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Abstract. The paper deals with a parallel processor scheduling problem with changeable job values.

Contrary to other papers in this area, we assume that job values are characterized by a non-monotonic

stepwise functions of job completion times (previously only non-increasing functions have been

considered). We give examples of real-life systems that can be modelled in such a way, in order to

show that the problem is interesting from practical point of view. The problem is shown to be NP-

hard and a pseudo-polynomial time algorithm for its special case is constructed. Moreover, a number

of heuristic algorithms is provided and experimentally tested.
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1. Introduction

Scheduling problems are a kind of combinatorial optimization problems in which the pur-

pose is to determine when to perform some given tasks (called ‘jobs’), with which re-

source, and on which equipment (‘processors’ or ‘machines’) in order to optimize some

certain criterion or criteria, e.g. time or cost. In this paper we consider a scheduling prob-

lem of maximization of the total job value, i.e. scheduling jobs on processors in a such

way that the sum of job values is maximal. In such problems, the ‘job value’ is a param-

eter characterizing each job, which can vary over time. This means that the largeness of

the value that a given task will provide depends on the time when it will be finished. In

turn, the times at which the jobs are performed depend on an order (sequence) of the jobs

on the processors (such an order, together with the moments of starting and completion

times of the jobs, is called a ‘schedule’). Therefore, the problem is to find such a sched-

ule of the jobs on the processors that the sum of values of these jobs is maximal. We

assume that in our problem the job value is a stepwise function of job completion time.

However, contrary to other papers devoted to such problems, we assume that this function

may be non-monotonic. The formal definition of the problem and examples of practical

application will be given later on.

*Corresponding author.
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The term ‘job value’ was introduced to the scheduling theory by Voutsinas and Pappis

(2002). They formulated the single processor problem of maximization of the sum of job

values as a model of a disassembly process of products (e.g. computers) after reaching

the end of their useful life-times in order to be remanufactured. The job value was de-

scribed by a non-increasing power function of the completion time. In order to solve the

problem, they constructed heuristic algorithms. Moreover, they showed polynomial-time

exact algorithms for some special cases of the problem.

Yang (2009) dealt with the similar problem – the maximization of the total revenue of

products modelled as a non-increasing exponential function of job completion time. As

a practical application he gave a production planing in contemporary hyper-competitive

marketplace where the amount of revenue generated as a result of completing a product

(job) may be decreasing as its completion time is delayed. The paper contains some rules

for dominant schedules and a branch and boundalgorithm and heuristic algorithms solving

the problem.

Different model of job values was suggested by Janiak and Krysiak (2007). They as-

sumed that the job value is a non-increasing stepwise function of the completion time. As

a practical application, establishing an order of processing of datagrams sent by a router in

IP protocol was given. In the paper, the equivalence of the single processor problem with

maximization of the total stepwise job values to the well-known, NP-hard in the ordinary

sense, problem of minimizing weighted number of late jobs was shown. Moreover, NP-

hardness in the ordinary sense of the case with parallel processors and arbitrary number

of common moments of job value changes was proved by a construction of a pseudo-

polynomial time algorithm based on the dynamic programming method. Also, heuristic

algorithms were constructed.

Janiak et al. (2009) investigated a problem with parallel processors and the job value

described by a difference between given constant initial value and a non-decreasing power

loss function of the job completion time. They proved strong NP-hardness of the general

problem and NP-hardness of a case with a single processor. The branch and bound al-

gorithm and several heuristic algorithms were constructed. What is more, some special

polynomially solvable cases were shown.

The same model of job values was considered in Janiak et al. (2010), but for single

processor scheduling problem and with non-zero release dates. The main results of this

paper are solution algorithms of the considered problem. They are: a branch and bound

exact algorithm and several heuristic algorithms.

The scheduling problems with non-increasing stepwise job values and its extension

were additionally analyzed in Janiak and Krysiak (2012). In the paper, the single pro-

cessor problem with the stepwise job value was proved to be strongly NP-hard. For

the case with unrelated parallel processors, a dynamic programming algorithm (pseudo-

polynomial time if the number of processors and the number of common moments of job

value changes are arbitrary) and several heuristic algorithms (based on the list strategy)

were constructed. Additionally, the single processor scheduling problem with piecewise

linear losses of job values was considered. It was proved that the problem is strongly NP-

hard and that there exists a pseudo-polynomial time algorithm for its special case. Also,

heuristic algorithms were constructed.
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Scheduling problems with time deteriorating (non-increasing) job values were also

addressed by Raut et al. (2008a, 2008b). They considered single processor problems and

proved that problem with concave value function is NP-hard, with convex value function

is strongly NP-hard and with linear value function is polynomially solvable. They con-

structed several heuristic algorithms. As a practical application for the problem, schedul-

ing of movies at different screens of a multiplex theater in the motion picture industry was

shown.

There are much more papers devoted to scheduling problems with job parameters

changeable over time. However, in most of them job processing times are changeable

(learning effect, aging effect, deteriorating jobs). In some of them, changeable (non-

decreasing) job processing times are even combined with changeable (non-increasing) job

values (see e.g., Pappis and Rachaniotis, 2010, and Rachaniotis and Pappis, 2006). In spite

of the fact that many different models of changeable job processing times were consid-

ered, even non-monotonic, to the best of our knowledge only monotonic (non-increasing)

functions of job values were considered so far in the context of scheduling. However, from

practical point of view it is also interesting to analyze non-monotonic job value functions.

Therefore, in this paper we investigate a parallel processor scheduling problem with non-

monotonic stepwise job values, giving appropriate application examples.

It is worth mentioning also that, contrary to most of non-monotonic models of job pro-

cessing times (see e.g. Huang et al., 2012, where job processing time is a non-decreasing

function of the total normal processing times of the jobs already processed and a non-

increasing function of the job’s position in the sequence, or Huang and Wang, 2012), our

model of job value is a function of one variable.

The remaining part of the paper is organized as follows. In the next section, the detailed

formulation of the problem is given. Then, in Section 3, we show a few practical appli-

cations for it. In Section 4 we show that our problem is at least NP-hard and in Section

5 we construct a pseudo-polynomial time algorithm for a special case of the considered

problem. Section 6 contains several heuristic algorithms and in Section 7 numerical ex-

periment comparing them is described and obtained results are shown. Some concluding

remarks are given in Section 8.

2. Problem Formulation

There are given a set of m identical parallel processors M = {M1, . . . ,Mm} and a set

of n independent and non-preemptive jobs J = {J1, . . . , Jn} immediately available for

processing at time 0. Each processor Mi ∈ M can execute at most one job at a time. Each

job Jj ∈ J is characterized by its processing time pj > 0, its value vj (t) calculated at

time t and moments djq > 0, q = 1, . . . , k − 1 when changes of job value occur. The job

value is described by the following non-monotonic stepwise function:

vj (t) =



















wj1, 0 < t 6 dj1,

wj2, dj1 < t 6 dj2,
...
wjk, djk−1 < t,

(1)
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such that ∀Jj ∈J wj l > 0, 1 6 l 6 k. We assume additionally that pj and djq are pos-

itive integers. Let us denote model (1) by NMV step (non-monotonic stepwise value

model).

Solution of the problem is a vector of pairs C = {(C1, z1), (C2, z2), . . . , (Cn, zn)},

where Cj is the completion time of job Jj and zj ∈ M denotes the processor in which this

job will be processed. The objective is to find such a solution C∗ which maximizes the sum

of values of all the jobs calculated at their completion times Cj :
∑n

j=1 vj (Cj ) → max.

For convenience, the above formulated problem may be represented according to the

three field notation (Graham et al., 1979) as Pm|NMVstep|
∑

vj (Cj ).

3. Examples of Practical Application of the Problem

3.1. Timetable for a School

Assume that a timetable for a school must be prepared. We are given a set of subjects and

a weekly fixed number of hours intended for each subject.

A human organism is not able to do some certain mental work at any time with the same

efficiency. It is caused by so called circadian rhythms, i.e. a roughly 24-hour cycles in bio-

chemical, physiological, or behavioural processes. In mammals such rhythms are driven

by two mechanisms: endogenous (biological clock) and exogenous (concerned with some

environmental factors, mainly with light). Despite the fact that in normal conditions the

endogenous mechanism is subordinated to the exogenous one, it has considerable individ-

ual autonomy, what makes it robust to sudden changes of e.g. light intensity (Sadowski,

2007).

One of the abilities, that are influenced by circadian rhythms, is mental capacity. In

scientific research, different mental capacity curves were obtained depending on the tests.

For example, searching particular letter in a text was performed relatively slow early in

the morning and much faster around noon, but memorizing of text was easier in the morn-

ing. Therefore, it is thought that each mental activity can have its own circadian rhythm

dependent on a specific oscillator (Sadowski, 2007).

Thus, it will be profitable to prepare such a timetable, in which each subject is located

in a period of time when necessary abilities reach their peak. Obviously, usually it is not

possible to place all subjects in optimal time. Therefore, some (most important) subjects

should have priority over the others.

In the context of job scheduling, lessons per week devoted to each subject may be

considered as jobs and days of week may be seen as processors. Job value will be the

highest in a period of time when the necessary to this subject specific mental capacity

reaches its peak. Moreover, maximal value of some jobs will be higher than the others.

Assuming constant mental capacity during the lesson, a stepwise model of job value is

obtained. The objective is to find such a timetable in which the sum of job values is max-

imal.
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3.2. Production Schedule

Assume that a company has to produce a set of items and each of them must be available

to the customer at a certain date. Each product has its own price and each product has its

own unit storage cost and a unit tardiness penalty. The profit is a difference between the

income (price × number of sold items) and the total cost (penalties, storage costs, etc.).

The profit is the biggest when all products are made in their due dates (no penalties, no

storage).

This problem may be concerned as a flow shop problem or even a job shop problem.

Processors are machines in the factory, jobs are activities necessary to produce items.

Each job consists of a set of operations. An operation is a production activity concerning

one job on one machine. What is more, each job is characterized by a function of its

value, calculated at a completion of the job – the difference between the price and the

total cost. The objective is to find such a schedule that maximizes the sum of job values

(total profit).

3.3. Establishing a Sequence of Gathering of Crops and Fruits

Scheduling of jobs with changeable values may be also useful in establishing a sequence

of gathering of crops and fruits in a farm or in an orchard. Assume that a farmer grows

different kinds of crops and fruits. Each kind of crops and fruits ripens at a specific period

and should be gathered then, because reaches then the highest price. However, the periods

may overlap and there is a limited number of employees and machines in the farm, so it

might be not possible to gather everything in the optimal time. Fortunately, some fruits or

crops may be gathered earlier or later and used e.g. as a fodder or as an ingredient of jam.

Obviously, the price is then lower. Notice that prices of different kinds or species may be

different and also may vary in different way.

In the context of scheduling, groups of employees may be concerned as processors

and gathering of particular species as jobs. Job values are related with prices of gathered

fruits or crops. The objective is to determine such a schedule of gathering that provides

the maximal sum of job values (maximal profit).

4. Computational Complexity

In this section, we show that the problem under consideration is at least NP-hard, since its

special case with monotonic job values is already NP-hard in the ordinary sense.

Theorem 1. The problem Pm|NMVstep|
∑

vj (Cj ) is at least NP-hard.

Proof. In Janiak and Krysiak (2007) the problem of scheduling n independent, non-

preemptive jobs on a single processor, where job value is described by a stepwise func-

tion (1) with monotonicity condition wj1 > wj2 > · · · > wjk > 0, was proved to be

NP-hard, even for the special case with single moment of change of value for every job
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(the moments may differ for different jobs). Note that such a problem is a special case of the

problem formulated in Section 2. If we relax the constraint wj1 > wj2 > · · · > wjk > 0,

we obtain the special case of the problem Pm|NMVstep|
∑

vj (Cj ) (with m = 1). �

5. Pseudo-Polynomial Time Algorithm

In this section a pseudo-polynomial time algorithm (based on the dynamic programming

method) solving a special case of Pm|NMVstep|
∑

vj (Cj ) is shown. In this case we have

common for all the jobs moments of changes of job values (djq = dq for j = 1, . . . , n),

constant (fixed) number moments of change of job values (fixed k), and constant (fixed)

number of processors (fixed m). Let us represent this special case by Pm|NMVstep, djq =

dq , k fixed|
∑

vj (Cj ).

This algorithm is a generalization of the algorithm for the corresponding special case

of the problem with monotonic functions of job values described in Janiak and Krysiak

(2007). Since in optimal solution of the problem with non-monotonic functions of job

values processor idle times are allowed, additional sorting of jobs (in the non-decreasing

order of their processing times inside each interval) and validation (of starting times of

the jobs belonging to each interval – see inequalities (3)–(4)) are required to ensure that

all jobs fit to the intervals they are assigned to.

Jobs will be considered here in their natural order 1,2, . . . , n. We have k ·m disjunctive

sets of jobs:

X1
1, . . . ,X1

k ,X
2
1, . . . ,X

2
k , . . . ,X

m
1 , . . . ,Xm

k ,

where jobs from sets Xi
1, . . . ,X

i
k are scheduled on the processor Mi , i = 1, . . . ,m, in

such a way that jobs from the set Xi
q−1 are sequenced before jobs from the set Xi

q , and

processing of jobs from Xi
q finishes before dq , q = 1, . . . , k, and dk = ∞. Moreover,

inside the set Xi
q jobs are processed according to the non-decreasing order of pl , where

l ∈ Xi
q . In the algorithm jobs will be assigned to the sets X1

1, . . . ,X
m
k , which are empty at

the beginning. We assume that assignment of the job Jj to the set Xi
q contributes wjq to

the objective function.

Let us define a function

Wj

(

P 1
1 , . . . ,P 1

k−1,P
2
1 , . . . ,P 2

k−1, . . . ,P
m
1 , . . . ,Pm

k−1

)

as the maximum sum of job values for partial schedules containing first j jobs, for which

the sum of processing times of jobs assigned to the set Xi
q equals to P i

q , q = 1, . . . , k − 1.

Notice that if any job is assigned to any set Xi
k , i = 1, . . . ,m, for the objective function

it does not matter which exactly set it is. Therefore, the values P i
k , i = 1, . . . ,m does

not matter as well. We are only interested in the sum of these values, calculated as fol-

lows:
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m
∑

i=1

P i
k = Tj − (P 1

1 + · · · + Pm
k−1),

where Tj =
∑j

l=1 pl .

Let us consider a partial schedule (j,P 1
1 , . . . ,Pm

k−1) and the corresponding value of

the function Wj (P
1
1 , . . . ,Pm

k−1). If the last scheduled job (Jj ) was assigned to the set

Xi
q , P i

q increased by pj and the value of the function Wj−1(P
1
1 , . . . ,P i

q − pj , . . . ,P
m
k−1)

increased by wjq to Wj (P
1
1 , . . . ,P i

q , . . . ,Pm
k−1).

Let us denote the starting time of jobs assigned to the set Xi
q by SXi

q
:

SXi
q
= min{SXi

q+1
, dq} − P i

q , q = 1, . . . , k − 2,

SXi
k−1

= dk−1 − P i
k−1,

Si
Xk

= dk−1.

It is more convenient to assign jobs from the end of the interval to the beginning because

of right-closed intervals. If the state (j,P 1
1 , . . . ,Pm

k−1) corresponds to the partial schedule

which may lead to the optimal schedule, the following conditions must be satisfied:

q
∑

l=1

P i
l 6 dq, q = 1, . . . , k − 1, (2)

SXi
1
> 0, (3)

SXi
r+1

> dr − max
l∈Xi

r+1

pl, r = 1, . . . , k − 2, (4)

for each i = 1, . . . ,m. Taking into account the above inequalities allows us to avoid check-

ing some states that do not lead to the optimal solution.

Thus, for j = 1, . . . , n we can calculate recurrently Wj (P
1
1 , . . . ,Pm

k−1) for all possible

values of P i
q , q = 1, . . . , k − 1, i = 1, . . . ,m and obtain the optimal value of the objective

function

W∗ = max
16q6k−1
16r6k−2

16i6m

{

Wn

(

P 1
1 , . . . ,Pm

k−1

)
∣

∣P i
q = 0,1, . . . ,min{Tn, dq},

q
∑

l=1

P i
l 6 dq , SXi

1
> 0, SXi

r+1
> dr − max

l∈Xi
r+1

pl

}

.

A formal description of the above algorithm is given as follows:
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Algorithm 1 P-Polyn

Step 1: Set

Wj (P
1
1 , . . . ,Pm

k−1) :=

{

0, if (j,P 1
1 , . . . ,Pm

k−1) = (0,0, . . . ,0),

−∞, otherwise,

for j = 0,1, . . . , n and P i
q = 0,1, . . . ,min{Tn, dq}; i = 1, . . . ,m; q = 1, . . . , k − 1.

Then set j := 1.

Step 2: For each P i
q = 0,1, . . . ,min{Tj , dq}, where i = 1, . . . ,m and q = 1, . . . , k − 1,

determine:

Wj (P
1
1 , . . . ,P 1

k−1,P
2
1 , . . . ,P 2

k−1, . . . ,P
m
1 , . . . ,Pm

k−1)

=



















































max
16i6m































Wj−1(P
1
1 , . . . ,P i

1 − pj ,P
i
2 , . . . ,P i

k−1, . . . ,P
m
k−1) + wj1,

Wj−1(P
1
1 , . . . ,P i

1 ,P i
2 − pj , . . . ,P

i
k−1, . . . ,P

m
k−1) + wj2,

...

Wj−1(P
1
1 , . . . ,P i

1 ,P i
2 , . . . ,P i

k−1 − pj , . . . ,P
m
k−1) + wjk−1,

Wj−1(P
1
1 , . . . ,P i

1 ,P i
2 , . . . ,P i

k−1, . . . ,P
m
k−1) + wjk,































,

if inequalities (2)–(4) are satisfied,

−∞, otherwise.

If the maximum in the above expression is reached on (q, i) component, the job

Jj is assigned to the set Xi
q , q ∈ {1, . . . , k}, i ∈ {1, . . . ,m}. Inside the set Xi

q jobs

are sequenced according to the non-decreasing order of pl , l ∈ Xi
q . If j = n, go to

Step 3, otherwise assign j := j + 1 and repeat Step 2.

Step 3: Determine the optimal value of the objective function:

W∗ = max
16q6k−1
16r6k−2

16i6m

{

Wn

(

P 1
1 , . . . ,Pm

k−1

)
∣

∣P i
q = 0,1, . . . ,min

{

Tn, dq

}

,

q
∑

l=1

P i
l 6 dq , SXi

1
> 0, SXi

r+1
> dr − max

l∈Xi
r+1

pl

}

and construct the corresponding optimal solution C∗ by backtracking.

We prove now, that P-Polyn is a pseudo-polynomial time algorithm for the problem

Pm|NMVstep, djq = dq , k fixed|
∑

vj (Cj ).

Property 1. The problem Pm|NMVstep, djq = dq, k fixed|
∑

vj (Cj )can be solved op-

timally in pseudo-polynomial time O(n lognkm(
∏k−1

q=1(min{Tn, dq})m)) by algorithm

P-Polyn, where Tn =
∑n

j=1 pj .
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Proof. Similarly as in Janiak and Krysiak (2007), the optimality of algorithm P-Polyn

can be justified showing that a partial schedule – selected by this algorithm for expansion

to a complete solution – can be extended by non-scheduled jobs in the same way as an

optimal partial schedule, leading the same final state with non-worse value of the function

Wj (P
1
1 , . . . ,Pm

k−1).

One more observation is that our algorithm – similarly as the one presented in Janiak

and Krysiak (2007) – checks (in Step 2) all possible choices of schedule for each job,

thus obtaining all possible values of the criterion. However, the difference is that more

constraints have to be complied in order to ensure feasibility of the final solution, because

of non-monotonic job value functions. These additional constraints concern starting times

of the scheduled jobs – all jobs have to fit to intervals they are assigned to. This results

in possibility of processor idle times in final schedules (in particular in the optimal one).

The compliance of the above constraints is achieved by assigning jobs from the end to the

beginning of the interval, and by assigning these jobs in a such way that they are arranged

in non-decreasing order of their processing times.

Therefore, our algorithm checks all possible values of the criterion and the partial

schedules considered by this algorithm are always feasible and they lead to complete so-

lutions, in which there is a one with the criterion value non-worse than the optimal one.

The computational complexity of this algorithm is determined by Step 2. We have n

jobs and for each job we have
∏k−1

q=1(min{Tn, dq})m values of P i
q . For each value inequali-

ties (2)–(4) must be checked and Wj (P
1
1 , . . . ,Pm

k−1) must be calculated, what can be done

in O(km) time. Moreover, each time the position of job Jj in the set Xi
q must be deter-

mined, what can be done in O(logn) time. Thus, the computational complexity of the

algorithm is O(n lognkm(
∏k−1

q=1(min{Tn, dq})m)). �

Therefore, algorithm P-Polyn is pseudo-polynomial time for a given, constant number

of processors and constant number of moments of changes of job values. It is also ex-

ponential time if the number of processors and/or number of moments of changes of job

values is a variable.

6. Heuristic Algorithms

The problem Pm|NMVstep|
∑

vj (Cj )is NP-hard, so it is hardly possible to construct a

fast (polynomial time) exact algorithm solving it. Therefore, we provide a set of heuristic

algorithms, that in fact do not have to provide an optimal solution, but are fast enough.

The constructed heuristics (PH1–PH5) are based on the same scheme (algorithm PHi)

and differ in the procedure of sorting the jobs (Step 2). The main idea of the scheme PHi is

to make for each job a list of intervals sorted non-increasingly according to values corre-

sponding to them and then to schedule jobs on processors in a proper order. The interval is

a period between moments of changes of the job value ((djq−1, djq ], where q = 1, . . . , k,

dj0 = 0, djk = ∞). We try to schedule each job so that the job ends in a period of time

when it has a largest value. If it is impossible in one processor, we try in another. If it is
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impossible in all processors, we consider the next interval (with a smaller value). A formal

description of the algorithm is given as follows:

Algorithm 2 PHi

Step 1: For each job make a list of intervals sorted non-increasingly according to the

values corresponding to them.

Step 2: If i = 1, sort jobs non-increasingly according to max16q6k{wjq}.

If i = 2, sort jobs non-increasingly according to max16q6k{wjq}/pj .

If i = 3, sort jobs non-decreasingly according to pj .

If i = 4, sort jobs non-increasingly according to the mean calculated as 1
k

∑k
i=1 wji .

If i = 5, sort jobs non-increasingly according to the mean calculated as
1

k−1

∑k−1
i=1 wji(dji − dji−1). Assume dj0 = 0.

Step 3: If there is at least one job on the list, take out the first job of the list. Else finish.

Step 4: Take out the first interval for the current job of the list. Set m_numb := 0.

Step 5: Set m_numb := m_numb + 1. If m_numb > m go to Step 4.

Step 6: If job can be assigned to processor Mm_numb and end in the considered interval,

assign the job to Mm_numb, as the job starting time set the end of the interval minus

the job processing time or the starting time of the first job already assigned to this

interval minus the job processing time, depending on what is earlier and go to Step 3.

Else go to Step 5.

The sorting criteria (Step 2) are based on static priority rules. In the first one jobs are

sorted non-increasingly according to the maximal job value. In algorithm PH3 process-

ing times of jobs are considered. It is based on the assumption that it is easier to find a

suitable processor idle time in the proper interval for a job with shorter processing time

and simultaneously – after assignment the job to a processor – more time of the processor

leaves for the next jobs. Algorithm PH2 is a combination of PH1 and PH3 – jobs are sorted

according to the ratio of the maximal value to the processing time. In algorithms PH4 and

PH5 jobs are sorted according to the average job value and weighted average job value,

respectively.

A computational complexity of Step 1 is O(nk logk) since for all jobs we have to sort k

intervals. A computational complexity of Step 2 depends on algorithm – it is O(n logn)

for PH3, O(logk · n logn) for PH1 and PH2, and O(k · n logn) for PH4 and PH5. An-

alyzing our implementation of Steps 3–6 in purely formal way, we have to check in the

worst situation k intervals on m processors for each job and in each interval check n posi-

tions (before and after each of the jobs already scheduled on the processor). Therefore, the

formal (pessimistic) computational complexity of Steps 3–6 is O(n2km) and the compu-

tational complexity of the whole scheme PHi is equal to O(nk · (logk + logn) + n2km).

However, notice that, for a given job, the checking process in Steps 4–6 is interrupted

immediately after finding the proper interval (i.e., the first interval within which the job

will be finished). Moreover, for typical instances the proper interval is usually found in one
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of the first iterations (or – on the other hand – the pessimistic situations are rather artificial,

e.g., all intervals on all processors will be checked if the job processing time is larger than

all moments of changes of the job value djq ). Therefore, the computational complexity of

Steps 3–6 for usual instances can be reduced to O(n2) or even to O(n2/m), what implies

O(nk · (logk+ logn)+n2) and O(nk · (logk+ logn)+n2/m) computational complexity

for PHi , respectively. The detailed description concerning this reduction is presented in

Appendix A.

7. Numerical Experiments

In order to evaluate the quality of the provided heuristic algorithms, the numerical

experiments were performed. Algorithms were tested for five numbers of jobs: n =

9,50,100,250,500, five different numbers of processors m = 2,3,5,7,10, and three dif-

ferent numbers of intervals for each job: k = 2,10,20. What is more, experiments were

performed in three series, in each series values were randomly generated from the uniform

distribution on different intervals:

• set 1 (small values wjq ):

pj ∈ (0,90), wjq ∈ [1,10), 1djq = djq − djq−1 ∈ [100,200),

• set 2 (large values wjq ):

pj ∈ (0,90), wjq ∈ [1,100), 1djq ∈ [100,200),

• set 3 (large processing times pj and values wjq ):

pj ∈ (0,160), wjq ∈ [1,100), 1djq ∈ [100,200).

For each set, 500 instances of problem were generated for each combination of k, m and n.

It gives 112 500 instances in total.

Since the number of possible solutions for each instance is enormous (it is pseudo-

polynomial for each permutation of the jobs), it is hardly possible to compare results ob-

tained by heuristic algorithms to the optimal one. Therefore, obtained results are compared

to the best found solution. For each instance i , the criterion value of the best solution pro-

vided by the algorithms PH1–PH5 is denoted by ABEST and the criterion value of the

solution provided by the algorithm j (j ∈ {PH1, PH2, PH3, PH4, PH5}) by Aj . Then the

performance ratio ρij =
ABEST −Aj

ABEST
· 100% was calculated. The mean values for 500 in-

stances are presented in Tables 1–3 (only for 2, 5 and 10 processors, since the results for

3 and 7 processors do not add anything important to the analysis).

As regards the computation times of the considered algorithms, we have made similar

observations for all algorithms (PH1–PH5) and for all sets (Set 1–Set 3). Therefore, we

present in Table 5 average computation times only for algorithm PH1 and Set 1 and based

on these results we describe the computation times of all considered algorithms in all

performed tests.

In order to show the difference in computation times between the constructed pseudo-

polynomial time algorithm P-Polyn (Algorithm 1) and the heuristic algorithms PH1–

PH5, several tests for small instances with common for all jobs moments of change of
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Table 1

Average performance ratios ρij [%] of the considered algorithms for m = 2.

n k = 2 k = 10 k = 20

PH1 PH2 PH3 PH4 PH5 PH1 PH2 PH3 PH4 PH5 PH1 PH2 PH3 PH4 PH5

Set 1: pj ∈ (0,90), wjq ∈ [1,10), 1djq ∈ [100,200)

9 0.00 1.48 3.10 0.58 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 2.13 1.16 2.42 5.62 1.38 0.33 1.80 1.54 1.01 1.28 0.07 0.07 0.08 0.12 0.08

100 2.11 0.22 0.89 5.62 2.51 0.75 1.41 1.80 4.50 2.03 0.07 0.76 0.87 0.72 0.65

250 2.49 0.02 0.72 4.74 2.68 5.63 0.15 0.38 9.18 6.09 2.88 0.16 0.30 5.71 3.72

500 2.37 0.00 0.43 4.01 2.95 7.93 0.08 0.25 10.55 8.27 7.49 0.14 0.11 10.05 7.79

Set 2: pj ∈ (0,90), wjq ∈ [1,100), 1djq ∈ [100,200)

9 0.15 0.61 1.61 1.13 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 1.66 1.09 2.23 6.26 2.23 0.14 0.80 0.94 0.61 0.39 0.02 0.03 0.03 0.05 0.03

100 2.32 0.27 1.05 5.42 2.44 1.23 0.90 1.57 3.97 1.86 0.07 0.72 0.68 0.42 0.48

250 2.70 0.03 0.70 5.17 3.27 5.56 0.11 0.35 9.46 6.52 2.31 0.16 0.29 5.11 2.86

500 2.78 0.01 0.40 4.34 3.27 8.75 0.08 0.30 11.32 8.95 7.30 0.13 0.14 9.44 7.18

Set 3: pj ∈ (0,160), wjq ∈ [1,100), 1djq ∈ [100,200)

9 1.13 2.19 3.40 3.33 0.99 0.10 0.01 0.01 0.23 0.00 0.00 0.00 0.00 0.00 0.00

50 1.77 1.01 2.03 4.69 1.18 0.75 2.44 2.91 3.94 2.03 0.16 0.98 1.19 0.65 0.58

100 1.95 0.15 0.90 4.04 1.73 3.52 0.52 0.64 7.69 4.24 1.11 2.16 2.13 2.38 1.00

250 2.06 0.04 0.55 3.67 2.32 6.32 0.18 0.34 9.16 7.06 5.05 0.21 0.21 7.98 5.51

500 1.66 0.01 0.34 2.72 2.03 7.70 0.08 0.30 9.50 7.40 7.99 0.07 0.27 10.09 8.37

job value were performed. Moreover, the performance ratio of the heuristic algorithms

ρ∗
ij =

AOPT −Aj

AOPT
· 100%, where AOPT is an optimal value obtained by P-Polyn, was calcu-

lated. The results are presented in Table 4.

As it can be seen in Tables 1–3, algorithm PH1 is usually the best for small instances

(for n = 9,50 and sometimes 100 jobs), especially for large numbers of moments of

changes of job values (k = 10,20). Algorithm PH2 is the best for large instances (usu-

ally for these cases, for which PH1 is not the best). Moreover, for several cases of small

instances, for which PH1 is not the best, the most accurate is usually algorithm PH5. Even

if other algorithms give better solutions for some specific instances, the average perfor-

mance ratio for the best algorithm for the given set of parameters is usually close to the

one for PH1, PH2 or PH5. For example, for the case with m = 10 processors, Set 3, k = 20

and n = 500 jobs (see Table 3), the best is not PH2, but PH3 with ρij = 0.08. However,

for PH2 ρij = 0.12. This might be due to the fact that lengths of intervals and process-

ing times are independent of k and n, therefore the sum of processing times per interval

increases with the size of the instance and decreases with the number of intervals. When

the ratio of the sum of processing times to the number of intervals is smaller, it is easier to

assign jobs to the intervals when they have the largest value. In such cases, the maximal

or average job value is sufficient criterion (algorithms PH1, PH5). This conclusion is also

confirmed in Table 4, where the results obtained by the considered heuristic algorithms

are compared with the optimal solutions for small (n = 9,20 and 30 jobs) and specific

instances (i.e., with common moments of change of job value). The best algorithms for

these cases are always PH1 and PH5. Algorithm PH2 is better for larger instances, because

it rewards jobs with the large maximal value and a small processing time. It is easier to
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Table 2

Average performance ratios ρij [%] of the considered algorithms for m = 5.

n k = 2 k = 10 k = 20

PH1 PH2 PH3 PH4 PH5 PH1 PH2 PH3 PH4 PH5 PH1 PH2 PH3 PH4 PH5

Set 1: pj ∈ (0,90), wjq ∈ [1,10), 1djq ∈ [100,200)

9 0.11 2.23 2.74 1.46 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 1.72 1.15 2.13 5.92 2.18 0.39 1.62 1.36 1.34 1.25 0.04 0.08 0.08 0.06 0.07

100 1.41 0.44 0.85 4.92 2.12 1.29 0.75 1.05 5.00 2.53 0.07 0.94 0.94 0.61 0.52

250 2.35 0.03 0.53 4.78 2.81 6.33 0.16 0.39 9.44 6.23 2.67 0.08 0.23 5.37 3.59

500 2.29 0.01 0.41 3.94 2.61 7.47 0.11 0.18 10.10 8.15 7.04 0.06 0.15 9.78 7.51

Set 2: pj ∈ (0,90), wjq ∈ [1,100), 1djq ∈ [100,200)

9 0.45 0.88 0.93 0.75 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00

50 1.83 0.95 2.63 5.97 1.41 0.22 1.30 1.47 1.16 0.83 0.03 0.07 0.07 0.06 0.06

100 1.87 0.34 0.90 5.08 1.97 0.82 1.01 1.16 3.98 2.17 0.09 0.68 0.65 0.44 0.27

250 2.29 0.05 0.50 5.06 2.97 5.78 0.08 0.48 9.89 6.78 2.25 0.20 0.29 5.18 2.86

500 2.51 0.00 0.48 4.02 2.93 8.10 0.04 0.37 10.98 8.78 7.36 0.11 0.19 9.83 7.43

Set 3: pj ∈ (0,160), wjq ∈ [1,100), 1djq ∈ [100,200)

9 0.55 1.98 3.94 2.02 0.30 0.02 0.00 0.00 0.00 0.02 0.00 0.02 0.01 0.00 0.00

50 1.48 0.77 1.85 5.06 1.69 0.76 2.55 2.88 3.96 2.23 0.16 0.93 0.82 0.65 0.62

100 1.67 0.29 0.88 4.17 2.24 2.94 0.42 0.80 6.73 3.84 0.90 1.77 2.11 3.66 1.51

250 1.80 0.02 0.42 3.62 2.23 6.10 0.14 0.29 8.98 6.93 5.04 0.29 0.14 7.48 5.46

500 1.75 0.01 0.34 2.92 2.26 8.11 0.07 0.28 9.91 7.60 8.09 0.08 0.22 10.22 8.28

Table 3

Average performance ratios ρij [%] of the considered algorithms for m = 10.

n k = 2 k = 10 k = 20

PH1 PH2 PH3 PH4 PH5 PH1 PH2 PH3 PH4 PH5 PH1 PH2 PH3 PH4 PH5

Set 1: pj ∈ (0,90), wjq ∈ [1,10), 1djq ∈ [100,200)

9 0.67 1.36 1.50 1.24 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 1.89 1.00 1.96 5.68 1.47 0.34 1.37 1.16 0.76 0.90 0.07 0.08 0.09 0.18 0.13

100 1.31 0.43 1.44 5.20 2.06 1.18 1.15 1.45 4.31 1.98 0.09 0.90 1.03 0.58 0.64

250 2.28 0.03 0.66 4.56 2.68 6.22 0.13 0.39 9.84 6.72 2.93 0.22 0.31 5.72 3.58

500 2.34 0.00 0.46 3.73 2.56 7.64 0.07 0.36 10.39 8.06 6.96 0.09 0.16 9.43 7.18

Set 2: pj ∈ (0,90), wjq ∈ [1,100), 1djq ∈ [100,200)

9 0.49 0.40 0.89 0.65 1.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 1.74 0.88 1.96 4.73 2.38 0.17 1.19 1.52 0.82 0.52 0.04 0.10 0.06 0.04 0.05

100 1.85 0.36 1.20 5.11 2.29 1.09 1.09 1.22 4.20 2.42 0.07 0.77 0.83 0.46 0.46

250 2.41 0.03 0.65 4.61 3.12 5.67 0.14 0.40 10.14 7.03 2.61 0.23 0.31 5.43 3.12

500 2.27 0.03 0.33 3.95 2.86 8.15 0.04 0.29 11.11 8.57 7.30 0.12 0.21 10.10 7.59

Set 3: pj ∈ (0,160), wjq ∈ [1,100), 1djq ∈ [100,200)

9 0.74 0.84 2.76 0.74 0.97 0.02 0.00 0.00 0.17 0.17 0.00 0.02 0.02 0.00 0.00

50 1.80 0.93 1.92 4.46 2.15 1.80 3.10 3.63 4.34 2.08 0.24 1.02 1.10 0.44 0.54

100 2.16 0.18 0.94 3.97 2.15 2.86 0.77 0.96 6.45 3.91 0.70 2.06 2.33 2.63 1.16

250 2.04 0.05 0.48 3.35 2.30 7.21 0.11 0.37 9.09 6.86 5.10 0.16 0.22 7.60 5.35

500 1.78 0.01 0.28 2.89 2.14 7.78 0.10 0.24 9.46 7.94 7.70 0.12 0.08 9.95 7.70
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Table 4

Average performance ratios ρ∗
ij

[%] and computation times t [s] of the considered algorithms for m = 2 and

k = 2.

n ρ∗
ij

t

PH1 PH2 PH3 PH4 PH5 P-Polyn PH1 PH2 PH3 PH4 PH5

Set 1: pj ∈ (0,90), wjq ∈ [1,10), 1djq ∈ [100,200)

9 0.26 0.77 1.58 0.59 0.26 12.006 0.000 0.001 0.000 0.001 0.001

20 3.25 3.73 4.61 7.02 3.25 102.100 0.002 0.001 0.002 0.002 0.001

30 3.51 3.64 4.70 9.42 3.51 328.103 0.005 0.003 0.002 0.003 0.006

Table 5

Exemplary average computation times [s] – alg. PH1, Set 1.

m k

2 10 20 2 10 20 2 10 20 2 10 20 2 10 20

2 0.00 0.00 0.00 0.01 0.01 0.01 0.04 0.06 0.03 0.32 0.61 0.69 1.14 3.01 4.06

3 0.00 0.00 0.00 0.01 0.00 0.01 0.04 0.03 0.02 0.29 0.51 0.41 1.25 2.74 3.36

5 0.00 0.00 0.00 0.01 0.00 0.01 0.04 0.01 0.02 0.28 0.31 0.12 1.31 2.20 2.10

7 0.00 0.00 0.00 0.01 0.00 0.01 0.04 0.02 0.02 0.27 0.18 0.09 1.29 1.81 1.11

10 0.00 0.00 0.00 0.01 0.00 0.01 0.03 0.02 0.02 0.25 0.10 0.09 0.99 1.25 0.44

n = 9 n = 50 n = 100 n = 250 n = 500

assign such jobs to the optimal interval, moreover they save the processor time for next

jobs. Note that PH3, where job processing times are considered, is also good for larger

instances and its performance ratio is close to the one for PH2.

Since the computational complexity of all constructed heuristic algorithms is similar

and we tested these algorithms mostly based on rather usual instances (number of proces-

sors less than number of jobs, job processing times less than intervals (djq−1, djq ], etc.),

their computation times are also similar. Thus, the conclusions drawn for PH1 and Set 1

(based on Table 5) can be applied to all algorithms and all sets. First of all, let us notice

that the computation times depend on the number of processors, m, only for large num-

bers of moments of changes of job values (k > 10) and large numbers of jobs (n> 250).

What is more, this dependency is decreasing, which confirms the reduced computational

complexity of the algorithms PH1–PH5 (see the appendix for justification of such phe-

nomena). On the other hand, the computation times increase slightly with the increase of

k if the number of jobs is large (n > 250) and the number of processors is small (m = 2

or 3), which also confirms the reduced computational complexity of the analyzed algo-

rithms. Obviously, the computation times increase significantly with the increase of the

number of jobs, since the computational complexity of the algorithms depends squarely on

the number of jobs. Therefore, the described numerical experiments show that for typical

instances the considered algorithms PH1–PH5 perform according to the reduced compu-

tational complexity.

Finally, Table 4 shows that the heuristic algorithms are faster by several orders of mag-

nitude than the constructed pseudo-polynomial time algorithm. The difference for more

general problem with different for all jobs moments of change of job value might be even

larger.
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8. Conclusions

In this paper, a scheduling problem on parallel processors with job values characterized

by non-monotonic stepwise functions was addressed. We showed that the problem is in-

teresting from practical point of view by giving examples of real-life systems which can

be modelled in such a way. We proved that the problem is NP-hard in the ordinary sense

and we provided a pseudo-polynomial time algorithm solving its special case with identi-

cal moments of job value changes. Since the computational complexity of the algorithm

is quite high and it cannot solve the general version of the problem, we also constructed

and tested a number of heuristic algorithms. The obtained results of the tests confirm that

three of these algorithms perform clearly better than the others.

The aim of further research is to construct even more exact and faster heuristic (or

maybe approximation) algorithms and determine computational complexity of a more

general case of the problem with variable number of processors.

Appendix A: Estimation of the Computational Complexity of the Scheme PHi

for Usual Instances

For the instances with job processing times less than the intervals (djq−1, djq ] we can

assume that for the first m jobs the proper intervals will be found in 1,2, . . . ,m iterations,

respectively (the first interval is always empty in this situation, but in the worst case the

jobs will be placed on different processors). Thus, the time needed to find these intervals is

1 + 2 +· · ·+m = O(m2). Similarly, for the second portion of m jobs, the proper intervals

will be found at most for the second time. Thus, the time needed to find these intervals

is O(2m2). We have ⌈n/m⌉ such portions of jobs. Therefore, the time needed to find the

intervals for all the jobs is equal to:

O
(

m2
)

·
(

1 + 2 + · · · + ⌈n/m⌉
)

= O
(

m2 ·
(

n2/m2
))

= O
(

n2
)

.

In an optimistic situation we can assume that the best intervals for different jobs will be

in different places on the time axis and we can assume that for the first m jobs the proper

interval will be found in 1 iteration, for the second portion of m jobs it will be 2 iterations,

etc. Thus, we obtain:

m ·
(

1 + 2 + · · · + ⌈n/m⌉
)

= O
(

m ·
(

n2/m2
))

= O
(

n2/m
)

.
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Darbų tvarkaraščių uždavinys su nemonotoninėmis laiptinėmis
vertėmis

Adam JANIAK, Tomasz KRYSIAK, Radosław TRELA

Straipsnyje nagrinėjamas lygiagrečiųjų procesorių tvarkaraščio uždavinys su kintamomis darbų ver-

tėmis. Skirtingai nuo kitų straipsnių šioje srityje, daroma prielaida, kad darbai yra charakterizuo-

jami nemonotoninėmis laiptinėmis darbų baigimo laiko funkcijomis (anksčiau tik nedidėjančios

funkcijos buvo naudojamos). Pateikiami pavyzdžiai realių sistemų, kurios gali būti taip modeliuo-

jamos, demonstruoja, kad toks uždavinys yra įdomus praktikoje. Parodyta, kad uždavinys yra NP-

sudėtingas, tačiau specialiam uždavinio atvejui yra sudarytas pseudopolinominis algoritmas. Pateik-

ta keletas euristinių algoritmų ir jie eksperimentiškai ištirti.


