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Abstract. Lithuanian vowel and semivowel phoneme modelling framework is proposed. Using this
framework, the phoneme signal is described as the output of a linear multiple-input and single-
output (MISO) system. The MISO system is a parallel connection of single-input and single-output
(SISO) systems whose input impulse amplitudes vary in time. Within this framework two synthesis
methods are proposed: harmonic and formant. The synthesized sounds obtained by the harmonic
synthesis method are compared with those obtained by the formant method. Application of this
modelling framework to all of Lithuanian vowel and semivowel synthesis gives naturally sounding
result.
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1. Introduction

Lithuanian speech digital processing is a popular area of research by Lithuanian scien-
tists and engineers (see, for example, Kazlauskas, 1999; Lipeikienė and Lipeika, 1998;
Maskeliūnas et al., 2009; Tamulevičius et al., 2010). Lithuanian speech synthesis is a part
of this area that attracts considerable attention (Kasparaitis, 2001).

There exist two main speech signal synthesis types: concatenative synthesis and for-
mant synthesis (Donovan, 1996; Frolov and Frolov, 2003; Cook, 2002). Synthesized
speech sounds are created using concatenation of pieces of recorded speech stored in a
database in concatenative synthesis. Formant synthesizers do not use any recorded sounds.
The synthesized sound is obtained as an output of a linear filter and is described by a math-
ematical model with a finite number of parameters.

Many synthesizers that use formant synthesis produce artificial speech that sound
robot-like. Formant synthesizers, however, have advantages against the concatenative
ones. The speech produced by a formant synthesizer can be sufficiently intelligible even
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(a) (b)

Fig. 1. The periodic character of phonemes: (a) the plot of the vowel /a/, (b) the plot of the semivowel /m/.

at high speed. High speed speech synthesizing is necessary for screen reading programs.
Additional advantages of formant synthesizers against the concatenative ones are the fol-
lowing: formant synthesizers require less computer memory than concatenative ones as
they need no speech unit database. Formant synthesizers can control prosody aspects of
the synthesized speech (intonation, rhythm, stress).

Both speech synthesis types attract attention of researchers. Concatenative synthesis
of Lithuanian speech was studied in the Kasparaitis papers (1999, 2000, 2005). Methods
of quality improvement in concatenative speech synthesis for Polish language were con-
sidered in Janicki (2004). What concerns Lithuanian speech, formant synthesis has not yet
attracted much attention of researchers. The most known Lithuanian speech synthesizer
is based on concatenative synthesis (Balbonas, 2009; Kasparaitis, 2001). The practical
implementation can be seen in (Garsiai.lt). Problems related to developing of Lithuanian
speech formant synthesizers are considered in Ringys and Slivinskas (2009), Ringys and
Slivinskas (2010), Pyž et al. (2011). A phoneme synthesis method based on the phoneme
signal expansion into harmonics is proposed in our paper (Pyž et al., 2012).

In this paper, we present an improved version of the harmonic method and compare
it with an alternative formant method. The paper is organized as follows. The vowel
and semivowel phoneme signals decomposition into harmonics is given in Section 2.
The vowel and semivowel phoneme signals decomposition into formants is described in
Section 3. The vowel and semivowel phoneme model is considered in Section 4. Section 5
deals with selection of the phoneme representative period. Determining of the inputs is
described in Section 6. The modelling accuracy is analysed in Section 7.

2. Vowel and Semivowel Phoneme Signals Decomposition into Harmonics

Our goal is to get mathematical models of the analysed phoneme, which could be used
as a base of phoneme synthesizer. In general case, the character of vowel and semivowel
signals is periodic (see Fig. 1).

One can see from Fig. 1 that a phoneme signal has a rather complex form. It is very
difficult to find such a model that fits the phoneme signal well. We use the approach of
expanding of a complex signal into the sum of simpler signals. We suggest expanding the
signal into the sum of a finite number of components which we call the phoneme signal
harmonics (similarly as harmonics of a periodic signal in Fourier series theory).
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Table 1
The frequency band partition into subbands.

Subband number Subband

1 [0.5f0,1.5f0)

2 [1.5f0,2.5f0)

. . .

K [((K − 1) + 0.5)f0, (K + 0.5)f0)

 

Fig. 2. The magnitude response of a vowel and its partition into subbands. 
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Fig. 2. The magnitude response of a vowel and its partition into subbands.

Suppose the phoneme signal s(n) can be expanded into the sum of K harmonics:

s(n) = h1(n) + h2(n) + · · · + hK (n), n = 1, . . . ,N, (1)

where K is the number of harmonics, N is the number of samples of the phoneme.
In order to decompose the phoneme signal into harmonics, we have to estimate the

fundamental frequency of this signal. Below we present the recurrent algorithm of esti-
mating of the fundamental frequency and calculating harmonics. At first, we calculate the
magnitude response of the whole vowel phoneme signal. Let f0 be an initial estimate of
the fundamental frequency. We take this estimate equal to the frequency of the first pick of
the spectrum. Then we partition the frequency band 0–6000 Hz into the subbands shown
in Table 1.

K is the largest integer number for which the inequality (K + 0.5)f0 6 6000 holds

K = [6000/f0 − 0.5], (2)

where [x] stands for the integer part of a real number x . Note that we do not consider the
records obtained with the sampling frequency lower than 12 000 Hz. For the higher values
of the sampling frequency we consider the frequency band [0,6000] Hz only. An example
of a magnitude response and its partition into subbands is given in Fig. 2.

In each subband, we determine the highest amplitudes a1, a2, . . . , aK , and find the
frequencies corresponding to those amplitudes: g1, g2, . . . , gK . At first glance, these fre-
quencies look like the formants, this, however, is not true in general case. Then we compare
the frequency sequences f0,2f0, . . . ,Kf0 and g1, g2, . . . , gK . Our goal is to find such an
f0 that minimizes the sum of the distances between the frequencies:

S0 =

K
∑

k=1

|kf0 − gk|. (3)
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The algorithm that achieves this goal is described below. The data of the algorithm is

as follows:

1. The initial value of the fundamental frequency f0.

2. The number of subbands (harmonics) K (K is defined by (2)).

3. The values of the harmonic frequencies g1, g2, . . . , gK .

The steps of the algorithm are listed below.

Step 1. Compute the sum of the distances S0 =
∑K

k=1
|kf0 − gk|.

Step 2. Set △ = 1

(△ is the difference between the new fundamental frequency value fnew and the old

fundamental frequency value f0).

Step 3. Compute the new fundamental frequency value fnew = f0 + △.

Step 4. Compute the sum of the distances Snew =
∑K

k=1
|kfnew − gk|.

Step 5. If Snew < S0 then
f0 = fnew, S0 = Snew

else

fnew = f0 − △, Snew =

K
∑

k=1

|kfnew − gk|

if Snew < S0 then
f0 = fnew, S0 = Snew

else
△ = △/2.

Step 6. If △ < 0.01 then
Go to Step 7

else
Go to Step 3

Step 7. END

We denote the obtained value by f̃0.

A block diagram of the algorithm presented above is shown in Fig. 3.

At first glance it may seem that the cycle becomes infinite if the condition Snew < S0

is always true. In practice, when the f0 changes, the distance between the values kf0 and

gk can not decrease all the time; at a certain time it will start to increase.

After obtaining the optimal value f̃0, we can decompose the phoneme signal into K

harmonics. For this purpose, we make a new frequency band partition into subbands ac-

cording to Table 1 (with f0 = f̃0).

We introduce an auxiliary function gk(m) defined as follows:

gk(m) =

{

FFT(s(m)), m ∈ [((k − 1) + 0.5)f̃0, (k + 0.5)f̃0],

0, m /∈ [((k − 1) + 0.5)f̃0, (k + 0.5)f̃0],
(4)
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Fig. 3. A block diagram of the fundamental frequency refining algorithm.

where k = 1, . . . ,K , and compute its inverse Fourier transform

h̃k(n) =

(

1

N

) N
∑

m=1

gk(m)e(2πi)(n−1) m−1

N , (5)

n = 1, . . . ,N , i – imaginary unit.
The obtained signal h̃k is the k-th harmonic of the phoneme signal. The first three

harmonics of the female vowel /a:˜/ are shown in Fig. 4.
We see from Fig. 4 that the harmonic amplitudes are not constant. Note that the har-

monic periods are not constant, too. This changing over time of the amplitudes and periods
gives sounding naturalness.
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Fig. 4. The first three harmonics of the phoneme /a:˜/ (as in the word ãčiū). 

Fig. 4. The first three harmonics of the phoneme /a:˜/ (as in the word ãčiū).

Fig. 5. The plots of the spectrum of the phoneme /a:˜/.

3. Vowel and Semivowel Phoneme Signals Decomposition into Formants

A formant (formant frequency) is defined in a usual way as amaximum of the phoneme
spectrum envelope. In time-domain representation, a formant can be described as the out-
put signal of the filter whose impulse response is a damped sinusoid (Cook, 2002). In
the current paper, we use the Linear Predictive Coding (LPC) method (Markel and Gray,
1976) as a formant extraction tool. We need to partition the frequency band0-6000 Hz into
the subbands where each band corresponds to one formant. We execute the partition in
the following way. Using the LPC method, the signal envelope is obtained. The frequency
values corresponding to the envelope local minima are considered as partition points. It
is very important that the formant extraction coincide with the harmonic extraction, i.e.
a part of a harmonic cannot belong to one formant and the other part belong to the other
formant. Also, each harmonic should be assigned to a certain formant. We propose to add
the neighbouring harmonics (calculated in Section 2) corresponding to a selected formant
of spectrum. We call the obtained signal a formant. Joining of the harmonic frequencies
of the phoneme spectrum into groups corresponding to the particular formant frequencies
is shown in Fig. 5.

The first three formant components of the female vowel /a:˜/ are shown in Fig. 6.
We see from Figs. 4 and 6 that in general case the form of a formant signal is more

complex than that of a harmonic signal. Harmonics are more similar to sine waves, and
the formants look like pulsating vibrations.
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Fig. 6. The first three formant components of the phoneme /a:˜/. Fig. 6. The first three formant components of the phoneme /a:˜/.

Fig. 7. A MISO system for vowel phoneme modelling.

4. The Vowel and Semivowel Phoneme Model

We have to expand a phoneme signal into components. It is natural to choose the parallel
connection model where each component is modelled separately. We propose to use for
modelling such a discrete time linear stationary system with L inputs and a single output
(L is the number of harmonics (in harmonic synthesis method) or formants (in formant
synthesis method)). The system is stationary as its parameters are lumped, i.e. they do
not vary in time for a selected phoneme. The system is linear since the output is a linear
combination of the present and past values of the input signals.

A diagram of such a system is shown in Fig. 7, where {ul(n)}, {hl(n)}, {yl(n)}

(n = 0,1,2, . . .) are the sequences of the input, impulse response and output of the l-th
single-input and single-output (SISO) system, and {y(n)} is the output sequence of the
multiple-input and single-output (MISO) system. The chosen model allows exciting each
channel with a separate input sequence. This enables us to preserve harmonic amplitude
variation.

If we take a single period of the phoneme formant we get a signal of a certain form. This
signal is similar to a quasipolynomial that is the product of a sinusoid and polynomial. We
consider such a MISO system in which each SISO system (sometimes called a channel)
impulse response is described by a third degree quasipolynomial

hl(n) = e△tλlt
(

al1 sin(2πfln1t + ϕl1) + al2t sin(2πfln1t + ϕl2)

+ al3t
2

sin(2πfln1t + ϕl3)+al4t
3

sin(2πfln1t + ϕl4)
)

(6)

where λl < 0 is the damping factor, fl – the frequency, ali (i = 1, . . . ,4) – the amplitudes,
ϕli (i = 1, . . . ,4) – the phases, 1t = 1/fs (fs – the sampling frequency). In order to get
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Fig. 8. Selecting of the vowel phoneme pitch with the highest amplitude. 

t

  

Fig. 8. Selecting of the vowel phoneme pitch with the highest amplitude.

smoother formant (harmonic) signals we set the amplitude al1 = 0. Computations show
that a third degree quasipolynomial model is a good trade-off between the result quality
and model complexity.

5. Selection of the Phoneme Representative Period

The vowel and semivowel phoneme signals are quasi-periodic, i.e. their periods are not
exactly the same. Therefore we consider only a single period for each phoneme. Such a
period is usually called a pitch.

Let

yM =
[

y(0), y(1), y(2), . . ., y(M − 1)
]T

(7)

be a sequence of samples of the considered pitch of the analysed phoneme. This sequence
can be treated as the output of a MISO system (see Section 4).In order to automate this
selection procedure, we choose the amplitude size as the selection criteria, i.e. the pitch
with the highest amplitude is selected as a representative one. We are looking for a rep-
resentative period that is within the 60% of the phoneme signal samples (i.e. we reject
20% of the samples in the signal start part and 20% in the signal end part). Figure 8 shows
a vowel phoneme signal made of several pitches where the pitch with the highest amplitude
is marked with an arrow.

We use the representative period to compute the parameters of the MISO system im-
pulse response components (6). The start point of the representative pitch (the point tstart

in Fig. 9) is selected in the following way:

1. The phoneme signal is filtered in the low-pass filter with the 2.5f 0 bandwidth. Such
a bandwidth is chosen in order the filtered signal is the sum of the first two harmon-
ics. This signal approximates the original phoneme signal and its periods coincides
with the phoneme signal periods. The filtered signal is shown in Fig. 9.

2. A point of the filtered signal crossing with the abscises axis is chosen (we start from
the point whose abscissa coincides with the pitch maximum point abscissa and go
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Fig. 9. Selecting of the start and end points of the representative pitch.

to the left along the filtered signal until we find the first point where the filtered
signal crosses the x-axis from the bottom).

3. The pitch start point is searched in the neighbourhoodof the found crossing point. In
the beginning we look for a point with a negative amplitude of the smallest absolute
value in the vicinity of the first fs/3f0 points to the right from the crossing point or
the point where the phoneme signal crosses the abscises axis. If we fail to find such a
point, we look for the first point to the left with a negative amplitude of the smallest
absolute value in the vicinity of the first fs/3f0 points or the point of the signal
crossing with the abscises axis. If such a point does not exist, then a point of the
filtered signal crossing with the abscises axis is considered as the pitch beginning
point.

The procedure of selection of the end point of the representative pitch (the point tend in
Fig. 9) is as follows. We select the pitch start point and find the point that is at the distance
of T0 = 1/f0 from this start point. With a help of the found point we determine the pitch
end point in the same way as we described above (with the start point).

The parameters of the impulse responses are estimated using Levenberg–Marquardt
method. A step-by-step algorithm of this method for a second degree quasipolynomial is
described in the paper (Pyž et al., 2011). After a simple modification the algorithm can
be easily adapted for a third degree quasipolynomial.

6. Determination of the Inputs

A MISO system proposed in Section 4 for vowel phoneme modelling is stationary. We
compute parameters of the impulse responses of the SISO components of this system
under the assumption that the unit impulse is given to the system input. If the unit impulses
are given to the system input at intervals T = 1/f0 (see Fig. 10), then a signal with equal
periods is obtained in the system output; those periods are the same as the representative
period.

Such a signal sounds synthetically. In order to obtain a quasiperiodic output signal,
the system should be excited by impulses with different amplitudes. A procedure of deter-
mining of such impulses is presented in this section.
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Fig. 10. A SISO system with the unit impulse inputs. 
Fig. 10. A SISO system with the unit impulse inputs.

 

Fig. 11. A part of the phoneme /a/ signal divided into periods. 
Fig. 11. A part of the phoneme /a/ signal divided into periods.

First it is necessary to divide (segment) automatically the whole phoneme signal into
periods. The segmentation procedure determines the start and end points of each period
in the same way as in the case of the representative pitch (see Section 4). An example of
such segmentation is shown in Fig. 11.

After segmenting a signal into periods, we determine the start point of each period. We
then divide the first harmonic or formant (harmonic – in harmonic synthesis method, for-
mant – in formant synthesis method) component into time intervals using the determined
points. In each of these intervals, we find the maximum points. The ordinates of these
points are stored in a vector that is the first column of the matrix that we call the input
matrix. Analogously we segment the second component into the same time intervals. We
then find again the maximum point in each of these intervals. The ordinates of these points
are stored in a vector that becomes the second column of the input matrix. The algorithm
is continued until all the L input matrix columns are filled in. In the end, we get a P × L

matrix where P is the number of time intervals.
The amplitude of the impulse given to the system input whose output signal is the rep-

resentative period must be equal to one. Therefore we have to norm the input matrix. The
norming is carried out separately for each column. The norming procedure is as follows:
we select a row that corresponds to the representative pitch and divide all the values of that
column by the value at intersection of this column and the selected row. After the norming
procedure is completed, we obtain the ratios of the representative period amplitude and
amplitudes of the all periods. These ratios determine the dynamics of the real harmonic
(formant) component amplitudes. The inputs of the first three channels of a MISO system
are presented in Fig. 12 (the harmonic synthesis method case).

From Fig. 12 we see that the system inputs are changing in time. For example, in
the second half of the inputs the 1st channel impulse amplitudes increase, while the 3rd
channel impulse amplitudes significantly reduce.
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Fig. 12. The inputs of the first three channels of a MISO system. 

 Fig. 12. The inputs of the first three channels of a MISO system.

Since we fix the start point of each period, it is not difficult to calculate the lengths of
the phoneme periods:

T = [T1, T2, . . . , TP ]. (8)

The entries of the vector T define the distances between the input impulses.

7. Experimental Results

Lithuanian language phonemes (sounds) have been studied in Girdenis (1995).A. Girdenis
listed 58 phonemes in this work. All these phonemes are unstressed. In order to take stress
into account, this list was appended by 29 stressed phonemes (Kasparaitis, 2005). A study
of Lithuanian compound diphthongs suggested including of 4 additional phonemes (Kas-
paraitis, 2005). All the phonemes mentioned above along with a pause make a list of 92
units.

Lithuanian language has twenty eight pure vowel phonemes. Five of them are marked
with a letter “a”, five – with a letter “e”, three – with a letter “ė”, five – with a letter ”i”,
five – with a letter “o”, and five – with a letter “u”.

The Lithuanian consonants “j”, “l”, “m”, “n”, “r”, “v” are called semivowels as they
have both vowel and semivowel features. Lithuanian language has nineteen pure semivovel
phonemes. One of them is marked with a letter “j”, four – with a letter “l”, four – with a
letter “m”, four – with a letter “n”, four – with a letter “r”, and two – with a letter “v”.

We carried out the modelling for all the vowel and semivowel phonemes using 50 ut-
terances by female and 50 utterances by male. The list of Lithuanian words used in the
experiment is presented in Appendix A. In order to estimate the model quality we calcu-
lated the average spectrum. The comparison of the spectra of the true phoneme /a/ signal
and its models is shown in Fig. 13.

Figure 13 shows that the obtained spectra almost coincide. The audio test revealed that
the differences have no significant influence to the sound intelligibility and quality.
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Fig. 13. The spectra of the true phoneme /a/ signal and its models.

Table 2
The average RMSE and its confidence intervalsfor the estimated vowel phoneme signal spectrum.

Phoneme Formant method case Harmonic method case

Female phoneme Male phoneme Female phoneme Male phoneme

RMSE Confidence
intervals

RMSE Confidence
intervals

RMSE Confidence
intervals

RMSE Confidence
intervals

/a/ 13.0% [10.8,14.8] 13.1% [10.7, 14.9] 12.7% [11.3, 14.6] 12.4% [11.1, 14.5]
/a`/ 14.0% [11.8, 15.8] 12.7% [11.6, 14.2] 12.4% [10.8, 13.5] 11.9% [9.2, 13.1]
/a:/ 12.9% [11.7, 14.1] 13.5% [11.6, 15.6] 12.4% [10.8, 12.9] 12.8% [10.9, 14.1]
/a:´/ 12.9% [10.8, 15.9] 11.6% [10.2, 12.8] 10.4% [9.4, 11.1] 11.3% [10.1, 12.9]
/a:˜/ 13.7% [12.0, 15.5] 14.9% [11.4, 17.5] 13.5% [11.6, 15.4] 13.8% [11.9, 15.1]
/e/ 14.1% [12.4, 15.7] 13.7% [12.0, 15.5] 13.6% [11.2, 14.9] 13.4% [11.4, 15.1]
/e`/ 13.9% [12.1, 15.8] 13.9% [12.4, 15.2] 13.0% [11.0, 14.8] 12.9% [11.1, 14.8]
/e:/ 11.6% [10.6, 12.7] 14.1% [12.9, 15.8] 9.7% [8.3, 10.8] 11.3% [10.0, 12.5]
/e:´/ 11.3% [10.0, 12.6] 14.8% [14.0, 15.7] 8.5% [7.3, 9.1] 10.9% [9.1, 12.8]
/e:˜/ 14.2% [12.6, 15.8] 13.8% [12.4, 15.9] 12.1% [11.5, 13.7] 13.1% [11.4, 14.8]
/ė:/ 12.8% [11.0, 14.3] 14.4% [13.8, 15.5] 12.4% [10.4, 14.4] 11.8% [10.0, 13.2]
/ė:´/ 13.6% [11.9, 15.5] 12.9% [11.7, 14.2] 12.8% [10.9, 14.0] 12.2% [10.5, 13.7]
/ė:˜/ 16.8% [16.0, 19.0] 13.5% [12.3, 15.8] 12.5% [10.9, 14.1] 13.0% [11.4, 14.2]
/i/ 13.1% [10.7, 14.9] 14.6% [13.8, 15.4] 13.3% [11.5, 14.8] 12.9% [10.8, 15.9]
/i`/ 12.8% [11.1, 14.4] 13.2% [10.8, 14.9] 12.4% [10.8, 13.9] 12.1% [9.9, 14.8]
/i:/ 13.6% [11.9, 15.5] 12.8% [10.7, 15.8] 12.3% [10.8, 13.9] 12.9% [11.3, 14.8]
/i:´/ 12.9% [10.7, 15.9] 15.9% [14.4, 16.5] 13.0% [11.5, 14.2] 12.7% [9.9, 14.3]
/i:˜/ 13.9% [12.5, 15.2] 15.6% [11.8, 19.3] 12.3% [10.9, 13.8] 12.4% [10.7, 14.8]
/o/ 11.8% [10.8, 12.8] 14.9% [14.1, 15.9] 11.1% [9.7, 13.5] 10.9% [8.9, 13.8]
/o`/ 11.7% [10.2, 12.9] 12.8% [10.9, 14.4] 9.2% [8.0, 9.6] 9.9% [8.6, 11.7]
/o:/ 14.1% [11.8, 15.9] 13.1% [12.7, 18.8] 12.4% [10.4, 16.9] 12.1% [9.8, 13.8]
/o:´/ 12.7% [10.9, 14.2] 13.5% [12.2, 15.7] 12.3% [10.5, 15.9] 12.4% [11.7, 13.7]
/o:˜/ 14.0% [12.2, 15.3] 16.6% [12.8, 20.3] 11.6% [11.0, 12.4] 13.6% [11.8, 15.0]
/u/ 13.4% [11.6, 15.4] 14.5% [13.7, 14.7] 13.2% [11.3, 15.0] 14.3% [13.8, 15.2]
/u`/ 13.5% [11.8, 15.3] 12.9% [12.5, 14.2] 12.5% [10.9, 16.8] 10.3% [9.0, 11.6]
/u:/ 14.6% [11.2, 17.1] 14.7% [14.0, 15.9] 13.3% [11.9, 15.1] 14.4% [12.8, 16.2]
/u:´/ 13.5% [11.8, 15.5] 18.1% [17.0, 19.8] 13.2% [12.1, 14.9] 13.7% [11.8, 15.1]
/u:˜/ 16.4% [14.4, 18.8] 19.6% [18.3, 20.7] 15.4% [12.8, 16.7] 15.8% [14.0, 18.3]

Average 13.5% 14.3% 12.3% 12.5%

The average root-mean-square-error (RMSE) of the estimated signal spectrum and its
confidence intervals for each of the 28 vowel and 19 semivowel phonemes are presented
in Tables 2 and 3. The RMSE is computed by the following formula:
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Table 3
The average RMSE and its confidence intervalsfor the estimated semivowel phoneme signal spectrum.

Phoneme Formant method case Harmonic method case

Female phoneme Male phoneme Female phoneme Male phoneme

RMSE Confidence
intervals

RMSE Confidence
intervals

RMSE Confidence
intervals

RMSE Confidence
intervals

/j"/ 16.2% [13.5, 17.4] 21.8% [19.1, 23.2] 15.8% [15.3 16.8] 15.9% [14.8, 17.9]
/l/ 17.2% [14.5, 18.4] 26.7% [25.6, 27.6] 17.6% [16.5, 19.6] 18.9% [16.2, 21.2]
/l˜/ 18.5% [17.6, 19.7] 22.6% [20.4, 24.2] 22.4% [21.5, 24.0] 20.5% [19.5, 21.9]
/l/ 25.9% [25.5, 28.3] 27.5% [25.7, 31.0] 24.3% [23.1, 26.6] 25.4% [23.6, 26.9]
/l"˜/ 25.7% [24.6, 27.2] 17.7% [17.0, 18.2] 23.4% [22.4, 24.6] 19.1% [16.9, 20.7]
/m/ 16.5% [15.5, 18.0] 19.1% [17.1, 20.8] 15.0% [14.7, 15.5] 15.4% [14.3, 17.9]
/m˜/ 17.7% [16.0, 19.2] 18.7% [17.6, 19.2] 11.8% [10.3, 13.0] 12.2% [10.5, 13.5]
/m"/ 10.9% [7.9, 13.3] 17.9% [16.8, 18.9] 9.1% [7.2, 10.8] 12.1% [9.9, 13.8]
/m"˜/ 19.7% [17.8, 20.9] 14.4% [11.0, 16.9] 15.7% [14.6, 18.5] 12.9% [10.9, 15.3]
/n/ 14.6% [11.1, 17.1] 11.9% [8.9, 13.9] 11.8% [9.2, 14.0] 10.9% [7.9, 13.4]
/n˜/ 19.1% [16.0, 20.9] 17.6% [16.9, 17.8] 15.5% [12.2, 18.1] 14.8% [11.3, 17.3]
/n"/ 23.2% [20.6, 25.2] 16.7% [14.7, 18.9] 16.3% [15.0, 17.8] 14.7% [13.6, 15.7]
/n"˜/ 25.9% [25.2, 26.7] 22.6% [20.8, 23.8] 21.7% [21.1, 22.3] 18.9% [17.7, 19.3]
/r/ 18.6% [18.1, 18.9] 23.8% [21.4, 26.4] 16.7% [14.9, 17.9] 17.6% [16.8, 18.2]
/r˜/ 22.8% [20.1, 24.2] 25.1% [24.7, 26.9] 18.0% [16.9, 20.3] 19.1% [16.9, 20.9]
/r"/ 18.7% [18.2, 18.9] 23.3% [21.7, 25.1] 15.1% [12.5, 18.6] 17.2% [15.1, 18.6]
/r"˜/ 23.0% [21.6, 24.9] 24.1% [23.6, 25.8] 21.1% [18.6, 24.1] 20.9% [19.5, 22.3]
/v/ 19.5% [16.4, 21.2] 16.6% [14.5, 18.9] 15.1% [13.8, 16.4] 14.7% [11.9, 17.0]
/v"/ 16.4% [14.3, 18.9] 19.6% [16.4, 21.4] 15.4% [13.7, 16.9] 13.6% [12.1, 15.6]

Average 19.5% 20.4% 16.9% 16.5%

RMSE = 100% ×

√

∑Q
q=1

(Sq − Ŝq)2

Q
, (9)

where Sq is the q-th value of the spectrum of the true phoneme, Ŝq – the q-th value
of the spectrum of the modelled phoneme, Q is the number of the spectrum values of
true/modelled phoneme. The confidence intervals are stated at the 95% confidence level.

The graphical representationof the averageRMSE shown in Tables 2 and 3 is presented
in Figs. 14 and 15.

The average RMSE for the estimated signal spectrum for all male and female vowels
is equal to 13.9% in the formant method case and 12.4% in the harmonic method case.
The average RMSE for the estimated signal spectrum for all male and female semivowels
is equal to 19.9% in the formant method case and 16.7% in the harmonic method case.

Both the spectrum estimation errors and audio test revealed that the quality difference
between the sounds synthesized by the harmonic and formant methods is small.

8. Conclusions

The main contribution of this paper is avowel and semivowel phoneme synthesis frame-
work that is based ona vowel and semivowel phoneme mathematical model and an au-
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Fig. 14. The average RMSE for the estimated signal spectrum (formant method case): the upper plot – vowel
phonemes, the lower plot – semivowel phonemes.

 

 
 

 
 

Fig. 15. The average RMSE for the estimated signal spectrum (harmonic method case): the upper plot – vowel 
Fig. 15. The average RMSE for the estimated signal spectrum (harmonic method case): the upper plot – vowel
phonemes, the lower plot – semivowel phonemes.

tomatic procedure of estimation of the vowel phoneme fundamental frequency and input
determining.

In the case when the unit impulses are inputted to the system, the output signal is peri-
odic with identical periods. This period identity is the main reason of unnatural (synthetic)
sounding of the output signal. In order the synthesized signal sounds more naturally, we
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use impulses of different amplitudes and periods as inputs instead of the unit impulses
with a constant period.

A new fundamental frequency refining algorithm is proposed.
A new method that allows one to select the representative period automatically is given.
The harmonic method uses a higher-ordermodel with a larger number of parameters in

comparison with the formant method but the sounds synthesized by the harmonic method
sound more naturally.

The sufficiently small estimation errors (13% for vowels and 18% for semivowels)and
audio test show that the proposed framework gives sufficiently good vowel and semivowel
synthesis quality.

Appendix

A list of Lithuanian phonemes (originally created by Girdenis (1995) and appended by
Kasparaitis (2005)) with the examples of their usage (presented by the authors of this
paper).

Phoneme Description Example

1 /a/ The short unstressed vowel /a/ mamà ‘mother’
2 /a`/ The short stressed vowel /a/ lazdà ‘stick’
3 /a:/ The long unstressed vowel /a/ drąsà ‘courage’
4 /a:´/ The long vowel /a/ stressed with the falling accent kárdas ‘sword’
5 /a:˜/ The long vowel /a/ stressed with the rising accent ãčiū ‘thank you’
6 /e/ The short unstressed vowel /e/ medãlis ‘medal’
7 /e`/ The short stressed vowel /e/ sugèsti ‘turn bad’, ‘get out of order’
8 /e:/ The long unstressed vowel /e/ gręžinỹs ‘well’, ‘borehole’
9 /e:´/ The long vowel /e/ stressed with the falling accent érkė ‘mite’

10 /e:˜/ The long vowel /e/ stressed with the rising accent gyvẽnimas ‘life’
11 /ė:/ The long unstressed vowel /ė/ kėd˜ė ‘chair’
12 /ė:´/ The long vowel /ė/ stressed with the falling accent up´ėtakis ‘trout’
13 /ė:˜/ The long vowel /ė/ stressed with the rising accent gėl˜ė ‘flower’
14 /i/ The short unstressed vowel /i/ ligà ‘disease’, ‘illness’
15 /i`/ The short stressed vowel /i/ kìškis ‘rabbit’
16 /i:/ The long unstressed vowel /i/ tylà ‘silence’, ‘quiet’
17 /i:´/ The long vowel /i/ stressed with the falling accent rýtas ‘morning’
18 /i:˜/ The long vowel /i/ stressed with the rising accent arklỹs ‘horse’
19 /o/ The short unstressed vowel /o/ fotoaparãtas ‘camera’
20 /o`/ The short stressed vowel /o/ chòras ‘choir’
21 /o:/ The long unstressed vowel /o/ kovótojas ‘fighter’, ‘warrior’
22 /o:´/ The long vowel /o/ stressed with the falling accent šónas ‘side’
23 /o:˜/ The long vowel /o/ stressed with the rising accent Adõmas ‘Adam’
24 /u/ The short unstressed vowel /u/ kultūrà ‘culture’
25 /u`/ The short stressed vowel /u/ ùpė ‘river’
26 /u:/ The long unstressed vowel /u/ kūrinỹs ‘work’, ‘piece’
27 /u:´/ The long vowel /u/ stressed with the falling accent l´ūpa ‘lip’
28 /u:˜/ The long vowel /u/ stressed with the rising accent m˜ūšis ‘battle’
29 /j"/ The soft consonant /j/ (in Lithuanian, ‘j’ is always soft) j´ūra ‘sea’ jìs ‘he’

Continued in next page
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Phoneme Description Example

30 /l/ The consonant /l/ válsas ‘waltz’
31 /l˜/ The stressed consonant /l/ vil̃kas ‘wolf’
32 /l"/ The soft consonant /l/ valià ‘will’
33 /l"˜/ The soft stressed consonant /l/ gul̃ti ‘to go to bed’, ‘to lie down’
34 /m/ The consonant /m/ ãmatas ‘handicraft’
35 /m˜/ The stressed consonant /m/ lim̃palas ‘adhesive ’
36 /m"/ The soft consonant /m/ smẽgenys ‘brain’
37 /m"˜/ The soft stressed consonant /m/ kam̃štis ‘cork’
38 /n/ The consonant /n/ nãmas ‘house’
39 /n˜/ The stressed consonant /n/ iñkaras ‘anchor’
40 /n"/ The soft consonant /n/ nèšti ‘to carry along’
41 /n"˜/ The soft stressed consonant /n/ leñktis ‘to bend’, ‘to bow’
42 /r/ The consonant /r/ rãtas ‘wheel’ beržas ‘birch’
43 /r˜/ The stressed consonant /r/ gar̃sas ‘sound’
44 /r"/ The soft consonant /r/ kriáušė ‘pear’
45 /r"˜/ The soft stressed consonant /r/ kir̃tis ‘stress’, ‘blow’
46 /v/ The consonant /v/ vóras ‘spider’
47 /v"/ The soft consonant /v/ viáuksėti ‘to yelp’
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Lietuviškos šnekos balsių modelių kūrimas

Gražina PYŽ, Virginija ŠIMONYTĖ, Vytautas SLIVINSKAS

Lietuviškų balsių ir pusbalsių fonemų modeliavimo sistema yra pateikta. Naudojant šią sistemą,

fonemos signalas yra aprašomas kaip tiesinės dinaminės sistemos su daugeliu įėjimų ir daugeliu

išėjimų signalas išėjime. Pastaroji dinaminė sistema yra lygiagretus vieno įėjimo ir vieno išėjimo

sistemų junginys. Straipsnyje yra pasiūlyti du sintezės metodai: harmoninis ir formantinis. Sintezuo-

ti garsai, gauti harmoninės sintezės metodu, yra lyginami su garsais, gautais formantiniu metodu.

Taikant šią modeliavimo sistemą lietuviškų balsių ir pusbalsių sintezei, gaunamos natūraliai skam-

bančios fonemos.


