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Abstract. Nowadays data mining algorithms are successfully applying to analyze the real data in our
life to provide useful suggestion. Since some available real data is multi-valued and multi-labeled,
researchers have focused their attention on developing approaches to mine multi-valued and multi-
labeled data in recent years. Unfortunately, there are no algorithms can discretize multi-valued and
multi-labeled data to improve the performance of data mining. In this paper, we proposed a novel
approach to solve this problem. Our approach is based on a statistical-based discretization metric
and the simulated annealing search algorithm. Experimental results show that our approach can
effectively improve the performance of the-state-of-art multi-valued and multi-labeled classification
algorithm.
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1. Introduction

Due to the wide availability of huge amounts of data and the imminent need for turning
such data into useful information and knowledge, Data mining (Han and Kamber, 2011)
has become a hot research topic in recent years. Many mining algorithms have been pro-
posed to automatically extract rules representing knowledge implicitly stored in massive
information repositories (Gómez et al., 2006; Zadrożny, S., Kacprzyk, 2006). Since some
available real data is multi-valued and multi-labeled, researchers have focused their atten-
tion on developing methods to mine the multi-valued and multi-labeled data (Ahmad and
Brown, 2009; Carmona-Cejudo et al., 2011; Chen et al., 2010, 2003; Chou and Hsu, 2005;
Guo and Schuurmans, 2011; Liu et al., 2010; Yang et al., 2009; Yu et al., 2011;
Zhang et al., 2009).

Multi-valued data means a record can have multiple values for one attribute, and multi-
labeled data means a record can belong to multiple class labels. For example, people
nowadays rely on cell phones more and more. Recently researchers analyze users’ records
including ages, jobs, brands of cell phones, keystroke data, and so on to improve the secu-
rity of authenticating identification on cell phones (Tsai et al., 2013; Chang et al., 2012;
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Tsai et al., 2012). By analyzing the users’ records with regard to cell phones, we would
find that some users have v cellular phone(s) (v-values) and l job(s) (l-labels). Another
common example is that a transaction may contain more than two brands of beers. If we
want to mine the students’ records, we can also find that many attributes such as hobby,
favorite subject, and so on are multi-valued.

Mining multi-valued and multi-labeled data is more difficult than mining the tra-
ditional single-valued and single-labeled data since the obtained data is much more
complicated. Besides, the multi-valued and multi-labeled data would reduce the effi-
ciency of data mining algorithms. Discretization (Cormen et al., 2009; Geiser, 2009;
Lee et al., 2007; Mizianty et al., 2010; Yang et al., 2010; Zhou and Yazici, 2011),
a technique to reduce the number of values for a given continuous attribute by divid-
ing the range of the attribute into a finite set of adjacent interval, is an important data
preprocessing technique for data mining algorithms which are highly sensitive to the
size of data or are only able to handle categorical attributes (Cios and Kurgan, 2004;
Clark and Niblett, 1989). Empirical evaluations show that the discretization technique
has the potential to speed up the learning process while retaining or even improving
predictive accuracy of learning algorithms (Liu et al., 2002). Over the years, many dis-
cretization algorithms have been proposed. More detailed discussions about the pro-
posed discretization algorithms are presented in Section 2. However, these proposed
discretization algorithms can discretize only the single-valued and single-labeled data.
While there are proposed multi-valued and multi-labeled classifiers (Chen et al., 2003;
Chou and Hsu, 2005), there are no discretization algorithms which can discretize a multi-
valued and multi-labeled dataset.

In this paper, we propose a novel approach named MMD (Multi-valued and Multi-
labeled Discretization algorithm) to improve the performance of classifying multi-valued
and multi-labeled data. MMD splits v-valued and l-labeled records into v single-valued
ones and modifies the counts of class labels to maintain the original data distribu-
tion. Then, a splitting metric, which is based on the statistical contingency coefficient
(Tsai et al., 2008), and the simulated annealing search approach are used by MMD
to generate discretization schemes. MMD is simple but novel. Note that, the problem
we address in this paper is different from the multivariate discretization (Bay, 2000;
Chao and Li, 2005; Elomaa et al., 2006; Ferrandiz and Boullé, 2005; Song et al., 2011),
which considers the interdependent relationship between attributes to discretize continu-
ous attributes.

The rest of the paper is organized as follows. Section 2 is the literature reviews. Our
approach is then introduced in Section 3. The experimental analysis is presented in Sec-
tion 4. Finally, Section 5 concludes this paper.

2. Literature Review

The literature on discretization is vast. Liu et al. (2002) stated that discretization ap-
proaches have been proposed along five lines: supervised versus unsupervised, static ver-
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sus dynamic, global versus local, splitting versus merging, and direct versus incremen-
tal. Supervised methods discretize attributes with the consideration of class information,
while unsupervised methods do not (Dougherty et al., 1995; Ferreira and Figueiredo,
2011; Jiang and Yu, 2009; Zeng et al., 2011). Dynamic methods (Wu et al., 2006) dis-
cretize continuous attributes when a classifier is being built while in static methods dis-
cretization is completed prior to the learning task. Global methods (Zeng et al., 2011),
which use total records to generate the discretization scheme, are usually associated with
static methods. On the contrary, local methods are usually associated with dynamic ap-
proaches in which only parts of records are used for discretization. Merging methods start
with the complete list of all continuous values of the attribute as cut-points and remove
some of them by merging intervals in each step while splitting methods start with an empty
list of cut-points and add new ones in each step. Therefore, the computational complex-
ity of merging methods is usually larger than splitting ones. Direct methods require users
to decide on the number of intervals k and then discretize the continuous attributes into
k intervals simultaneously. On the other hand, incremental methods begin with a simple
discretization scheme and pass through a refinement process although some of them may
require a stopping criterion to terminate the discretization. Take two simplest discretiza-
tion algorithms Equal Width and Equal Frequency (Chiu et al., 1991) as examples, both
of them are unsupervised, static, global, splitting and direct method. In the follows, we re-
view some typical and famous discretization algorithms by following the line of splitting
versus merging.

Famous splitting methods include Equal Width and Equal Frequency (Chiu et al.,
1991), maximum entropy (Wong and Chiu, 1987), CADD (Class-Attribute Dependent
Discretizer algorithm) (Ching et al., 1995), IEM (Information Entropy Maximization)
(Fayyad and Irani, 1993), CAIM (Class-attribute Interdependence Maximization) (Kur-
gan and Cios, 2004), FCAIM (Fast Class-attribute Interdependence Maximization) (Kur-
gan and Cios, 2003), and CACC (Class-Attribute Contingency Coefficient) (Tsai et al.,
2008). Experiments in Tsai et al. (2008) showed that CACC discretization algorithm is
superior to the other splitting discretization algorithms.

A common characteristic of the merging methods is in the use of the significant test
to check if two adjacent intervals should be merged. ChiMerge (Kerber, 1992) is the most
typical merging algorithm. In addition to the problem of high computational complexity,
the other main drawback of ChiMerge is that users have to provide several parameters
during the application of this algorithm that include the significance level as well as the
maximal and minimal intervals. Hence, Chi2 (Liu and Setiono, 1997) was proposed based
on the ChiMerge. Chi2 improved ChiMerge by automatically calculating the value of the
significance level. However, Chi2 still requires the users to provide an inconsistency rate
to stop the merging procedure and does not consider the freedom which would have an
important impact on discretization schemes. Thereafter, Modified Chi2 (Tay and Shen,
2002) takes the freedom into account and replaces the inconsistency checking in Chi2 by
the quality of approximation after each step of discretization. Such a mechanism makes
Modified Chi2 a completely automated method to attain a better predictive accuracy than
Chi2. After Modified Chi2, Extended Chi2 (Su and Hsu, 2005) considers that the labels
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Table 1
A simple example.

User Cellular phone(s) Class label(s)

ID1 {HTC, Iphone} {Student, Officer}
ID2 {BlackBerry, Nokia} {Teacher}
ID3 {Samsumg} {Student}
ID4 {HTC, Samsumg, Iphone} {Officer}
ID5 {BlackBerry, HTC} {Policeman}
ID6 {HTC, Iphone} {Student, Waiter}
ID7 {Iphone} {Teacher}
ID8 {HTC, Nokia} {Policeman}

of instances often overlap in the real world. Extended Chi2 determines the predefined
misclassification rate from the data itself and considers the effect of variance in two adja-
cent intervals. With these modifications, Extended Chi2 can handle an uncertain dataset.
Experiments on these merging approaches by using C5.0 show that the Extended Chi2 out-
performed the other bottom-up discretization algorithms since its discretization scheme,
on the average, can reach the highest accuracy (Su and Hsu, 2005).

In a multi-valued and multi-labeled dataset, records may have different number of
values v and different number of labels l. For example, a user may have more than one
cellular phone, more than one car, and more than one occupation. A transaction may con-
tain more than two brands of beers. Multi-valued and Multi-labeled Classifier (MMC)
(Chen et al., 2003) and Multi-valued and Multi-labeled Decision Tree classifier (MMDT)
(Chou and Hsu, 2005) are two typical algorithms to mine a multi-valued and multi-labeled
dataset. Both of MMC and MMDT are decision tree-based approaches and MMDT is the
extension of MMC. MMDT refines the measurement of the goodness of a splitting at-
tribute proposed in MMC to improve the classification accuracy. Unfortunately, all pro-
posed discretization algorithms discussed above are infeasible to discretize multi-valued
and multi-labeled datasets. Table 1 is a simple example of a multi-valued and multi-labeled
dataset.

3. Multi-Valued and Multi-Labeled Discretization Algorithm

In this section, MMD (Multi-valued and Multi-labeled Discretization algorithm) is pro-
posed to discretize multi-valued and multi-labeled datasets. Before we formally introduce
our solution, it is worth to mention that MMD is a supervised, static, splitting, global and
incremental discretization algorithm for three reasons. First of all, supervised discretiza-
tion algorithms are expected to lead to better performance as compared to unsupervised
ones since they take the class information into account. Secondly, a dataset discretized
by a static discretization algorithm can be used in any classification algorithms that deal
with discrete attributes. Finally, the computational complexity of merging methods is usu-
ally worse than the splitting ones. For example, the time complexity for discretizing a
single attribute in the state-of-the-art merging method Extended Chi2 is O(km logm)
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Table 2
The single-valued and multi-labeled dataset obtained from Table 1.

User Cellular phone(s) Class label(s)

ID 11 {HTC} {1/2 Student, 1/2 Officer}
ID 12 {Iphone} {1/2 Student, 1/2 Officer}
ID 21 {BlackBeery} {1/2 Teacher}
ID 22 {Nokia} {1/2 Teacher}
ID 3 {Samsumg} {Student}
ID 41 {HTC} {1/3 Officier }
ID 42 {Samsumg} {1/3 Officier }
ID 43 {Iphnoe} {1/3 Officier }
ID 51 {Blackbeery} {1/2 Policeman}
ID 52 {HTC} {1/2 Policeman}
ID 61 {HTC} {1/2 Student, 1/2 Waiter}
ID 62 {Iphone} {1/2 Student, 1/2 Waiter}
ID 7 {Iphone} {Teacher}
ID 81 {HTC} {1/2 Policeman}
ID 82 {Nokia} {1/2 Policeman}

(Tay and Shen, 2002) while that of the state-of-the-art top-down methods CAIM (Kur-
gan and Cios, 2004), FCAIM (Kurgan and Cios, 2003), and CACC (Tsai et al., 2008) is
O(m logm), where m is the number of distinct values of the discretized attribute and k is
the number of incremental steps. This condition will get worse when the difference be-
tween the number of values in a continuous attribute and the number of produced intervals
is large.

3.1. Splitting Multi-Valued and Multi-Labeled Records

In order to discretize a multi-valued and multi-labeled dataset, MMD first splits the v-
valued and l-labeled records into single-valued and l-labeled ones. In order to maintain
the data distribution, the counts of class labels belong to each record Ri are modified as
1/v, where v is the number of attribute values in record Ri . Take Table 1 as the example
again, the splitting result is illustrated in Table 2. Obviously, even after the splitting step,
the total number of each class label is identical to that in the original data and therefore
the data distribution is maintained.

3.2. Discretization Metric and Termination Rule

With above-mentioned splitting procedure, we can easily extend the traditional splitting
discretization technique to discretize multi-valued and multi-labeled datasets. CAIM and
FCAIM are the famous discretization algorithms since empirical evaluations show that
their discretization schemes can generally maintain the highest interdependence between
target class and discretized attributes, result to the least number of generated rules, and at-
tain the highest classification accuracy (Kurgan and Cios, 2003, 2004). However, both
CAIM and FCAIM have two drawbacks. First of all, CAIM and FCAIM give a high
factor to the number of generated intervals when they discretize a continuous attribute.
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Table 3
The quanta matrix.
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Thus, CAIM and FCAIM usually generate a simple discretization scheme in which the
number of intervals is very close to the number of class labels. Secondly, given the two-
dimensional quanta matrix in Table 3, where nir denotes number of records belonging
to the ith class label that are within interval (vr−1, vr ], L is total number of class la-
bels, Ni+ is number of records belonging to the ith class, N+r is number of records
that are within interval (vr−1, vr ] and I is number of intervals, the discretization met-
ric used in CAIM and FCAIM is (

∑

(max2
r /N+r ))/I , where maxr is the maximum

value among all nir values. Obviously, this discretization metric considers only major
labels and ignores all the other labels. Such a consideration ignores the true data dis-
tribution and would decrease the quality of the produced discretization scheme in some
cases.

In order to generator more reasonable discretization scheme, the discretization metric
used in MMD is

C′ =

{

1 +

[(( L
∑

i=1

I
∑

r=1

n2
ir

Ni+N+r

)

− 1

)

/

log(I)

]}1/2

. (1)

This metric is inspired by the statistical contingency coefficient (Tsai et al., 2008), which
has been theoretically proven that it is a good metric to measure the strength of dependence
between variables. Compared to the metric used in CAIM, an obvious advantage of Eq. (1)
is that it indeed considers the label distribution of all records. However we do not directly
use contingency coefficient but instead, we modify it by adding log(I) in denominator.
This modification is motivated by two reasons: (1) speed up the discretization process;
(2) a discretization scheme containing too many intervals could suffer from an overfitting
problem.

It is worth to note that CAIM, FCAIM and CACC all adopt a greedy strategy (Cormen
et al., 2009) to terminate the discretization process. The basic idea of the greedy strategy
is to make a locally optimal choice at each step with the hope of finding a global optimal
solution. As a result, CAIM, FCAIM and CACC stop further discretization when a new
cut-point cannot reach a better value measured by their discretization metrics. However,
the greedy strategy generally tends to get locally optimal solutions. Simulated annealing
(Kirkatrick et al., 1983) is an approach for the global optimization problem. The steps in
a simulated annealing approach are not strictly required to produce improved solutions,
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but each step has a certain probability of leading to improvement. As simulated anneal-
ing approaches progress, the tolerance for solutions worse than the current one decreases.
Equation (2), which is inspired by the Boltzmann distribution from statistics, is the prob-
abilistic acceptance function of a standard simulated annealing algorithm, where E() is
a function used to measure the quality of a solution, i denotes the solution in the cur-
rent step, j denotes the preceding solution, P() denotes the probability, and c is a control
parameter analogous to temperature in a physical system.

P(i → j) =

{

1 if E(j)6 E(i)

e(E(i)−E(j)/c) if E(j) > E(i)

}

. (2)

To reduce the probability of sticking on a local optimization, MMD uses the idea of
simulated annealing. MMD regards its discretization metric in Eq. (1) as E() and fixes the
control parameter c as 1. The reason of fixing the control parameter c is for maintaining the
low computational cost of a typical top-down discretization algorithm. Therefore, even if
a new cut-point cannot reach a better C′ value measured by Eq. (1), MMD would proceed
the discretization with probability e1C ′

, where 1C′ is the difference between the C′ value
belongs to the new cut-point and the C′ value belongs to the cut-point generated in the
preceding step.

3.3. The Algorithm and Its Computational Complexity

Below is the pseudocode of MMD. Given a multi-valued and multi-labeled dataset D,
MMD splits v-valued and l-labeled records into v single-valued and l-labeled records
and maintains the original data distribution in Line 1 to Line 3. Line 5 to Line 12
is responsible for some initial setups for each continuous attribute. Then MMD iter-
atively partition a continuous attribute from Line 13 to Line 31. Line 13 to Line 25
means that the discretization process goes to next loop if a cut-point reaches better
C′ value in Eq. (1). Please note that in Line 18, the condition I < L is inspired by
CAIM that a reasonable discretization scheme should contain intervals whose number
is more than or equal to the number of class labels. Finally, MMD uses the idea of sim-
ulated annealing approach in Line 27 to Line 31 to decide if terminating the discretiza-
tion.

Here, we estimate the computational complexity of MMD for discretizing a continuous
attribute. The computational complexity of the splitting step in Line 1 to Line 3 is O(N),
where N is the number of records in D. The computational complexity of sort in Line
5 is O(N logN) and the initial setups in Line 6 to Line 12 are all finished in O(1). The
computational complexity of the iterative partition from Line 13 to Line 25 is O(N · L3),
where L is the number of class labels. As claimed in CAIM, since the number of class
labels in most real data is a small constant, the expected computational complexity of
MMD is O(N logN), which is identical to that of CAIM and CACC.
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MMD Algorithm

Dataset: a multi-valued and multi-labeled dataset;
Scheme: a multi-valued and multi-labeled discretization scheme;
i: the number of continuous attributes in D;
L: the number of class labels in D;
I : the number of intervals;
MMDcp: a possible cut-point;
MMDC[]: the set of possible cut-points which are the midpoints of adjacent values

belonging to different class labels in a continuous attribute;

MMD (Dataset)
1. For each v-valued and l-labeled record
2. Split this record into v single-valued and l-labeled records;
3. Set the count of each label belonging to this record as 1/v;
4. For each continuous attribute Ai

5. Sort Ai in ascending order;
6. Get the minimum value v0 and the maximum value vn;
7. Get MMDC[];
8. Scheme = {[v0, vn]};
9. C′ = 0; /* the C′ of initial discretization scheme {[v0, vn]} is 0
10. I = 1;
11. Scheme_temp = {φ};
12. Itemp = 0

13. For each possible cut-point MMDcp in MMDC[]
14. Add it into Scheme;
15. Calculate the corresponding C′ value in Eq. (1);
16. Get the cut-point MMDcp whose C′ value is the maximum and set its

C′value as maxC′;
17. 1C′ = maxC′ − C′

18. If 1C′ > 0 or I < L then
19. Remove MMDcp from MMDC[];
20. Add MMDcp and the cut-point(s) in Scheme_temp into Scheme;
21. C′ = maxC′;
22. I = I + Itemp + 1;
23. Scheme_temp = {φ};
24. Itemp = 0;
25. Goto Line 13;
26. Else
27. Remove MMDcp from MMDC[];
28. Add MMDcp into Scheme_temp;
29. Itemp = Itemp + 1

30. Goto Line 13 with probability e1C ′
;

31. End If
32. Output Scheme for continuous attribute Ai .
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4. Experiments and Discussion

In this section, we evaluate the performance of MMD. In our knowledge, MMDT (Multi-
valued and Multi-labeled Decision Tree classifier) (Chou and Hsu, 2005) is the represen-
tative algorithm to classify multi-valued and multi-labeled data. Therefore, we implement
MMDT and our approaches in Microsoft Visual C++ 6.0 for performance analysis. All
evaluations were done on a PC equipped with Windows XP operating system, Pentium IV
1.8 GHz CPU, and 512 mb DDR memory.

We evaluate if the discretization datasets generated by MMD can improve the perfor-
mance of MMDT. The improvement is measured in two aspects through before/after dis-
cretization comparison: accuracy and the number of rules (i.e. the learning time). MMDT
propose two measuring strategies named appearance basis and similarity basis to mea-
sure of the goodness of a splitting attribute. However, as reported in MMDT, appearance
basis strategy on average reaches better accuracy and produces fewer rules. In our exper-
iment, we use MMDT with appearance basis strategy as the baseline. It is worthy to note
that as claimed in MMDT, a prediction has accuracy 0 or 1 in traditional classification
problems. For multi-labeled classification problems, it is not fair to assign accuracy 1 or
0 to a prediction if this prediction is similar but not totally the same or different to the true
answer. Therefore, we follow MMDT to use the similarity function as follows to calculate
the accuracy.

similarity(Li,Lj ) =
{[

same(Li,Lj )/card(Li,Lj )
]

−
[

diff(Li,Lj )/card(Li ,Lj )
]

+ 1
}

/2, (3)

where Li and Lj denotes two two label-sets, same(Li ,Lj ) is the number of labels that
appear in both Li and Lj , diff(Li ,Lj ) denotes the number of labels that appear either in
Li or Lj but not both, and card(Li ,Lj ) is the number of different labels that appear in
Li or Lj .

Due to the lack of a public benchmark containing multi-valued and multi-labeled
datasets, the authors of MMDT develop a synthetic data generator to generate experimen-
tal datasets. This data generator is a modified version of IBM data generator, which was
developed by the IBM Almaden Research Center to produce single-value and single-label
experimental datasets. IBM data generator (Agrawal et al., 1993) has been widely used to
evaluate the performance of proposed algorithms in the literature of machine learning. In
our experiments in this section, the same synthetic data generator developed in MMDT
is used (Chou and Hsu, 2005). The synthetic data consists of nine attributes as shown in
Table 4. Among the nine attributes, attributes ‘car’, ‘hobby’, and ‘occupation’ are multi-
valued attributes; attributes ‘gender’, ‘car’, ‘hobby’, ‘elevel’, ‘occupation’, and ‘mstatus’
are categorical attributes; and attributes ‘salary’, ‘age’, and ‘hvalue’ are continuous at-
tributes. The class labels of records are assigned by five functions defined in MMDT. The
details of the five functions are shown as follows.

– Function 1: If [(gender = 1) ∧ (20,000 6 salary 6 100,000)∧ (car ∈ [1 . . .10])] ∨

[(gender = 2)∧(100,000 6 salary 6 150,000)∧(car ∈ [11 . . .20])]∨[occupation ∈

[1,6]] then class label = “A”.
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Table 4
The summary of nine attributes in the synthetic data used by MMDT.

Attribute Type Number of values Value domain

Salary Continuous 1 $20,000 to 150,000
H-value Continuous 1 $50,000 to 150,000
Age Continuous 1 20 to 80
E-level Categorical 1 1 to 5
M-status Categorical 1 1 to 3
Gender Categorical 1 1 to 2
Car Categorical 1 to 3 1 to 20
Hobby Categorical 1 to 5 1 to 20
Occupation Categorical 1 to 2 1 to 10

– Function 2: If [(40 6 age < 60) ∧ (car ∈ [11 . . .15])] ∨ [(age < 40) ∧ (car ∈

[1 . . .10])] ∨ [occupation ∈ [2]] then class label = “B”.
– Function 3: If [(m-status = 1)∧(20,000 6 salary 6 100,000)∧(hobby ∈ [1 . . .9]∧

car = 10)] ∨ [(m-status ∈ [2,3]) ∧ (100,000 6 salary 6 150,000) ∧ (hobby ∈

[11 . . .19] ∨ car = 20)] ∨ [occupation ∈ [3 . . .5]] then class label = “C”.
– Function 4: If [(m-status = 1) ∧ (20,000 6 salary 6 40,000)] ∨ [m-status = 2 ∧

(40,000 < salary 6 80,000)] ∨ [occupation ∈ [7 . . .8]] then class label = “D”.
– Function 5: If [(elevel = 5) ∧ (hobby ∈ [10 . . .20]) ∧ (m-status ∈ [2 . . .3])] ∨

[(elevel = 1)∧ (hobby ∈ [1 . . .9])∧ (m-status = 1)] ∨ [occupation ∈ [9 . . .10]] then
class label = “E”.

In our experiments, we generate experimental records by first using the modified IBM
data generator. Then we apply the five classification rules mentioned above to determine
the class label(s) of our experimental records. If a record meets any of these five functions,
this record will be assigned with the corresponding class label. The possible number of
class labels of a record is from one to five. In other words, there are 31 kinds of possible
class labels for a generated record. The 31 possible class labels are {A}, {B}, {C}, {D},
{E}, {A, B}, {A, C}, {A, D}, {A, E}, {B, C}, {A, B, C}, {A, B, D}, {A, B, E}, {A, C, D},
{A, C, E}, {A, D, E}, {B, C, D}, {B, C, E}, {B, D, E}, {C, D, E}, {A, B, C, D}, {A, B, C,
E}, {A, B, D, E}, {A, C, D, E}, {B, C, D, E}, and {A, B, C, D, E}. For example, suppose
that a record is represented in the form of {salary, h-value, age, e-level, m-status, gender,
car, hobby, occupation}, the class labels of a record {50 000,60 000,30,3,1,1,3,5,6} is
{A, B, C}. Similarly, the class label of a record {40 000,80 000,70,3,3,2,6,2,8} is {D}.

MMDT uses five parameters nr, minsup, mindiff, minqty, and us to examine the perfor-
mance of MMDT. Among the five parameters, nr denotes the number of training records;
and minsup, mindiff, and minqty are pre-defined thresholds to terminate the construction
of MMDT. Since the MMDT’s similarity function, which is used to select the best splitting
attribute, requires continuous attributes to be partitioned into several intervals, Parameter
ub is used to define the upper bound on the number of intervals of continuous attributes.
The default values of these five parameters are: nr = 6000, minsup = 50%, mindiff = 15%,
minqty = 6, and us = 6. With four of these five parameters fixed, evaluations of MMDT
are carried out. In our experiments, we follow most experimental setups in MMDT but
have some modifications.
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Figure 1. The distribution of the 31 possible class labels in our five experimental datasets Fig. 1. The distribution of the 31 possible class labels in our five experimental datasets.
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Fig. 2. The average percentages of the numbers of class labels in our experimental datasets.

1. We fix the parameter ub since the partition of continuous attributes is done by our
MMD.

2. We replace the experiment using mindiff = 5% with the one using mindiff = 30%.
The reason is that the report in MMDT shows that the decision tree with mindiff =

5% has only one rules. Such a result means that this experiment is un-meaningful
since there is only the root node in the produced decision tree.

3. All experiments in MMDT use a fixed number of 5000 testing records. To obtain
more objective experimental results, we regard nr + 5000 as the total number of
records and then the 10-fold cross-validation test method was applied. In other
words, records are divided into ten parts of which nine parts were used as train-
ing sets and the remaining one as the testing set.

For our MMD, the discretization was done using the training sets and the testing sets
were discretized using the generated discretization scheme. Since data mining methods
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Table 5
The comparisons of accuracy and number of rules of MMDT before/after using MMD.

Para-
meter

Value The 95% confidence intervals
of average accuracy (%)

Improve-
ment

The 95% confidence intervals
of average number of rules

Improve-
ment

MMDT MMD MMDT MMD

nr 2000 62.1 ± 4.1 66.6 ± 5.0 7.2% 208 ± 7.9 182 ± 10.6 12.5%
4000 65.3 ± 3.9 68.1 ± 4.0 4.3% 228 ± 11.1 184 ± 13.7 19.3%
6000 66.3 ± 3.5 68.8 ± 5.4 3.8% 167 ± 9.5 136 ± 9.8 18.6%
8000 64.2 ± 3.7 67.3 ± 4.5 4.8% 232 ± 11.7 198 ± 13.6 14.7%
10000 64.4 ± 2.7 67 ± 3.8 4.0% 354 ± 19.4 309 ± 12.7 12.7%

minsup 40% 63.6 ± 3.1 66.9 ± 5.0 5.2% 643 ± 12.6 584 ± 17.6 9.2%
45% 64.8 ± 3.2 67.8 ± 4.9 4.6% 638 ± 15.2 508 ± 11.4 20.4%
50% 66.3 ± 2.1 68.8 ± 4.7 3.8% 167 ± 10.1 136 ± 8.6 18.6%
55% 66.6 ± 2.4 68.8 ± 4.7 3.3% 16 ± 3.7 12 ± 3.3 25.0%
60% 66.4 ± 3.3 68.8 ± 3.8 3.6% 12 ± 3.1 10 ± 2.4 16.7%

mindiff 10% 60.7 ± 5.2 64.1 ± 3.0 5.6% 48 ± 6.6 41 ± 8.2 14.6%
15% 66.3 ± 3.3 68.8 ± 4.7 3.8% 167 ± 10.9 136 ± 13.7 18.6%
20% 67.8 ± 3.6 70.4 ± 2.6 3.8% 281 ± 14.9 249 ± 13.4 11.4%
25% 65.4 ± 3.6 69.4 ± 4.7 6.1% 472 ± 17.1 414 ± 16.5 12.3%
30% 64.3 ± 3.2 66.3 ± 4.8 3.1% 488 ± 13.2 434 ± 18.1 11.1%

minqty 2 63 ± 3.0 64.1 ± 3.5 1.7% 176 ± 10.1 142 ± 13.5 19.3%
4 64.4 ± 2.9 66.8 ± 2.8 3.7% 169 ± 10.7 138 ± 12.4 18.3%
6 66.3 ± 3.3 68.8 ± 2.9 3.8% 167 ± 10.6 136 ± 12.5 18.6%
8 63.2 ± 3.0 65.2 ± 4.1 3.2% 150 ± 6.9 120 ± 8.5 20.0%
10 63.9 ± 2.6 65.1 ± 4.4 1.9% 148 ± 7.9 116 ± 7.1 21.6%

Average 64.8 67.4 4.0% 247 209 15.4%

depend strongly on the structure of the experimental data, here we give some basic sta-
tistical analysis of our experimental data to make readers understand our experiments
more clearly. In our five experimental datasets, the total numbers of generated records
are 7000, 9000, 11 000, 13 000, and 15 000 respectively. Figure 1 illustrates the average
distribution of the 31 possible class labels in our five experimental datasets. Figure 2
shows the average percentages of the different numbers of class labels in our experimental
datasets.

The comparisons of classification accuracy and the number of rules are shown in Ta-
ble 5. Figures 3 and 4 are the illustration of Table 5. The results in Table 5 are very convinc-
ing. On average MMD can raise the accuracy of MMDT by 4% and can reduce the number
of rules generated by MMDT by 15.4%. Recall that the general goal of a discretization
algorithm are to speed up the learning process (i.e. reduce the number of produced rules)
while retain or even improve accuracy of learning algorithms, our experimental results cor-
respond to this goal. Figure 4 show that after the discretization step in MMD, the number
of rules generated by MMDT is significantly reduced. In addition, although discretization
approaches do not guarantee to improve the accuracy of a learning model, Table 5 show
that in all cases MMD enables MMDT to reach a better accuracy. We find the reason is
that MMDT has to partition a continuous attribute into several intervals and then use its
similarity function to find the best splitting attribute. However, MMDT use a very sim-
ple strategy: it partitions a continuous attribute into pre-defined ub interval according to
the percentile of attribute value. This partition strategy is similar to the simplest unsuper-
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Fig. 3. The accuracy of MMDT with/without adopting MMD under different levels of (a) parameter nr; (b) pa-
rameter minsup; (c) parameter mindiff ; (d) Parameter minqty.

vised discretization algorithm called Equal Frequency. Since MMD considers the relation
between class labels and attribute values, it produces a more reliable and reasonable dis-
cretization scheme to improve the accuracy of MMDT.

5. Conclusions

Since some available real data is multi-valued and multi-labeled, researchers have fo-
cused their attention on developing algorithms to mine multi-valued and multi-labeled
data. However, there are no algorithms can discretize multi-valued and multi-labeled data
to improve the performance of data mining. In this paper, we propose a novel approach
named MMD, which uses a statistical-based discretization metric and the simulated an-
nealing search, to improve the performanceof mining multi-valued and multi-labeled data.
Experimental results show that our approach can effectively improve the performance of
the-state-of-art multi-valued and multi-labeled classification algorithm.

It is worth to note that although we use a statistical-based discretization metric in this
paper, MMD can be easily extend to use any discretization metric if a better one is pro-
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Fig. 4. The number of rules generated by MMDT with/without adopting MMD under different levels of (a) pa-
rameter nr; (b) parameter minsup; (c) parameter mindiff ; (d) parameter minqty.

posed in the future. We also wish this paper serves as a beginning to attract researchers’
attention on the problem of multi-valued and multi-labeled discretization.
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Daugiareikšmių ir daugiažymių duomenų tyrybos rezultatų
pagerinimo tyrimas

Cheng-Jung TSAI

Šiuo metu duomenų tyrybos algoritmai sėkmingai taikomi, analizuojant realius duomenis, siekiant
gauti vertingų sprendimų. Kadangi kartais realūs duomenys būna daugiareikšmiai ir daugiažymiai,
pastaruoju metu tyrėjai sutelkia dėmesį į tokių duomenų tyrybos metodų kūrimą. Deja, nėra algorit-
mų, galinčių diskretizuoti daugiareikšmius ir daugiažymius duomenis, ir tokiu būdu pagerinančių
duomenų tyrybos rezultatus. Šiame straipsnyje pasiūlytas naujas būdas šiai problemai spręsti. Pa-
siūlytas būdas pagrįstas statistine diskretizavimo metrika bei atkaitinimo modeliavimo algoritmu.
Eksperimentiniai rezultatai parodė, kad pasiūlytu būdu galima efektyviai pagerinti šiuolaikinių dau-
giareikšmių ir daugiažymių klasifikavimo algoritmų rezultatus.


