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Abstract. In the previous paper (Pupeikis, 1990) the problem of model 
order determination in the presence of outliers in observations has been con
sidered by means of introducing robust analogues of the sample covanance and 
cross-covanance functions instead of the respective classical function meanings 
used in the determinant ratio test. The aim of the given paper is the develop
ment of statistical hypothesis-testing procedures for determinat.ion of the model 
order of dynamic ofjects, described by linear difference equations. The results of 
numerical simulations by computer (Table 1) show the efficiency of the proposed 

I . 
statistical proced~lIes for determining the model order by input-output da.ta. in 
the presence of oiltliers in observations. 

I 
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1. Statement of the problem. The larger the number of 
model parameters, subject to estimating, the more complicated the 
model itselfs and the greater the amount of calculations required. 
for object identification. On the other hand, it is known (Iserrna.nn, 
1980) that an increase in the model order not always gua.rantees the 
improvement of a. mathematical description of the object processes. 
That is why there appears the problem of a ~ignjficance of separate 
parameters or their sets under outliers in observations. Robust 
inference methods, based on the application Of statistical decision 
rules and hypothesis-testing procedures can be used here. -' 

Consider a single input :le and single output U e of a linear 



R. Pupeikis 89 

discrete-time system, described 1:,y the linear difference equation 

(1) 

where 

A( -1) -1+ -n Z = alz ... + anz , 

B(z-l) = b1z-1 + ... + bnz-n (2) 

are polynomials; 

(3) 

are object parameters, subject to the estimation; Z-l is a backward 
shift operator; XI;, Uk = Yk + ~i are input and output sequences of 
the mentioned object; Yk is a noiseless sequence of the same object; 

(4) 

is the sequence' of independent identically distributed variables with 
an £ - contaminated distribution of the shape 

(5) 

p(6,) is a probability density 'distribution of the sequence ~Ii:; IJ.: is a 
random variable, taking values 0 or 1 in the probabilities pbJ.: = 1)= 
C, pClJ.: = 0) = 1 - c, Vk, 1}k are sequences of independent Gaussian 
variables with zero means, and variances O'~, O'~, respectively; 

~. -'r1 + 4(.,.-1)]-1~ 'ok - l .. ~ 'ok (6) 

is the sequence of correlated noise, acting the output of the model. 
It is assumed that the roots of A(z-l) are outside the unit circle 

of the Z-l - plane. The input signal Xli: is a· persistent excitation 
of arbitrary order. The true orders of the polynomials A(Z-l) and 
B~z-l) are unknown beforehand and are subject to the determina
tion by. processing of the input-output data. 



90 Model ~rder determination 

2. Model order determination in the absence of aut
liers in observations. Suppose that c = 0 in equation (5), there
fore p(ek) = N(O,o-n. In this case to test if a decrease of the loss 
func~ion yen) is significant when the order of model (1) is increased 
from n = nl to n = n2 the test quantity 

(7) 

is used with the asymptotic distribution F2(n~-nl).6-(2n2+1) (Astrom 
and Eykhoff, 1971). In equation (7) 

vend = eT(nl)e(nl) = (s - nl)u;, 

V(n2) = eT (n2)e(n2) = (s - n2)u~ 

are loss functions and 

; 

eT(nl) = (el,"" e.), 

iT(n2) = (el, ... ,eB ) 

(8) 

(9) 

are the equati~n errors or residual sequences of the applied param-, . 
eter estimati<tn method, using the same input-output data (Iser-
mann, 1980); IS is sample size; u;, u~ are variances of sequences (9), 
respectively. : 

This test 'is' based on the statistical independence of V(n2) and 
V(nt}- V(n2), which 'for normal residuals have x2 distributions, and 
s- (2n2 + 1) and 2(n2 - nl) degrees of freedom, respectively. Thus, 
we calculate the test quantity (7) using the loss funct·ions V(nl) 

and V(n2) and at the risk level a we choose n = nI, if F n1 •n2 < FOll 

where Fa can be taken from the tabulated F distribution. 
It is known (Soderstr8m, 1977), that some other order test 

statistics, based on the loss functions, have been worked out, too. 
. . 

3. Model order determination only under very large 
outliers in observations. It was assumed earlier that in equation 
(5) c = O. Now let us consider such a case when this assumption 
is invalid. Then the statistical decision rule, based on the test 
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quantity (7), for small sample size becomes of little use, since it is 
not robust even for small departures of p(6) from the normality. 
In this case it should be noted that non-normality essentially arises 
from the tails and if the extreme observations are censored, then 
there is hardly any difference lletween a normal sample and the 
Hon-normal one, and in that situation whatever is good for normal 
samples it is automatically good for non-normal ones too (Tiku, 
Tan and Balakrishnan, 1986). That is why in such a case the 
hypothesis-testing procedure of the form 

F. = V·(nl) - V·(n2) 8 - (2n2 + 1) 
n1,n2 V·(n2) 2(n2 - nd 

based on the classical F - test and censored samples 

can be used. 
Here 

V·(nd = e:(nl)e.(nl) = (s - nl)o,;" 

. V·(n2) = e:(n2)l.(n2) = (8 - n2)oL 

are loss functions and 

(10) 

(11) 

(12) 

are the remaining equation errors of size s - r2 and s ...;. T; after 
censoring the r2 and T; numbers of very large outliers in the ini
tial samples el, e2, . .. ,e. and el, e2, .. . , l" respectively. In addition 

e(l) ~ e(2) ~ ... ~ e(8-r2)' e(l) ~ e(2) ~ ... ~ e(,_r;); 

B+JB2+4.4C 
(1'e. = 

2JA(A - 1) 
,. 

'-1"2 

L tU) + r2f32e(.-r2) 
K=_~i=~l _____________ , 

m 

B" + JB; + 4.4.C. 
tTi.= 2J.4.(A.-1) , 

,,-r; 
L e(i) + r2/32e(,-r;) 

K. = ~i=-~l ____________ _ 

m 

(14) 

(15) 

(16) 
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where 0'2, 0'2 and 132, 13; are tabulated values, which depend on 
q = r2ls and q* = T;/S (Tiku, Tan and Balakrishnan, 1986); 

m = S - r:z + T:zJ32, m. = S - Ti + riP;, 

A = S - Ta, A. = S - r; 
3- r 2 

C = L e~i) + ra!3ae[s_r2) - mK2, 
;=1 

(17) 

(18) 

(19) 

Thus we calculate test quantity (10) using the loss functions 
V*(nl) and V*(na) and at the risk level a we choose n = nl if F~1,n2 < 
Fa. On the other hand large values of F~ n lead us to the rejection 

1, 2 

of it. 

4. Model order determination in the presence of very 
large and very small outliers in observations. Let us assume 
now, that in a fandom sample there appear observations not only 
with very lar~ but also with very small meanings. In this case 
the initial samples el>e2,." ,e. and el, ea,· .. ,e$ of size S ought to be 
arra,nged in a$cending order of their magnitude in such a way 

(20) 

Afterwards the smallest observations Tl and rr and the largest 
ones r2 and T; in random sequences (20) will be rejected. Then 
the remaining observations of sizes S - rl - T2 and s - ri - T; after 
censoring the mentioned observations are 

e(rl +1), eC"l +2), ... , eC,-r:l)' , 
and 

. (21) 

respectively. 
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• Therefore, equations (15) - (19) will be transformed into the 
formulas : 

B = r2O'2(eC.-r3) - K) - TIG'l(e(rl+1) - K), 

B. = r;O';(eC.-r;) - K:) - riO'i(e(r;+1) - K.), 

s-r2 

. L: e(i) + r1,81 eh +1) + T2,82 e(.-r2) 
K = .=rl+1 

m ' 

(22) 

(23) 

where 0'1, 0'2, and O'i, 0';, ,81, f3!J and f3i, .82 are tabulated values, 
depending on rl, r2, ri and r; j 

A. = s - ri - r;, (25) 

(26) 

It should be mentioned that the meanings of rl, ri and r2, r; 

can be chosen according to Tiku, Tan and Balakrishnan, {1986}. 

5. ~imulation results. The efficiency of the F - test statistics 
was investigated with the help of numerical simulation by IBM 

, PC/AT. The noiseless sequence Yk was generated by the equation 

Z-1 + O.5z-2 
(27) 

taken from the paper (Astrom and Eykhoff 1971). 
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The realizations of independent Gaussian variables (l: with zero 
mean and unitary dispersion and the sequences of the fir-st and 
second order AR models of the form 

(28) 

(29) 

were used as the input oequence x k. The reaiization of the discrete 
AR process was generated as the additive noise according to equa
tion (6), where 

(30) 

ek is a sequence of independent identically distributed variables of 
shape (4) with the £ - contaminated distribution (5) and cri = 1, 
(/~ = 100. 10 experiments with different realizations of the noise et 
were carried out at the noise level ..\ = cr~.1 cr~ = (0.5; 1.0). In each 
i-th experiment five different orders models of the form 

Uk = b1xJ:-l + aluk-l +6:, 
2 2 

UJ: = 2:bj X k-j + 2: ajUk_j + 6, 
j=1 i=1 

3 3 

. Uk = 2:bjXC-i + 2: GjUk_j + ek, 

j=l j=l 

4 4 

UJ: = 2:bj X.i:-j + 2: aj Uk-f +ek, 
j=1 i=l 

5 5 

Uk = 2:bj-J:k-j +2: ajUIc_j + ek, 
j=l i=1 

(31) 

(32) 

(33) 

(34) 

(35) 

were used, where the estimates of parameters of the abovemen
tioned models were obtained using the least squares formulas: 

(36) 
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Here. ;oT - (a'T b'T) 
....., - J , 

,T (' , ) a = al, ... , an I, (37) 

are model parameters estimates, whereas n = 1, t = 2; n = 2, t = 3; 
n = 3, t = 4; n = 4, t = 5, n =·5, t = 6 for equations (31) - (35), 
respecti \rely;· 

(38) 

is the vector of s observations of input X/c and output U/c .. 

Then for n = l,5 the test quantities (10) were calculated using 
formulas (22) - (26) and s = 80, rl = r2 = ri = r2 = 5, etl = et2 = 
eti = et; = 0.25, /31 = /32 = /3; = /32 = 0.9, [= 0.5. 

Table 1 illustrates the averaged by 10 experiments variables 
(10) according to 

(39) 

for different nl ,n2 and their confidence intervals A, obtained by the 
formula 

(40) 

and calculated for different inputs. 
Here UF" is the estimate of the variance UFO, et = 0;05 is the 

sign~ficance level; ta = 2.26 is the 100(1 - 0)% point of Students t 
distribution with 1/ = L-l degrees of freedoIh; L == 10 IS the number 
of the experiments. 

In this conection the first line of each column for different nl, n2 

corresponds to the Gaussian process, the second and third lines -
to the AR processes (28) and (29) at the input, respectively. It fol
lows from the simulation results, pres·ented here, that for different 
inputs and the same nl, n2 the accuracy of the averaged values (39) 
will be different. On the other hand, the accuracy of the above
mentioned values for the same input depends on the value of A. 
It also follows, that the averaged test quantity ~l,n~ for different 
inputs first decreases significantly and then slightly changes. The 
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Table 1. Averaged values (39) and their confidence intervals 
(40) depending on nl and n2 for different ). 

Fa nl, n2 (F:1,n2 ±~) for .\ = 0.5 (F: n ± ~) for .\ = 1.0 1, 2 

29.03± 2.99 24.13± 2.29 
2.49 1,2 23.33± 2.05 18.33 ± 2.07 

21.25 ± 3.00 17.71 ± 2.51 

0.96 ± 0.52 0.30 ± 0.39 
2,3 0.48 ± 0.54 0.48 ± 0.54 

1.04± 0.54 0.44 ± 0.56 

0.74± 0.34 1.06 ± 0.32 
3,4 -0.22 ± 0.16 0.90 ± 0.37 

0.29± 0.26 0.20 ± 0.26 

1.48 ± 0.27 1.28 ± 0.43 
2.53 4,5 . -0.08 ± 0.37 "';"0.49 ± 0.42 

0.48 ± 0.41 0.71± 0.41 

I • ~ ~ 

estimates of t}{e model order are found n = 2 because F 2,3 and F 3,4' 

~,s do not di~er significantly. . 

6. Conch1!~ions. The results of numerical simulation, carried 
out by computer, prove the efficiency of robust hypothesis-testing 
procedures (10) calculated on the basis of the classical test quantity 
(7) with the asymptotic F distribution and equations (22) - (26), 
used in the presence of outliers in observations. 
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