ
j
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=

∑

i<j βiw
′
iw

′
jb

λ
i bλ

j (bλ
i − bλ

j ) +
∑

i<j βjw
′
jw

′
ib

λ
j bλ

i (bλ
j − bλ

i )
∑n

j=1 wjb
λ
j ·
∑n

j=1 w′
jb

λ
j

=

∑

i<j w′
iw

′
jb

λ
i bλ

j (bλ
i − bλ

j )(βi − βj )
∑n

j=1 wjb
λ
j ·
∑n

j=1 w′
jb

λ
j

.

If λ > 0, as βi > βj and bλ
i − bλ

j > 0 for i < j , we get that

∑n
j=1 wjb

2λ
j

∑n
j=1 wjb

λ
j

>

∑n
j=1 w′

jb
2λ
j

∑n
j=1 w′

jb
λ
j

.

Then with λ > 0, we can obtain that

(
∑n

j=1 wjb
2λ
j

∑n
j=1 wjb

λ
j

)1/λ

>

(
∑n

j=1 w′
jb

2λ
j

∑n
j=1 w′

jb
λ
j

)1/λ

,

which implies that

GOWPAw(a1, a2, . . . , an)> GOWPAw′(a1, a2, . . . , an).

If λ < 0, as βi > βj and bλ
i − bλ

j 6 0 for i < j , we get that

∑n
j=1 wjb

2λ
j

∑n
j=1 wjb

λ
j

6

∑n
j=1 w′

jb
2λ
j

∑n
j=1 w′

jb
λ
j

.

Then with λ < 0, we can also obtain that

(
∑n

j=1 wjb
2λ
j

∑n
j=1 wjb

λ
j

)1/λ

>

(
∑n

j=1 w′
jb

2λ
j

∑n
j=1 w′

jb
λ
j

)1/λ

,

which also implies that

GOWPAw(a1, a2, . . . , an)> GOWPAw′(a1, a2, . . . , an).

If we let aj = (n − j)/(n − 1) for j = 1,2, . . . , n, we can get

ornessλ(w)> ornessλ(w
′).

The theorem is proved. �

Theorem 10 describes the relative change relations of the GOWPA operator and its
orness measure.
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5. Generalized Least Squares Method for Determining GOWPA Weights

To determine the OWA operator weights, O’Hagan suggested a maximum entropy method
(O’Hagan, 1988), which requires the solution of the following constrained nonlinear op-
timization model:

Maximize Disp(w) = −

n
∑

i=1

wi lnwi,

s.t. orness(w) = α =
1

n − 1

n
∑

i=1

(n − i)wi, 0 < α < 1,

n
∑

i=1

wi = 1, 0 6 wi 6 1, i = 1,2, . . . , n.

(40)

Wang and Parkan proposed the following model for minimizing the maximum dispar-
ity between two adjacent weights under a given level of orness (Wang and Parkan, 2005):

Minimize Max
i∈{1,2,...,n−1}

|wi − wi+1|

s.t. orness(w) = α =
1

n − 1

n
∑

i=1

(n − i)wi, 0 < α < 1,

n
∑

i=1

wi = 1, 0 6 wi 6 1, i = 1,2, . . . , n.

(41)

Considering the importance of the OWA weights, Wang, Luo and Liu constructed the
least squares deviation (LSD) model and the chi-square (χ2) model for determining the
OWA operator weights (Wang et al., 2007). The two models can be expressed as follows:

Minimize J1 =

n−1
∑

i=1

(wi − wi+1)
2

s.t. orness(w) = α =
1

n − 1

n
∑

i=1

(n − i)wi, 0 < α < 1,

n
∑

i=1

wi = 1, 0 6 wi 6 1, i = 1,2, . . . , n.

(42)

Minimize J2 =

n−1
∑

i=1

(

wi

wi+1
+

wi+1

wi

− 2

)

,

s.t. orness(w) = α =
1

n − 1

n
∑

i=1

(n − i)wi, 0 < α < 1,

n
∑

i=1

wi = 1,0 6 wi 6 1, i = 1,2, . . . , n.

(43)
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As it is explained in Wang et al. (2007), the aggregation operator weights are equally
important and all the arguments can be equally aggregated. If we take the orness constraint
into consideration, then we have

orness(w) = α =

(
∑n

j=1 wj (
n−j
n−1

)2λ

∑n
j=1 wj (

n−j
n−1

)λ

)1/λ

, 0 6 α 6 1,

which can be rewritten as

n
∑

j=1

wj (n − j)λ
[

(n − j)λ − (n − 1)αλ
]

= 0.

Thus, our model should be expressed as making all the weights be as close to each other
as possible with a given degree of orness, and we can construct the following model to
determine the GOWPA weights:

Minimize J =

n−1
∑

i=1

(

w
µ
i − w

µ
j

)2
,

s.t.
n
∑

j=1

wj (n − j)λ
[

(n − j)λ − (n − 1)αλ
]

= 0, 0 6 α 6 1,

n
∑

i=1

wi = 1, 0 6 wi 6 1, i = 1,2, . . . , n.

(44)

Where µ is a parameter.
For convenience, we refer to model (44) as the generalized least squares method

(GLSM ), which imposes the disparity of any distinct ratios of weights rather than two
adjacent weights regardless of a regular distribution. As we can see, parameter µ can be
used in some particular cases, which depends on the interests of decision-maker in the
specific problem. Note that model (44) is nonlinear and can be solved by using LINGO
software package. Note also that the GOWPA operator weights does not follow a regular
distribution which is the main advantage of the GLSM. It can be easily be shown that the
GLSM could be used in the OWA operator, the GOWA operator and other aggregation
operators.

Example 4. Suppose n = 5 and µ = 2. It is necessary to determine the GOWPA operator
weights satisfying different degrees of orness: 0,0.1, . . . ,0.9,1, which are provided by
the decision-maker. By using LINGO software package, the GOWPA operator weights
are determined in Table 3 which is also depicted in Fig. 1.

It is observed from Table 3 and Fig. 1 that w1 increases monotonically, as the orness
level, α, increases. w2, w3 and w4 first increase and then decrease as α increases. But w5

first decreases and then increases as α increases. It can be seen from Fig.1 that the weights
of the GOWPA operator are almost equal to each other with the situation where the orness
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Table 3
The GOWPA operator weights determined by the GLSM.

w orness(w) = α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w1 0 0 0 0 0 0 0.0382 0.1360 0.2760 0.4010 0.5
w2 0 0 0 0 0 0.1043 0.1776 0.1810 0.2319 0.2937 0
w3 0 0 0 0.0540 0.2646 0.2505 0.2370 0.2149 0.1744 0 0
w4 0 0 0 0.4321 0.3529 0.3128 0.2677 0.2320 0.1480 0.0435 0
w5 1 1 1 0.5139 0.3825 0.3324 0.2795 0.2361 0.1697 0.2618 0.5

Fig. 1. Variation of the generalized least squares method for determining GOWPA operator weights with orness
degree.

degree is close to 0.75, which indicates that the model to determine the GOWPA operator
weights is effective.

6. Approach for Group Decision Making Problems Based on the GOWPA

Operator

The GOWPA operator is applicable in a wide range of situations, such as decision making,
economics, statistics and engineering. In this section, we will introduce an approach for
selection of investments based on the GOWPA operator,which can be also used in strategic
decision making, selection of financial products and human resource management, etc.
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Consider a group decision making problem. Let X = {x1, x2, . . . , xm} be a discrete
set of m feasible alternatives, and C = {c1, c2, . . . , cn} be a finite set of attributes. Let
D = {d1, d2, . . . , dt } be the set of decision makers, and v = (v1, v2, . . . , vt )

T be the
weighting vector of decision makers satisfying vk ∈ [0,1] and

∑t
k=1 vk = 1 but vk is un-

known completely. Assume that each decision maker provides their own decision matrix
A(k) = (a

(k)
ij )m×n, in which a

(k)
ij is a preference value given by the decision maker dk ∈ D,

for the alternative xi ∈ X with respect to the attribute cj ∈ C. Let w = (w1,w2, . . . ,wn)
T

be the weight vector of attributes which is also unknown completely satisfying wi ∈ [0,1]

and
∑n

i=1 wi = 1.
Due to various physical dimensions corresponding to different attributes in the multi-

ple attribute decision making problem, the standardization of attributes is indispensable
in order to eliminate the variances among different attributes. For example, the profit type,
which indicates that the larger the attribute value, the better the attribute, and the cost type,
which indicates that the smaller the attribute value, the better the attribute, are different
attribute type. They should be standardized if they are taken into consideration in the at-
tribute index set. In this paper, we focus on the attribute of profit type and cost type. Let
I1 be the attribute index set of profit type and I2 be the attribute index set of cost type.
In order to measure all attributes in dimensionless units and to facilitate inter-attribute
comparisons , we can transform each decision matrix A(k) into a corresponding decision
matrix R(k) = (r

(k)
ij )m×n by the following formulas:

r
(k)
ij =

a
(k)
ij − mini a

(k)
ij

maxi a
(k)
ij − mini a

(k)
ij

, j ∈ I1, i = 1,2, . . . ,m (45)

r
(k)
ij =

maxi a
(k)
ij − a

(k)
ij

maxi a
(k)
ij − mini a

(k)
ij

, j ∈ I2, i = 1,2, . . . ,m. (46)

Note that standardization of other attribute types can be found in [38]. Then the process
to follow in the selection of investments based on the GOWPA operator can be summarized
as follows:

Step 1. Standardize each decision matrix A(k) into the matrix R(k) by Eq. (45) and
Eq. (46).

Step 2. Utilize the GLSM proposed in Section 5 to calculate the weighting vector of de-
cision makers: v = (v1, v2, . . . , vt )

T , which satisfies vk ∈ [0,1] and
∑t

k=1 vk = 1.

Step 3. Utilize the GOWPA operator

r̃ij = GOWPA
(

r
(1)
ij , r

(2)
ij , . . . , r

(t)
ij

)

, i = 1,2, . . . ,m; j = 1,2, . . . , n

to aggregate all the standardized decision matrices R(k) (k = 1,2, . . . , t) into a collective
decision matrix R̃ = (r̃ij )m×n.

Step 4. Utilize the GLSM again to calculate the weighting vector of attributes: w =

(w1,w2, . . . ,wn)
T satisfying wi ∈ [0,1] for i = 1,2, . . . , n and

∑n
i=1 wi = 1.
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Step 5. Utilize the GOWPA operator

ri = GOWPA(ri1, ri2, . . . , rin), i = 1,2, . . . ,m

to derive the collective overall preference value ri of the alternative xi .

Step 6. Rank the collective overall preference values ri (i = 1,2, . . . ,m) in descending
order.

Step 7. Rank all the alternatives xi (i = 1,2, . . . ,m) and select the best one(s) in accor-
dance with the collective overall preference values ri (i = 1,2, . . . ,m).

Step 8. End.

7. Illustrative Example

In the following, we develop a brief illustrative example of the new approach in a group
decision making problem. We study an investment selection problem where investor is
looking for an optimal investment.

Assume that an investor wants to invest his money in an company. After analyzing the
market, he considers five possible alternatives:

• x1 is a computer company.
• x2 is a car company.
• x3 is a furniture company.
• x4 is a food company.
• x5 is a chemical company.

In order to evaluate these alternatives, the investor has brought together a group of
experts. The group of company experts is constituted by four persons. After careful re-
view of the information, they summarize the ability of companies with six attributes
C = {c1, c2, c3, c4, c5, c6}:

• c1: Expected benefit.
• c2: Technical ability.
• c3: Competitive power on market.
• c4: Ability to bear risk.
• c5: Management capability.
• c6: Organizational culture.

Experts offer their own opinions regarding the results obtained with each investment,
and the results are shown in Tables 4–7.

With this information, we can use the proposed decision making method to get the
ranking of the companies. Note that in this example, we assume that λ = 1 in the GOWPA
operator and µ = 2, α = 0.8 in the GLSM. The following steps are involved:

Step 1. Standardize each decision matrices A(k) into the matrices R(k) by Eq. (45) and
Eq. (46). They are shown in Tables 8–11.
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Table 4
Decision matrix A(1) − d1 .

xi u1 u2 u3 u4 u5 u6

x1 70 80 60 70 50 90
x2 80 60 90 70 60 70
x3 50 40 80 30 80 80
x4 60 70 60 70 80 60
x5 90 80 40 70 70 80

Table 5
Decision matrix A(2) provided by d2 .

c1 c2 c3 c4 c5 c6

x1 80 30 70 70 60 70
x2 60 80 50 60 40 80
x3 70 60 80 60 70 70
x4 70 60 80 70 80 80
x5 60 70 50 60 80 70

Table 6
Decision matrix A(3) provided by d3 .

c1 c2 c3 c4 c5 c6

x1 70 80 70 70 60 80
x2 60 40 80 70 60 70
x3 70 60 60 60 40 70
x4 70 60 70 60 60 70
x5 60 50 80 50 50 80

Table 7
Decision matrix A(4) provided by d4 .

c1 c2 c3 c4 c5 c6

x1 60 70 70 50 80 60
x2 70 80 60 70 60 80
x3 40 50 90 70 60 60
x4 70 60 40 80 70 70
x5 80 70 60 60 70 50

Step 2. Utilize the GLSM to calculate the weighting vector of decision makers:

v = (0.2887,0.2530,0.2266,0.2317)T .

Step 3. Utilize the GOWPA operator

r̃ij = GOWPA
(

r
(1)
ij , r

(2)
ij , r

(3)
ij , r

(4)
ij

)

, i = 1,2,3,4,5; j = 1,2, . . . ,6
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Table 8
The standardized decision matrix R(1).

c1 c2 c3 c4 c5 c6

x1 0.7778 1.0000 0.6667 1.0000 0.6250 1.0000
x2 0.8889 0.7500 1.0000 1.0000 0.7500 0.7778
x3 0.5556 0.5000 0.8889 0.4286 1.0000 0.8889
x4 0.6667 0.8750 0.6667 1.0000 1.0000 0.6667
x5 1.0000 1.0000 0.4444 1.0000 0.8750 0.8889

Table 9
The standardized decision matrix R(2).

xi c1 c2 c3 c4 c5 c6

x1 1.0000 0.3750 0.8750 1.0000 0.7500 0.8750
x2 0.7500 1.0000 0.6250 0.8571 0.5000 1.0000
x3 0.8750 0.7500 1.0000 0.8571 0.8750 0.8750
x4 0.8750 0.7500 1.0000 1.0000 1.0000 1.0000
x5 0.7500 0.8750 0.6250 0.8571 1.0000 0.8750

Table 10
The standardized decision matrix R(3).

c1 c2 c3 c4 c5 c6

x1 1.0000 1.0000 0.8750 1.0000 0.7500 1.0000
x2 0.8571 0.5000 1.0000 1.0000 0.7500 0.8750
x3 1.0000 0.7500 0.7500 0.8571 0.5000 0.8750
x4 1.0000 0.7500 0.8750 0.8571 0.7500 0.8750
x5 0.8571 0.6250 1.0000 0.7143 1.0000 1.0000

Table 11
The standardized decision matrix R(4).

c1 c2 c3 c4 c5 c6

x1 0.7500 0.8750 0.7778 0.625 1.0000 0.7500
x2 0.8750 1.0000 0.6667 0.8750 0.7500 1.0000
x3 0.5000 0.6250 1.0000 0.8750 0.7500 0.7500
x4 0.8750 0.7500 0.4444 1.0000 0.8750 0.8750
x5 1.0000 0.8750 0.6667 0.7500 0.8750 0.625

to aggregate all the standardized decision matrices R(k) (k = 1,2,3,4) into a collective
decision matrix R̃ = (r̃ij )5×6, where

r̃11 = 0.9074, r̃12 = 0.9044, r̃13 = 0.8137, r̃14 = 0.9405,

r̃15 = 0.8182, r̃16 = 0.9253, r̃21 = 0.8469, r̃22 = 0.8787,

r̃23 = 0.8750, r̃24 = 0.9434, r̃25 = 0.7082, r̃26 = 0.9295,

r̃31 = 0.8117, r̃32 = 0.6797, r̃33 = 0.9282, r̃34 = 0.8073,

r̃35 = 0.8391, r̃36 = 0.8536, r̃41 = 0.8795, r̃42 = 0.7902,
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r̃43 = 0.8230, r̃44 = 0.9706, r̃45 = 0.9253, r̃46 = 0.8795,

r̃51 = 0.9217, r̃52 = 0.8749, r̃53 = 0.7628, r̃54 = 0.8564,

r̃55 = 0.9468, r̃56 = 0.8785.

Step 4. Utilize the GLSM again to calculate the weighting vector of attributes and we
obtain

w = (0.2552,0.2210,0.1675,0.1133,0.1067,0.1363)T .

Step 5. Utilize the GOWPA operator

ri = GOWPA(r̃i1, r̃i2, r̃i3, r̃i4, r̃i5, r̃i6), i = 1,2,3,4,5

to derive the collective overall preference value ri of the alternative xi and we get

r1 = 0.8997, r2 = 0.8859, r3 = 0.8437,

r4 = 0.8989, r5 = 0.8908.

Step 6. Rank the collective overall preference values ri (i = 1,2,3,4,5) in descending
order:

r1 > r4 > r5 > r2 > r3.

Step 7. Rank all the alternatives xi (i = 1,2,3,4,5) in accordance with the collective
overall preference values ri (i = 1,2,3,4,5):

x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3.

Therefore, the best one is x1. That is to say, the computer company is the best alternative
in this investment problem.

In order to analyze how the different values of parameter λ have affection for the ag-
gregation results ri (i = 1,2, . . . ,5), we consider the values of λ, which range from −10

to 10. The results are depicted in Fig. 2.
As we can see from Fig. 2, the collective overall preference value ri (i = 1,2, . . . ,5)

increases monotonically, as the parameter λ increases. However, the ordering of the in-
vestments is different, thus leading to different decisions.

Furthermore, we also can investigate how the different particular cases of the GOWPA
operator have affection for the aggregation results, in Step 4, we consider the maximum,
the minimum, the median GOWPA operator, the step GOWPA operator (k = 3), the
olympic GOWPA operator, the window GOWPA operator (k = 2, m = 3) and the GDM.
The results are shown in Tables 12.
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r  
Fig. 2. Collective overall preference value ri with different λ.

Table 12
Aggregated results.

Maximum Minimum Median Step Olympic Window GPM

r1 0.9405 0.8137 0.9059 0.9074 0.8907 0.9124 0.8878
r2 0.9434 0.7082 0.8769 0.8787 0.8835 0.8951 0.8705
r3 0.9282 0.6797 0.8256 0.8391 0.8284 0.8352 0.8267
r4 0.9706 0.7902 0.8795 0.8795 0.8784 0.8953 0.8821
r5 0.9468 0.7628 0.8767 0.8785 0.8835 0.8922 0.8774

Table 13
Ordering of the investments.

Ordering Ordering

Maximum x4 ≻ x5 ≻ x2 ≻ x1 ≻ x3 Minimum x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3

Nedian x1 ≻ x4 ≻ x2 ≻ x5 ≻ x3 Step x1 ≻ x4 ≻ x2 ≻ x5 ≻ x3

Olympic x1 ≻ x2 ≻ x5 ≻ x4 ≻ x3 Window x1 ≻ x4 ≻ x2 ≻ x5 ≻ x3

GPM x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3 GOWPA x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3

We can establish an ordering of the investments for each special case of the GOWPA
operator. The results are shown in Table 13. Note that “≻” means “preferred to” and “∼”
means “equivalent to”.

As we can see, depending on the particular cases of the GOWPA operator used, the
ordering of the investments is different, thus leading to different decisions. However, it
seems that x1 is the best choice for the investor as a final decision although x4 sometimes
is also the best one.
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8. Concluding Remarks

In this paper, we have presented the GOWPA operator based on the optimal problem with
a new penalty function. It can be seen as a generalization of the OWGA operator, but
the weights depend on their aggregation arguments. With the parameter in the GOWPA
operator, we have been able to generalize a wide range of the OWGA operator, including
the OWPA operator, the OWHPA operator and the OWSPA operator. We have further
generalized the GOWPA operator by adding a new parameter and thus we obtained the
generalized hybrid proportional averaging operator. The main advantage of the GOWPA
operator is that it is not only able to provide a wide range of the aggregation operators, but
also it is based on an optimal model which leads to the result that the weighting vector is
associated with the aggregation arguments.

In order to determine the GOWPA operator weights, we have proposed the orness
measure for characterizing the weighting vector of the GOWPA operator. Furthermore,
we have presented the GLSM for determining the GOWPA operator weights. We also
presented an application of the new approach to group decision making in an example of
an investment selection problem. The main advantage of generalized least squares model
is that it does not follow a regular distribution and is also applicable to different group
decision making problems effectively.

In future, we expect to develop further extensions by adding new characteristic, such
as uncertainty. We will also consider other decision making problems, such as strategic
decision making and product management.
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Apibendrintasis sutvarkytas svertinis proporcinis operatorius

ir jo taikymas grupiniams sprendimams priimti

Ligang ZHOU, Huayou CHEN

Straipsnyje pristatomas naujas agregavimo operatorius – apibendrintasis sutvarkytas svertinis pro-
porcinis vidurkis (GOWPA), kuris remiasi optimaliu modeliu su baudos funkcija. Šis operatorius
papildo sutvarkyto svertinio geometrinio vidurkio operatorių. Aptariamos, kai kurios GOWPA ope-
ratoriaus ypatybės ir atskiri atvejai, taip pat pristatomas jo apibendrinimas. Pagrindinis GOWPA
operatoriaus privalumas yra tai, kad jis paremtas teoriniais agregavimo principais, kurie atsižvelgia
į agreguojamų duomenų struktūrą ir argumentų svorius. Pasiūlytas loginio operatoriaus OR taiky-
mo laipsnio matas GOWPA operatoriui, aptartos jo savybės. Taip pat pasiūlytas apibendrintasis
mažiausių kvadratų metodas GOWPA operatoriaus svorių nustatymui atsižvelgiant į operatoriaus
OR taikymo laipsnį. Galiausiai, skaitinis pavyzdys iliustruoja naujojo metodo taikymą investicijų
valdymo srityje.


