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Abstract. New asymmetric cipher based on matrix power function is presented. Cipher belongs
to the class of recently intensively evolving non-commuting cryptography due to expectation of its
resistance to potential quantum cryptanalysis.

The algebraic structures for proposed cipher construction are defined. Security analysis was per-
formed and security parameters are defined. On the base of this research the secure parameters values
are determined. The comparison of efficiency of microprocessor realization of proposed algorithm
with different security parameters values is presented.
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1. Introduction

One of the first sources declaring non-commuting cryptography was (Sidelnikov et al.,
1993). In 200x the state of the art of this perspective field of investigation was presented
in seminal book (Myasnikov et al., 2008). In recent time non-commuting cryptographic
primitives such as McEliece PKC are considered as a perspective trend of post quantum
cryptography (McEliece, 1978). In 2007 authors published a new key agreement proto-
col based on matrix conjugator search problem in combination with matrix discrete loga-
rithm function (Sakalauskas et al., 2007). This key agreement protocol was named as STR
(Sakalauskas, Tvarijonas, Raulynaitis) and was studied in detail in several sources avail-
able on web (Ottaviani et al., 2011; Jacobs, 2011; Sracic, 2011). In 2012 it was concluded
in Myasnikov and Ushakov (2012), that this algorithm does not provide strong security
for quantum computers.

Continuing our research in non-commuting cryptographywe present here a new asym-
metric cipher based on matrix power function (MPF). MPF was previously used for
key agreement protocol (Sakalauskas et al., 2008) and asymmetric cipher construction
(Sakalauskas and Luksys, 2007; Sakalauskas and Luksys, 2012).
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We expect, that the proposed asymmetric cipher has an effective realization in re-
stricted computational environments as it was shown by Ottaviani et al. (2011) for STR
key agreement protocol.

2. Preliminaries

Let Zn = {0,1, . . . , n−1} be a finite ring of integers where the multiplication and addition
are performed modulo n. These operations are associative and commuting and we will
take it in mind below by default. It is well known, that if n is prime, then Zn is a field.
Conveniently, we denote a multiplicative group in Zn consisting of integers relatively
prime to n by Z

∗
n. We denote the order of Z

∗
n by |Z∗

n| and it’s value is determined by the
value of Euler’s totient function φ(n).

Since the group Z
∗
n is multiplicative, the powering of its elements can be defined.

Referencing to Carmichael’s theorem (Carmichael, 1912) we can see, that for any ele-
ment g ∈ Z

∗
n the power x of an element gx is in Zλ(n), i.e x ∈ Zλ(n), where λ(n) is the

Carmichael function. This function can be defined as the smallest positive integer λ, which
satisfies the identity gλ = 1 mod n for all g coprime with n. Note, that Zλ(n) is determined
by the value of n.

At first we consider a general case. Let S be some abstract multiplicative commuting
semigroup and assume, that powers of elements of S are in some commuting numerical
ring R i.e.

∀g, gx ∈ S, x ∈ R.

It is clear, that characterization of R depends on the properties of semigroup S as it
was shown in the case of Z

∗
n. Based on these facts we turn to definition of MPF as an

action of MR × MR in MS, where MR is a matrix ring and MS is a matrix semigroup
defined over R and S respectively.

We define a matrix Q = {qij } in a semigroup MS and name it as base matrix. We also
define matrices X = {xij } and Y = {yij } in a ring MR and name them as power matrices.
Hence qij ∈ S, xij , yij ∈ R. All of the defined matrices are square of order m.

Let matrix Q = {qij } powered by matrix Y = {yij } from the right be a matrix C =

{cij }, i.e.

C = QY , (1)

where elements of C are computed by the formula

cij =

m
∏

k=1

q
ykj

ik . (2)

In a similar way by powering matrix Q from the left by matrix X = {xij } we obtain a
matrix D = {dij }, i.e.

D = XQ, (3)
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where elements of D are computed by the formula

dij =

m
∏

k=1

q
xik

kj . (4)

Furthermore we can use a combination of both functions to define a two-sided matrix

power function or MPF by powering matrix Q from the left and right by matrices X

and Y respectively. Denoting the result matrix by E = {eij } we have the following MPF
definition:

E = XQY (5)

where according to (2) and (4) the elements eij are computed by the formula:



























q
x11y11

11 . . . q
x1my11

m1 q
x11y21

12 . . . q
x1my21

m2 . . . q
x1mym1
mm = e11,

q
x11y12

11 . . . q
x1my12

m1 q
x11y22

12 . . . q
x1my22

m2 . . . q
x1mym2
mm = e12,

...

q
xm1y1m

11 . . . q
xmmy1m

m1 q
xm1y2m

12 . . . q
xmmy2m

m2 . . . q
xmmymm
mm = emm.

(6)

It is clear, that the result matrices C, D and E are in MS.
Since the base matrix Q is defined in MS we name it as a platform semigroup, and

power matrices X and Y are defined in MR we name it accordingly as a power ring.
Let us now present two lemmas, which indicate important properties of MPF for cryp-

tographic protocols construction (Sakalauskas and Luksys, 2007). We denote the ordinary
matrix multiplication in MR by XY .

Lemma 1. If R is commuting numerical semiring and S is commuting semigroup, then

MPF defined by (6) is an action of MR × MR in MS satisfying the following identity

(

XQ
)Y

= X
(

QY
)

= XQY .

Lemma 2. If R is commuting numerical semiring and S is commuting semigroup, then

MPF defined by (6) is an action of MR × MR in MS satisfying the following identity

X
(

UQV
)Y

= (XU)Q(V Y ).

The construction of suggested asymmetric cipher is based on the conjecture, that MPF
is a candidate one-way function (OWF). This means, that direct MPF value (i.e. matrix E)
computation for given instances Q, X and Y in (5) is algorithmically effective while the
inverse value computation to find any X and Y for instances Q and E is infeasible. We
name the problem of finding matrices X and Y , satisfying equation (5) as MPF problem,
when Q and E are given.
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3. Asymmetric Cipher

Let the sender Bob be willing to encrypt a message M by receiver’s Alice’s public key,
which can be decrypted by Alice’s private key. According to the structure of the proposed
cipher M is a matrix of order m with entries coded in binary form. This will be explained
in example below.

Let Q be a public matrix selected from matrix semigroup MS and let Z1 and Z2 be two
public non-commuting matrices selected from matrix ring MR . The necessity of two non-
commuting matrices will be explained below. Alice randomly selects non-singular secret
matrix X in MR and computes a secret matrix U as a product of polynomials of Z1 and
Z2 i.e. U = PU (Z1) · P U (Z2), when polynomial P U () is secret and chosen at random.
Alice’s private key PrKA is a pair of matrices (X,U), i.e. PrKA = (X,U). Her public
key is a triplet of matrices A1, A2 and E, i.e. PuKA = (XZ1X

−1 = A1, XZ2X
−1 = A2,

XQU = E).
Bob takes Alice’s public key PuKA and performs a following encryption protocol:

1. Bob chooses randomly a non-singular matrix Y in MR .
2. He selects a random secret polynomial P V () and computes a secret matrix V =

P V (Z1) · P V (Z2). Then he takes matrices A1 and A2 and computes a matrix
P V (A1) · P V (A2) = XV X−1 = W .

3. He raises matrix XQU to the obtained power matrix W = XV X−1 on the left and
obtains XVQU since WX = XV .

4. He raises the result matrix to the power matrix Y on the right and obtains
XVQUY = K . The obtained matrix K is used as a key to encrypt a message M

and compute a ciphertext C.
5. Bob computes the ciphertext C = K ⊕ M , where ⊕ is bitwise sum modulo 2 of all

entries of matrices K and M .
6. Bob computes three matrices (Y−1Z1Y = B1, Y−1Z2Y = B2, VQY = F) which

we denote by encryptor ε and sends it to Alice together with C.

To decrypt Bob’s message Alice does the following:

1. Using given matrices B1 and B2 Alice computes P U (B1) · P U (B2) = Y−1UY ,
since U = P U (Z1) · PU (Z2).

2. Alice raises matrix VQY to the power Y−1UY on the right and then raises the result
matrix to the power X on the left and hence obtains a matrix XVQUY which is the
same encryption key K .

3. Alice can now decrypt a ciphertext C using encryption key K and relation

M = K ⊕ C = K ⊕ K ⊕ M.

Note, that neither of matrices used to obtain an encryption key are commuting.
To illustrate the proposed cipher we give a following example:

• Alice and Bob agree on a public group Z
∗
15 = {1,2,4,7,8,11,13,14}, i.e. the plat-

form group is defined over S = Z
∗
15. Since g4 = 1 for all g ∈ Z

∗
15, the power ring is
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defined over R = Z4. Note, that all the actions in a platform group are performed
modulo 15 and all the actions in a power ring are performed modulo 4.

• Alice and Bob agree on a public base matrix Q and two public non-commuting
power matrices Z1 and Z2. Let

Q =





2 7 13

8 2 7

13 7 8



 , Z1 =





3 3 1

3 2 2

0 0 3



 , Z2 =





3 3 0

0 1 1

3 3 3



 .

• Alice chooses her secret non-singular power matrix

X =





3 0 3

3 3 3

2 3 2



 .

• Alice computes a secret power matrix U using a polynomial PU (x) = x2 + 3x .
Hence

U = PU (Z1) · PU (Z2) =





3 1 0

2 3 0

2 0 2



 .

• Alice calculates matrix E:

E = XQU =





8 11 4

13 11 4

8 4 4



 .

• Alice calculates power matrices A1 and A2:

A1 = XZ1X
−1 =





0 3 0

0 0 1

1 0 1



 ,

A2 = XZ2X
−1 =





1 2 3

2 2 1

3 1 0



 .

• Alice has her private key PrKA = (X,U) and her public key PuKA = (A1,A2,E).

Since S = Z
∗
15 and operations in Z

∗
15 are taken modulo 15, the elements of matrix M can

be coded by 4 bits and hence M = {mij }, where mij ∈ Z16.
Let Bob be willing to encrypt a message

M =





10 8 3

13 2 12

14 2 3



 .

Bob takes Alice’s public key PuKA and performs a following encryption protocol:
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• He selects a random non-singular power matrix

Y =





0 1 3

1 2 1

3 0 2



 .

• Bob calculates power matrices V and W using a secret polynomial PV (x) = 2x2 +x .
Hence

V = PV (Z1) · PV (Z2) =





0 3 2

1 3 2

3 1 3



 ,

W = PV (A1) · PV (A2) = XV X−1 =





2 2 3

3 1 2

1 0 3



 .

• Bob calculates the key matrix

K = WEY = XVQUY =





1 2 2

1 14 14

14 1 14



 .

• Bob calculates the ciphertext

C = K ⊕ M =





11 10 1

12 12 2

0 3 13



 .

• Bob computes power matrices B1, B2 and the matrix F

B1 = Y−1Z1Y =





1 2 0

3 2 3

1 1 1



 ,

B2 = Y−1Z1Y =





0 1 0

1 2 1

2 1 1



 ,

F = V QY =





11 2 1

14 1 14

1 7 14



 .

• Bob sends ε = (B1,B2,F ) and C to Alice.

The decryption is as follows:
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• Alice computes the power matrix Y−1UY using her polynomial PU (x)

Y−1UY = PU (B1) · PU (B2) =





0 2 0

0 1 1

3 0 3



 .

• Alice computes the key matrix

K = XF Y−1UY = XVQUY =





1 2 2

1 14 14

14 1 14



 .

• Alice decrypts the message

M = C ⊕ K =





10 8 3

13 2 12

14 2 3



 .

4. Security Analysis

We will now introduce the matrix discrete logarithm function on the base of convenient
discrete logarithm function. Note, that we do not consider both ordinary and matrix dis-
crete logarithm problem (DLP) hard, since we will not use large semigroup S to define
platform semigroup MS.

Suppose, that matrix Q is defined over some cyclic group G i.e. S = G. Let the gen-
erator g of the group G be given. A discrete logarithm ldg with the base of this generator
of QY can be applied to (1) to obtain

ldgQ
Y = (ldgQ)Y = ldgC (7)

where ldgQ and ldgC mean, that the discrete logarithm is applied to all entries of matri-
ces Q and C respectively. In the same way we can apply matrix discrete logarithm function
to (3) i.e.

ldg
XQ = X(ldgQ) = ldgD. (8)

Assume, that matrix (ldgQ)−1 exists. Then by multiplying both sides of (7) by
(ldgQ)−1 we get

Y = (ldgQ)−1 · ldgC.

The same is true for (8), i.e

X = ldgD · (ldgQ)−1.
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Since we can apply matrix discrete logarithm function to (1) and (3) we can also apply it
to (5) to get

ldg
XQY = X(ldgQ)Y = XT Y = ldgE, (9)

where T = ldgQ.
The way to break the presented asymmetric cipher specification is to find matrices X

and Y , when T and ldgE are given. This problem is similar to well known NP-complete
problem, namely multivariate quadratic (MQ) problem. We name the problem defined
by (9) as matrix MQ problem (MMQ).

Let us consider the conditions under which the discrete logarithm can be applied to (5).
Let S = Z

∗
n be a non-cyclic group with n being a composite integer. According to Chi-

nese remainder theorem, the group Z
∗
n is isomorphic to the multiplicative group Z

∗
p × Z

∗
q .

Since Z
∗
p and Z

∗
q are cyclic groups, the generators of both groups can be found. The multi-

plicative group Z
∗
p ×Z

∗
q is then isomorphic to the following direct product of two additive

groups Z(p−1) × Z(q−1) with the isomorphism defined as

ϕ :
(

ga
p, gb

q

)

→ (a, b), (10)

where gp and gq are generators of Z
∗
p and Z

∗
q respectively (Clifford and Preston, 1961).

Hence the group Z
∗
n is also isomorphic to Z(p−1) × Z(q−1). We can now use an isomor-

phism ϕ from Z
∗
p ×Z

∗
q to Z(p−1) ×Z(q−1) defined by (10) to find a discrete logarithm of

the matrix Q, given that all elements qij are selected from Z
∗
n. In this case the complexity

of MPF problem is defined by the complexity of several MMQ problems. We think, that
we can make a conjecture, that if we prevent the MPF problem transformation to MMQ
problem, then the complexity of such MPF problem will be rather higher than complex-
ity of corresponding MMQ problem. The necessary conditions for this will be presented
below. These conditions depend on the algebraic structure of S.

Let us consider a multiplicative semigroup Zn = {0,1, . . . , n − 1}, where n = pq is a
composite integer and p, q are distinct odd primes with p > q . Semigroup Zn contains a
subgroup Z

∗
n of order φ(n) = (p − 1)(q − 1). Let us construct a set Z

♯
n being a union of

Z
∗
n and some ideal Idq(Zn) = {j = i ·q; i = 1, . . . , p−1} in Zn, i.e. Z∗

n ∪ Idq(Zn) = Z
♯
n.

It is easy to prove, that Z
♯
n is a semigroup under multiplication. Let S = Z

♯
n and let C1

and C2 be two cyclic subgroups of Z
∗
n having maximal order. Notice, that Idq(Zn) is also

a cyclic group of order |Idq(Zn)| = (p − 1). Hence the order of generators of Idq (Zn) is
(p − 1). We propose the elements of the base matrix Q to be chosen as generators in C1,
C2 and Idq(Zn).

In the case of cyclic subgroups C1 and C2 their orders and orders of their generators
are defined by the Carmichael function λ(n). We propose to choose C1 and C2 of maximal
orders. In the case of n = pq the Carmichael function is equal to λ(n) = lcm(p−1, q −1)

where lcm stands for least common multiple. Since λ(n) < φ(n) if gcd(p − 1, q − 1) 6= 1,
the Carmichael function defines the maximal order of cyclic subgroups C1 and C2. We
propose to use a composite integer n satisfying relation:

λ(n) = p − 1.
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In this case |C1| = |C2| = |Idq(Zn)| = λ(n) and hence the elements qij of matrix Q

are of the same order r = λ(n) and the power matrices X and Y are in the power ring MR ,
where R = Zλ(n).

We can prevent the direct application of discrete logarithm function to (13) and related
isomorphism by choosing at least one element of the matrix Q from Idq(Zn). Since Z

♯
n

is a semigroup, it has no isomorphism splitting it to the direct product of several cyclic
groups with discrete logarithm function defined. In this case the discrete logarithm of the
base matrix Q cannot be defined.

We consider the security of the presented cipher in the sense of Alice’s private key
PrKA recovery from her public key PuKA. This means, that an adversary must find ma-
trices X and U when matrices Q, Z1, Z2, A1, A2 and E are given. To break the cipher
adversary must find any matrices X̃ and Ũ satisfying equations:

X̃Z1X̃
−1 = A1, (11)

X̃Z2X̃
−1 = A2, (12)

X̃QŨ = E, (13)

such that for any matrices V = PV (Z1) ·PV (Z2) and Y ∈ MR the following identity holds

XVQUY = X̃VQŨY . (14)

Let us consider the protocol, suggested in Mihalkovich and Sakalauskas (2012). There
only one matrix (we shall denote it by Z) is used for conjugation constrain in stead of
matrices Z1 and Z2, i.e.

XZX−1 = A.

By powering both sides of Eq. (13) by Z on the right and A on the left and since
U = PU (Z) and XZ = AX, we can get the following equation:

AXQUZ = XZQZU = AEZ .

Let us denote P = ZQZ and H = AEZ , obtaining the following equation:

XPU = H. (15)

Since all elements of P and H are in Idq(Zn), which is a cyclic group generated by its
element g, the discrete logarithm of both sides of Eq. (15) can be taken, then:

X(ldgP)U = ldgH. (16)

Note, that in the last equation we did not apply a discrete logarithm to matrix Q (since it is
not possible), but nevertheless we obtained an MMQ problem to find unknown matrices X
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and U . Hence as we can see the initial MPF problem can be reduced to an MMQ problem
even if discrete logarithm of Q cannot be defined. The question is if the solution of Eq. (16)
is a way to break the cipher, i.e. if it also satisfies Eq. (13). To give an appropriate answer
to this question we must consider two cases:

• Matrix Z is invertible.
• Matrix Z is singular.

If matrix Z is invertible, then raising both sides of Eq. (15) to Z−1 on the right and to A−1

on the left we get Eq. (13). The inverse of matrix A exists, since it is similar to matrix Z.
Hence in this case the solutions of Eq. (16) also satisfy Eq. (13) and an MPF problem
can be reduced to an MMQ problem regardless of the choice of a base matrix Q and its
discrete logarithm existence.

If matrix Z is singular, then matrices Z−1 and A−1 do not exist, which makes raising
to these powers impossible. However in this case an adversary may calculate a matrix
Z̃ = aZ + bI , where I is the identity matrix and a and b are coefficients in Zλ(n). Let
matrix Z̃ be invertible for some fixed coefficients a and b. Since Z̃ commutes with Z

it also commutes with matrix U . Furthermore, it can easily be shown, that XZ̃ = ÃX,
where Ã = aA + bI . An adversary can then use matrices Ã and Z̃ to reduce Eq. (13) to
Eq. (16). Hence an MPF problem can be reduced to an MMQ problem in case of a singular
matrix Z. We name this attack as the discrete logarithm attack.

However if two non-commutingmatrices Z1 and Z2 are used, then a non-trivial matrix
(i.e. matrix not equal to bI ) commuting with U cannot be found. In this case the reduction
of Eq. (13) is not possible if matrices Z1Q and Z2Q do not have a discrete logarithm. Hence
the necessary conditions to avoid discrete logarithm attack are the following:

• The platform matrix semigroup must be defined over Z
♯
n.

• Matrices Z1 and Z2 must be non-commuting.
• Discrete logarithm of matrices Q, Z1Q and Z2Q must not be determined.

5. Security Parameters Definition and Their Secure Values Determination

The suggested protocol has two main security parameters: parameter n defining group Z
♯
n

and the matrix order m. Since we obtain commutating matrices using polynomials while
non-singular matrices X and Y can be chosen freely, then to determine main security
parameters we are making reference to the following facts:

• The number of matrices commuting with a public matrix Z1, defined over a power
ring, should be at least 280. Every commuting matrix should be obtained using poly-
nomials over R of matrix Z1. The same should be valid for Z2.

• The number of matrices conjugating with a public matrix Z1, defined over a power
ring should be at least 280. The same should be valid for Z1.

Let us consider commutation and conjugation equations in a ring Zr , where r = 2s is
the value of a Carmichael function λ(n) and s is prime. It was shown in Mihalkovich and
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Sakalauskas (2012), that these equations can be considered separately in fields Z2 and Zs .
The number of solutions of commutation and conjugation equations is equal to:

N = N2Ns,

where N2 and Ns are numbers of solutions of the corresponding equation in fields Z2

and Zs .
Let us denote Z1 = Z for short and consider the commutation equation

ZX = XZ, (17)

which is defined over the field Zs . Let us assume, that matrix Z is similar to Jordan matrix,
i.e. it can be expressed in the following canonical Jordan form

Z = K−1JZK (18)

where JZ is a Jordan matrix

JZ =











Jk1
(µ1) 0

Jk2
(µ2)

. . .

0 Jkl (µl)











(19)

µ1,µ2, . . . ,µl are distinct eigenvalues of Z, Jki (µi) are Jordan blocks

Jki (µi) =















µi 1 0

µi 1

µi
. . .

. . . 1

0 µi















(20)

of order ki and k1 + k2 + · · · + kl = m. Hence we get the following equation

K−1JZKX = XK−1JZK. (21)

We can now multiply (21) by K on the left and by K−1 on the right to get

JZKXK−1 = KXK−1JZ. (22)

Let us denote X̃ = KXK−1. Thus we get

JZX̃ = X̃JZ . (23)
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Then all matrices X̃ commuting with JZ have a following form:

X̃ =











Rk1
0

Rk2

. . .

0 Rkl











(24)

where matrices Rki have an upper regular form:

Rki =















a1 a2 · · · aki−1 aki

a1 a2 · · · aki−1

a1
. . . · · ·
. . . a2

0 a1















. (25)

We can now see from (25), that the block Rki has ki different parameters a1, . . . , aki .
Since |Zs | = s and k1 + k2 + · · · + kl = m it is clear, that there are sm different matrices
commuting with JZ . Hence by (24) and (25) we get all possible solutions of Eq. (17) by
computing X = K−1X̃K , where matrices X̃ are solutions of Eq. (23). We have proven
the following proposition:

Proposition 1. Let Z be a square matrix of order m defined over a field Zs . If Z is similar

to Jordan matrix (19), then Eq. (17) has exactly sm solutions.

Note, that not all matrices satisfying Eq. (17) have an inverse because zero value can-
not be chosen for diagonal elements. If we omit zero diagonal elements we get exactly
s(m−l)(p − 1)l invertible matrices satisfying Eq. (17).

It has been proven in Gantmacher (1966), that for matrix Z satisfying Proposition 1
every commuting matrix can be expressed as a polynomial of Z. The degree of polynomial
is equal to m since there are m linearly independent matrices commuting with Z. Since
matrices Z1 and Z2 have to be non-commuting we suggest, that these matrices should be
similar to Jordan matrices (19) with distinct orders of Jordan blocks (20).

It can now easily be shown, that the number of solutions of (17) defined over a ring
Zs is rm. Furthermore s(m−l)φl(r) of these solutions are invertible.

The conjugation equations (11) and (12) can be considered in a similar way. Each of
these equation has s(m−l)φl(r) solutions if matrices Zs = Z mod s and Z2 = Z mod 2 are
similar to Jordan matrices (19).

Keeping this in mind the choice of parameters is as follows:

1. Since the platform matrix semigroup has to be defined over a non-cyclic semigroup
Z

♯
n we choose n = 3p which yields λ(n) = p − 1 and λ(n) = 2(p − 1). We suggest

a prime number p = 2q +1, where q is also prime. This yields λ(n) = 2q . The ideal
of the group Zn is Id3(Zn) = {3i; i = 1,2, . . . ,2q} and Z

♯
n = Z

∗
n ∪ Id3(Zn). Hence

S = Z
♯
n and R = Z2q .



New Asymmetric Cipher of Non-Commuting Cryptography Class Based on MPF 295

Table 1
Comparison of key lengths and of total count of bits for data storage.

n m λ(n) Key length in bits Memory
requirements

Elementary
operationsPrivate key Public key

15 42 4 3612 14 112 32 380 12 296 844

21 33 6 3366 11 979 28 845 4670 721

33 25 10 2600 8750 24 665 1530 625

69 19 22 1900 6137 42 345 507 205

141 15 46 1440 4500 150 924 195 525

2. Since discrete logarithm of matrices Q, Z1Q and Z2Q must not exist we suggest,
that one element of matrix Q should be chosen as a generator of Id3(Zn) and all the
other elements should be chosen as generators maximal order subgroups of Z

∗
n.

3. Since we consider Eqs. (11), (12) and (17) defined over a ring Z2q and matrices Z1

and Z2 have to be non-commuting we must at least two distinct eigenvalues to con-
struct Jordan matrices JZ1

and JZ2
. According to our conjectured requirement the

number r(m−2)(q − 1)2 must be greater than or equal to 280. Since q − 1 = n−9
6

and
r = n−3

3
we get

m >

⌈

82 ln 2 + 2(ln(n − 3) − ln(n − 9))

ln(n − 3) − ln(3)

⌉

,

where ⌈ ⌉ is the ceiling function.
4. According to obtained security parameters estimates the following information

should be stored for cipher protocol realization:

• Multiplication and exponential tables to perform elementary operations with
matrices in MS.

• Addition and multiplication tables to perform elementary operations with ma-
trices in MR .

• Public matrix Q ∈ MS.
• Public non-commuting matrices Z1,Z2 ∈ MR.
• Private matrix X ∈ MR and a set of coefficients defined in R (private key).
• Public matrices XQU ∈ MS and XZ1X

−1,XZ2X
−1 ∈ MR (public key).

Since addition and multiplication of two matrix elements are commuting, it is not nec-
essary to store all elements of these tables. Hence we can store (n−3)(n−2)

2
elements for

actions in Z
♯
n and λ(n)(λ(n)+1)

2
elements for actions in Z2q . The exponential table consists

of (n− 3) ·λ(n) elements. Each matrix consists of m2 elements and each element consists
of ⌈log2 n⌉ or ⌈log2 λ(n)⌉ bits depending on a ring. Let us consider the first five suitable
values of n: 15, 21, 33, 69 and 141. The results are shown in Table 1.

We can see from Table 1, that memory requirements are the lowest if n = 33. After that
memory requirements tend to increase. However, if we consider private and public keys
lengths, we can see, that as parameter n increases, the keys tend to shorten. This means,
that parameter n must be chosen taking into consideration memory requirements.
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According to results presented in paper of Mihalkovich and Sakalauskas (2013) ac-
cepted for publication describing the algorithm presented in Mihalkovich and Sakalauskas
(2012) the encryption time is less than of other known algorithm. The computational time
estimation was performed with El-Gamal-2048 and ECC-521 encryption algorithms. Ob-
tained results showed, that proposed algorithm in the case of n = 33 operates at least
8.6 times faster than these known existing algorithms. Furthermore, experimental results
showed, that computational time tends to decrease when parameter n increases.

Note, however, that the suggested algorithm requires calculating a polynomial for ma-
trices Z1 and Z2, whereas the algorithm presented in Mihalkovich and Sakalauskas (2012)
uses only one matrix Z as an argument of a polynomial to be computed. Since most of
computational time is used on calculating polynomials, the proposed algorithm in the case
of n = 33 is 4.6 times faster than the traditional encryption algorithms mentioned above.

Concerning the effective realization of the proposed algorithm in computation re-
stricted embedded systems we can make a conclusion, that n = 69 can be recommended,
since this value provides a good compromise between the storage memory and computa-
tional time consumption.

6. Conclusions

The cryptanalysis of proposed cipher according to potential attacks is performed. Accord-
ing to this cryptanalysis the security parameters are defined. The estimation of security
parameters values is obtained. According to these estimations the set of suitable security
parameters values is presented.

Proposed cipher can be used in embedded systems having restricted computational
resources. It is shown, that security parameters values can be chosen either minimizing
the number of computation operations or minimizing program storage.

References

Carmichael, R.D. (1912). On composite numbers P which satisfy the Fermat congruence. The American Math-

ematical Monthly, 19(2), 363–385.
Clifford, A.H., Preston, G.B. (1961). The Algebraic Theory of Semigroups, Vol. I. American Mathematical So-

ciety, Rhode Island.
Gantmacher, F. (1966). The Theory of Matrices. Nauka, Moskow (in Russian).
Jacobs, K. (2011). A survey of modern mathematical cryptology. Available at:

http://trace.tennessee.edu/utk_chanhonoproj/1406.
McEliece, R.J. (1978). A Public-Key Cryptosystem Based on Algebraic Coding Theory. DSN progress report,

pp. 42-44.
Mihalkovich, A., Sakalauskas, E. (2012). Asymmetric cipher based on MPF and its security parameters eval-

uation. In: Proceedings of the Lithuanian Mathematical Society, Ser. A, Lietuvos Matematikos Rinkinys,
Vol. 53, pp. 72–77.

Mihalkovich, A., Sakalauskas, E. (2013). New asymmetric cipher based on matrix power function and its im-
plementation in microprocessors efficiency investigation. Electronics and Electrical Engineering (in press).

Myasnikov, A., Ushakov, A. (2012) Quantum algorithm for the discrete Logarithm problem for matrices over

finite Group rings. Available at: http://eprint.iacr.org/2012/574.pdf.



New Asymmetric Cipher of Non-Commuting Cryptography Class Based on MPF 297

Myasnikov, A., Shpilrain, V., Ushakov, A. (2008). Group-Based Cryptography. Birkhäuser, Switzerland.
Ottaviani, V., Zanoni, A., Regoli, M. (2011). Conjugation as public key agreement protocol in mobile cryptog-

raphy. Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
5741660&isnumber=5741585.

Sakalauskas, E., Luksys, K. (2007) Matrix power s-box construction. Available at:
http://eprint.iacr.org/2007/214.pdf.

Sakalauskas, E., Luksys, K. (2012) Matrix power function and its application to block cipher s-box construction.
International Journal of Innovative Computing, 8(4), 2655–2664.

Sakalauskas, E., Tvarijonas, P., Raulynaitis, A. (2007) Key agreement protocol (KAP) using conjugacy and
discrete logarithm problems in group representation level. Informatica, 18, 115–124.

Sakalauskas, E., Listopadskis, N., Tvarijonas, P. (2008). Key agreement protocol (KAP) based on matrix power
function. Advanced Studies in Software and Knowledge Engineering, ITHEA, 4(2), 92–96.

Sidelnikov, V., Cherepnev, M., Yaschenko, V. (1993). Systems of open distribution of keys on the basis of non-
commutative semigroups. In: Doklady Mathematics, Russian Academy of Sciences, 48(2), 384–386.

Sracic, M. (2011). Quantum circuits for matrix multiplication. Available at:
http://www.math.ksu.edu/reu/sumar/Quantum Algorithms.pdf.

E. Sakalauskas received PhD degree from Kaunas Polytechnical Institute in 1983. Cur-
rently he is a professor in Department of Applied Mathematics in Kaunas University of
Technology. The scope of scientific interests is system theory, identification and cryptog-
raphy. Over 50 papers were published in these fields.

In recent time his research interests are focused in cryptography. Some results were
obtained in the following fields: one way functions construction based on the hard prob-
lems in non-commutative algebraic structures. Using this approach two new candidate
one-way functions were proposed. Two such functions were proposed: one based on ma-
trix discrete logarithm problem together with conjugation problem and other on matrix
power function. On this base several original cryptographic protocols were proposed. The
main trend of investigations is concentrated on post-quantum cryptographic systems con-
struction potentially being resistant to quantum cryptanalysis. The main research results
in cryptography were published in 17 papers.

A. Mihalkovich is a research assistant at Applied Mathematics Department of Kaunas
University of Technology. The main research interest is connected with non-commutative
cryptography.



298 E. Sakalauskas, A. Mihalkovich

Naujas asimetrinio šifravimo algoritmas paremtas MLF, priklausantis

nekomutatyviosios kriptografijos rūšiai

Eligijus SAKALAUSKAS, Aleksėjus MICHALKOVIČ

Straipsnyje pateikiamas naujas asimetrinio šifravimo algoritmas, paremtas matricinio laipsnio funk-
cija (MLF). Šifras priklauso besivystančiai nekomutatyviosios kriptografijos rūšiai. Tikimasi, kad
šis algoritmas yra atsparus patencialiai kvantinei kriptoanalizei.

Straipsnyje apibrėžiamos algebrinės struktūros, naudojamos šifravimo algoritmui konstruoti.
Atlikta saugumo analizė bei apibrėžti saugumo parametrai. Remiantis šiais tyrimais, nustatytos
saugios parametrų reikšmės. Pateikamas pasiūlyto algoritmo su skirtingomis saugumo parametrų
reikšmėmis realizavimo mikroprocesoriuose efektyvumo palyginimas.


