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Abstract. In the paper we describe the bus routing problem (BRP), which the goal is to find a route
from the start stop to the final stop minimizing the time and the cost of travel and the length of the
route. Additionally the time of starting travel at the start stop is given. Analysis of the problem is
presented and in particular we point at properties of routes. The BRP is an example of multicriteria
optimization problem (MOP), which the solution is the set of non-dominated solutions. This paper
proposes a label correcting algorithm with storing partial solutions for solving the BRP. The algo-
rithm makes possible to find all routes which belong to the set of non-dominated solutions. Apart
from that the results of experimental tests are presented. Additionally the results are compared with
results for the BRP where the goal is to minimize only the time and the cost of travel and the length
of the route is not taken into consideration.
Key words: bus routing problem, multicriteria optimization, set of non-dominated solutions,
multicriteria shortest path problem, directed weighted graph, variable weights, shortest path,
loopless path, label correcting algorithm.

1. Introduction

The shortest path problem is among the most studied the graph optimization problems.
Given a graph with a single weight function, the goal is to find a path with the minimal
weight. It has been the subject of extensive research for many years resulting in the pub-
lication of a large number of papers. There are well known algorithms for finding the
shortest path proposed by Dijkstra (1959), Bellman (1958), Ford (1956), Floyd (1962),
Warshall (1962) and Johnson (1977). In many cases using a single weight function is in-
sufficient because it does not describe precisely the studied problem. In this case, a graph
with k (k > 1) weight functions is used and the problem is called the multicriteria shortest
path (MSP) problem.

The MSP problem is an example of multicriteria optimization and it is known to be
NP-complete by transformation from a 0–1 knapsack problem (Garey and Johnson, 1990;
Hansen, 1980; Skriver, 2000a). Many algorithms for solving the BSP problem are known
and these algorithms are classified into the following categories: label setting algo-
rithms (Hansen, 1980; Martins, 1984; Tung and Chew, 1988), label correcting algo-
rithms (Brumbaugh-Smith and Shier, 1989; Corley and Moon, 1985; Daellenbach and
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De Kluyver, 1980; Skriver and Andersen, 2000b), k-th shortest path algorithms (Cli-
maco and Martins, 1982), two phases algorithms (Mote et al., 1991) and the others
(Dell’Olmo et al., 2005; Machuca et al., 2009; Mandow and Pérez-de-la-Cruz, 2008a;
Mandow and érez-de-la-Cruz, 2008b; Martí et al., 2009; Raith and Ehrgott, 2009). All
mentioned algorithms assume constant weights, i.e. the weight function has a constant
value for a given arc of graph and it does not change. There are differences between prob-
lem with constant and variable weights.

In this paper the BRP, which is an example of the MSP problem with variable weights,
is presented and analysed. The bus network is represented by the graph with weight func-
tions. The weight functions determine the cost and the travel time and their values are
calculated during the process of finding the solutions. For that reason, values of both
weight functions are not constant for a given arc. In the paper we have made a theoretical
analysis of the problem and with particular emphasis on differences between the problem
with constant weights and the problem with variable weights. The algorithm for solving
the BRP is also presented and it belongs to the group of label correcting algorithms with
storing partial solutions. The algorithm was implemented and tested and the test results
are also presented.

The paper is divided into five sections. Section 2 contains description of the BRP, i.e.
a formulation of the BRP (Section 2.1) and an analysis of the BRP, in particular pointed
at differences between the MSP with variable weights and constant weights (Section 2.2).
The label correcting algorithm for solving the BRP is described in Section 3. In Section 4
experimental test results are reported. Conclusions are outlined in the final section.

2. The Bus Routing Problem (BRP)

2.1. Formulation of the BRP

The BRP is related to the choice of means of transport and finding the route of travel be-
tween the two given points. We have given the bus network consisted of n stops s1, . . . , sn.
In the network buses of M bus lines numbered from 1 to M are run. Additionally, the net-
work is divided into zones, which determines the cost of travel.

The route of the bus line consists of the sequence of stops through which the bus runs
from the start stop to the final stop of the line and it is defined for each bus line. The travel
between two given stops is directed. If the bus runs from stop si to stop sj , it does not
imply that the bus of the same line runs in the opposite direction, i.e. from sj to si . The
bus of a given bus line can run in both directions, but these routes can be different. The
route of each bus line consists of different stops except for the start and the final stops
which can be the same. If the final stop is the same as the start stop, then the bus line is
called the circular line.

Let the route of i-th bus line (i = 1, . . . ,M) consists of sequence of stops:

〈

si
0
, si

1
, . . . , si

k−1
, si

k

〉

(1)
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where si
0

is the start stop and si
k is the final stop of the line. The bus of i-th line runs be-

tween stops belonging to the route with the given frequency, i.e. it leaves the start stop si
0

at time T i
0
, passes through stops si

1
, . . . , si

k−1
at times T i

0
+δi

0
, . . . , T i

0
+δi

k−2
, respectively,

and it reaches the final stop si
k at time T i

0
+δi

k−1
. The next course the bus of this line starts at

time T i
1

(T i
1

= T i
0
+β i

0
) and thus it reaches stops si

1
, . . . , si

k at times T i
1
+δi

0
, . . . , T i

1
+δi

k−1
.

The bus of i-th bus line executes pi courses and leaves the start stop si
0

at times
T i

0
, . . . , T i

p−1
(T i

0
< · · · < T i

p−1
), where T i

j = T i
0

+ β i
j−1

(j = 1, . . . , p − 1). The T i
0
,

β i
0
, . . . , β i

p−2
, δi

0
, . . . , δi

k−1
(0 < β i

0
< · · · < β i

p−2
; 0 < δi

0
< · · · < δi

k−1
) values are de-

fined by the timetable of the bus line. We omit the times of getting on and off the bus by
passengers, i.e. we assume that the time of departure from a stop equals the time of arrival
to this stop.

For defined the bus network structure, the bus lines routes and the timetable, we have
given the start stop ss and the final stop se (ss 6= se) between which we want to travel.
The time of starting travel Ts at the start stop is given additionally. The objective is to
find a route from ss to se minimizing the time and the cost of travel and the length of the
route. We should determine all stops belonging to the route, the bus lines which we travel
between stops, stops of changes and times of departure from all stops belonging to the
route.

The time of the travel depends on the chosen route and the possible stops of changes.
It is the sum of the travel times between stops belonging to the route,1 time of waiting at
the start stop and times of waiting for changes. The cost of travel depends on the location
of the stops in the area of zones and it is calculated as follows. A ticket for a single travel
(a travel without a bus change) within the area of a single zone equals c1 (0 < c1) units,
within two zones it equals c2 (c1 < c2) units and within the confines of more than two
zones it equals c3 (c2 < c3) units.2 For that reason the cost of travel from the start stop ss

to the final stop se is equal to the sum of costs of travel between the stops of bus changes.
Among bus lines there are fast lines. The travel by bus of a fast line is faster than travel by
a regular line which takes into account the timetable. The cost of the travel by a fast line
is twice as large as the cost of the travel by a regular line. The length of the route equals
the number of stops belonging to the route.

2.2. Analysis of the BRP

The bus network is described by the directed weighted graph G = (V ,E) with |V | = n

vertices v1, . . . , vn and |E| = m arcs e1, . . . , em (ej = (va, vb); va, vb ∈ V ) (Chartrand
et al., 2010; Jungnickel, 1989; Wilson, 1996). The vertices represent the bus stops where
the vertex vj represents the bus stop sj (j = 1, . . . , n). Thus a vertex expression with
reference to the graph representing the bus network determines the bus stop of the network.
The arc ej = (va, vb) represents the route of travel of a specific bus line whose buses run

1The travel times between stops are defined by the timetable of bus lines.
2In a sample routes presented in the paper we assume the following costs of a ticket: c1 = 2.0, c2 = 2.3 and

c3 = 2.6 units.
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Fig. 1. A part of graph representing the bus network.

directly from a stop represented by va to a stop represented by vb . Direct travel denotes
that the route from va to vb does not include other vertices.

〈

vi
0
, vi

1
, . . . , vi

k−1
, vi

k

〉

. (2)

The route of i-th bus line descried by (1) is represented by a path (2) in the graph G

from the vertex vi
0

to the vertex vi
k , where vi

0
represents the start stop si

0
and vi

k represents
the final stop si

k of the i-th bus line. The travel between two given stops is directed, thus
if there exists the arc (va, vb), it does not imply that there exists the arc (vb, va). Between
two given stops buses of many bus lines can run. For that reason the graph G representing
the bus network can contain parallel arcs. Each arc ej = (va, vb) has three weights: l(ej ),
t (ej ) and c(ej ).

The weight l(ej ) equals the line number the bus runs from va to vb and it takes values
from range 1, . . . ,M . The weight t (ej ) takes positive values, it is not constant and it equals
t (ej ) = Tb − Ta , where Tb is the time of arrival to vb and Ta is the time of arrival to va .
Thus it is a sum of the travel time from va to vb and the possible time of waiting at va .
The travel time from va to vb is defined by the timetable and it is constant. The value of
weight t (ej ) is determined by the time of waiting at va which is variable. Let us consider
a part of the bus network presented in Fig. 1. There are many ways of travel to va – in
the first case we arrive from vx and the time of arrival to va is T x

a , in the second case we
arrive from vy at T

y
a and in the last case the time of arrival is T z

a and we arrive from vz .
Let us assume that the travel time from va to vb equals tab and the time of departure from
va to vb is the same in all cases and it equals Ta , but (3) is satisfied. The times of waiting
at va are equal to: 1txa = Ta − T x

a , 1t
y
a = Ta − T

y
a and 1tza = Ta − T z

a . Since (3) is
satisfied, so 1txa 6= 1t

y
a 6= 1tza and the weight t (ej ) in each case takes different values:

t ′(ej ) = 1txa + tab, t ′′(ej ) = 1t
y
a + tab, t ′′′(ej ) = 1tza + tab. Therefore the weight t (ej )

is not constant.

T x
a 6= T

y
a 6= T z

a . (3)

The weight c(ej ) takes non-negative values and it equals c(ej ) = cb − ca , where cb

equals the cost of travel to vb and ca equals the cost of travel to va .3 The values ca and cb

3We assume the travel by a bus of regular line, otherwise the value c(ej ) must be multiplied by 2.
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Fig. 2. The route of a bus line. The zone borders are denoted by the dashed lines.

Table 1
The values c(e1), . . . , c(e5) depending on the start vertex vs .

vs c(e1) c(e2) c(e3) c(e4) c(e5)

v1 c1 c2 − c1 0 c3 − c2 0
v2 – c2 0 c3 − c2 0
v3 – – c1 c2 − c1 c3 − c2

v4 – – – c2 c3 − c2

v5 – – – – c2

depend on the location of va and vb in the area of zones and they also depend on a possible
change at va . At first, let us consider the case when va and vb are located in the same zone.
If we change at va then c(ej ) = c1 or c(ej ) = 0 otherwise, because we do not cross a zone
border while running from va to vb and it does not increase the cost of travel. In the second
case, va and vb are located in different zones. The weight equals c(ej ) = c2 if we change
at va , otherwise the value c(ej ) depends on the number of zone borders that have been
crossed since the last change while travelling to va . If we did not cross any zone border,
then c(ej ) = c2 − c1. It equals c(ej ) = c3 − c2 if we have crossed a single zone border
and if we have crossed two or more zone borders it equals c(ej ) = 0. So, we proved that
weight c(ej ) is variable.

A determination of the value of weight c(ej ) we illustrate by an example of running
to the final vertex ve = v6 using the bus of line whose the route is shown in Fig. 2. The
values c(e1), . . . , c(e5) depend on the start vertex vs from which we start the travel and
they are presented in Table 1.

The bus route from the start stop ss to the final stop se is represented by the path pvs ,ve

(4) from the start vertex vs to the final vertex ve in the graph G. In addition, the times of
departures T0, T1, . . . , Tk−1, where Tj is a time of departure from vj (j = 0, . . . , k − 1;
vj ∈ pvs ,ve ), are stored. Thus a path expression with reference to the graph G determines
the bus route in the bus network. The final solution is called the path pvs ,ve and the path
pvs ,vi (vi 6= ve) is called the partial solution. The path p′

vi ,vj
= subpvs ,ve

(vi , vj ) is a sub-
path of pvs ,ve and it contains a subsequence of vertices and arcs from vi to vj belonging
to pvs ,ve .

pvs ,ve = 〈v0 = vs , e1, . . . , vk−1, ek, vk = ve〉. (4)

The length of the path pvs ,ve is denoted by D(pvs ,ve) and it equals the number of
vertices belonging to the path. The path pvs ,ve described by (4) has two weights T and C,
defined by (5) and (6) and its length equals D(pvs ,ve) = k+1. These weights represent the
time and the cost of travel from vs to ve and they are equal to the sum of corresponding
weights of arcs belonging to the path pvs ,ve . According to the formulation of the BRP
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presented in Section 2.1, the goal of the BRP is to find the path from vs to ve in the
graph G minimizing (5), (6) and D(pvs ,ve) simultaneously.

T (pvs ,ve) =

k
∑

j=1

t (ej ), (5)

C(pvs ,ve) =

k
∑

j=1

c(ej ). (6)

The BRP is one of the problems in MOP, where we have given k (k > 1) criterion
functions fi (i = 1, . . . , k) which can be minimized or maximized. In the first case the
objective is to find a solution for which the value of the function is minimal and in the
second case the function of determined solution should takes the maximum value. In most
cases there is no a single solution for which all the criterion functions take an optimum
value, i.e. the minimum or the maximum. For that reason the solution of the MOP is a set
of solutions called the set of non-dominated (Pareto optimal) solutions (Coello Coello et

al., 2002; Ehrgott, 1999; Ehrgott and Gandibleux, 2000; Korhonen, 1992; Pareto, 1896;
Roy and Vincke, 1981; Ulungu and Teghem, 1994; Voorneveld, 2003).

Definition 1. Let there be given k (k < 1) minimized criterion functions f1, . . . , fk

and two solutions X and Y . The X solution is said to dominate the Y solution if ∀i ∈

{1, . . . , k}: fi(X) 6 fi(Y ) and ∃j ∈ {1, . . . , k}: fj (X) < fj (Y ).

The BRP solving is reduced to solving the MSP problem between the start and the
final vertices in a graph with variable weights. The solution of the problem consists of set
of paths in the graph G formed the set of non-dominated solutions. The weights defined
by (5) and (6) and the length of the path are the criterion functions and all are minimized.

Let us analyse properties of paths belonging to the set of non-dominated solutions.
The set of non-dominated solutions can contain many paths with the same values of the
weights (5) and (6) and the same length, according to Definition 1 these paths are non-
dominated solutions. Let there be given two paths p′

vs ,ve
and p′′

vs ,ve
, where (7) and (8) are

satisfied. The paths p′
vs ,ve

and p′′
vs ,ve

have one of the following properties:

• p′
vs ,ve

and p′′
vs ,ve

differ from each other in vertices and arcs belonging to these paths,
• p′

vs ,ve
and p′′

vs ,ve
contain the same sequence of vertices but they differ from each

other in arcs belonging to these paths,
• p′

vs ,ve
and p′′

vs ,ve
contain the same sequence of vertices and arcs, differ from each

other only in the times of departure from all vertices belonging to these paths.

T
(

p′
vs ,ve

)

= T
(

p′′
vs ,ve

)

, (7)

C
(

p′
vs ,ve

)

= C
(

p′′
vs ,ve

)

. (8)

Let us consider the path p′
vs ,ve

containing a cycle pvi ,vi = subp′
vs ,ve

(vi , vi), where vi

is the start and the final vertex of the cycle (Fig. 3a). If there exists the path p′
vs ,ve

, then
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Fig. 3. A part of sample paths from the start vertex vs to the final vertex ve . The arcs are described by the bus
lines which the buses run between vertices.

there exists the path p′′
vs ,ve

(Fig. 3b) which has the same sequence of vertices and arcs like
p′

vs ,ve
and it is devoid of the cycle pvi ,vi , i.e.:

subp′
vs ,ve

(vs , vi) = subp′′
vs ,ve

(vs , vi), (9)

subp′
vs ,ve

(vi , ve) = subp′′
vs ,ve

(vi , ve). (10)

It has been shown that T (p′
vs ,ve

) > T (p′′
vs ,ve

) and C(p′
vs ,ve

) > C(p′′
vs ,ve

) if weights of arcs
are constant and non-negative, and at least one is positive (Henig, 1985; Tung and Chew,
1988; Tung and Chew, 1992). In this case the set of non-dominated solutions contains
only loopless paths. The graph G representing the bus network has variable weights and
for this case, it can be formulated Lemma 1.

Lemma 1. Let there be given the path p′
vs ,ve

containing the cycle pvi ,vi and the path

p′′
vs ,ve

which has the same sequence of vertices and arcs like p′
vs ,ve

and which is loopless.

If weights of arcs are variable and take non-negative values then T (p′
vs ,ve

) > T (p′′
vs ,ve

)

and C(p′
vs ,ve

)> C(p′′
vs ,ve

).

Proof. A property of the route of the bus line indicates that we change at vi in p′′
vs ,ve

.
The weights c and t of arcs do not take negative values and it follows that: T (p′

vs ,ve
) >

T (p′′
vs ,ve

) and C(p′
vs ,ve

)> C(p′′
vs ,ve

). The goal of the proof is to prove when conditions (7)
and (8) are satisfied (both conditions are not satisfied in a graph with constant weights).
The condition (9) holds, thus times of departure from vs , . . . , vi−1 are identical in p′

vs ,ve

and p′′
vs ,ve

and it indicates that T (subp′
vs ,ve

(vs , vi)) = T (subp′′
vs ,ve

(vs , vi)). If the time of
waiting for a change at vi in p′′

vs ,ve
equals the time of making the cycle pvi ,vi in p′

vs ,ve
,
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then times of departure from vertices vi , . . . , ve−1 in both paths are identical and (7) is
satisfied. When δt ′′ = δt ′ + T (pvi ,vi ), where δt ′ and δt ′′ are the sums of times of waiting
for change at the vertices in p′

vs ,ve
and p′′

vs ,ve
, then (7) is satisfied, too.

A necessary condition for fulfilment (8) is a single change at vj in the cycle pvi ,vi and
passing vi without a change (Fig. 3c). For path p′

vs ,ve
and p′′

vs ,ve
there hold conditions:

C
(

subp′
vs ,ve

(vs , va)
)

= C
(

subp′′
vs ,ve

(vs , va)
)

,

C
(

subp′
vs ,ve

(vb, ve)
)

= C
(

subp′′
vs ,ve

(vb, ve)
)

.

If all vertices belonging to the cycle pvi ,vi are located in the same zone, then condi-
tions (11) and (12) are satisfied and (8) is satisfied, too.

C
(

subp′
vs ,ve

(va, vj )
)

= C
(

subp′′
vs ,ve

(va, vi)
)

, (11)

C
(

subp′
vs ,ve

(vj , vb)
)

= C
(

subp′′
vs ,ve

(vi , vb)
)

. (12)

If the vertices belonging to the cycle pvi ,vi are located in different zones, then (11) is
satisfied when:

• we do not cross two or more zones when we run from va to vi and we do not cross
any zone when we run from vi to vj in pvi ,vi , or

• we cross two or more zones when we run from va to vi .

The condition (12) is satisfied in similar cases, i.e.:

• we do not cross any zone when we run from vj to vi in pvi ,vi , if we do not cross two
or more zones when we run from vi to vb , or

• we cross two or more zones when we run from vi to vb .
�

To illustrate Lemma 1 let us consider a sample routes from vs = 1 to ve = 4, where
the time of starting travel equals Ts = 8:00. The route p′

1,4 without a cycle is presented
in Tables 2 and 3 the route p′′

1,4 containing a cycle is presented. All vertices belonging to
these paths are located in the same zone and (13), (14) are satisfied. In the route p′

1,4 we
change at vertex 3 and the time of waiting for a change equals 45 minutes and it equals the
time of making the cycle 3 → 5 → 3 in the route p′′

1,4. In addition, (15) and (16) occur
and for that reason the cost of making the cycle does not increase the total cost of travel.

T
(

p′
1,4

)

= T
(

p′′
1,4

)

= 65 minutes, (13)

C(p′
1,4) = C

(

p′′
1,4

)

= 6.0 units, (14)

C
(

subp′
1,4

(2,3)
)

= C
(

subp′′
1,4

(2,5)
)

= 2.0 units, (15)

C
(

subp′
1,4

(3,4)
)

= C
(

subp′′
1,4

(5,4)
)

= 2.0 units. (16)

The routes p′
1,4 and p′′

1,4 show that weights of arcs representing the time and the cost
of travel are variable. Let us consider the arc (3,4). In the route p′

1,4 weights of this arc
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Table 2
A timetable of the route from vs = 1 to ve = 4 without a cycle, where the time of starting travel

equals Ts = 8:00.

Vertex/zone Arrival time Departure time Cost of travel Line

1/1 8:00 8:05 0.0 1
2/1 8:08 8:12 2.0 2
3/1 8:15 9:00 4.0 3
4/1 9:05 6.0

Table 3
A timetable of the route from vs = 1 to ve = 4 containing a cycle 3 → 5 → 3, where the time of starting

travel equals Ts = 8:00.

Vertex/zone Arrival time Departure time Cost of travel Line

1/1 8:00 8:05 0.0 1
2/1 8:08 8:12 2.0 2
3/1 8:15 8:15 4.0 2
5/1 8:20 8:55 4.0 3
3/1 9:00 9:00 6.0 3
4/1 9:05 6.0

equal t (3,4) = 50 minutes and c(3,4) = 2.0 units, but in the route p′′
1,4 these weights

equal t (3,4) = 5 minutes and c(3,4) = 0.0 units.
It should be pointed out that the path p′

vs ,ve
defined by Lemma 1 for which (7)

and (8) are satisfied is dominated by the path p′′
vs ,ve

due to D(p′
vs ,ve

) > D(p′′
vs ,ve

). The
last property of routes belonging to the set of non-dominated solutions is determined by
Lemma 2.

Lemma 2. Let pvs ,ve and p′
vs ,ve

be paths which consist of the same sequence of vertices

and arcs but differ from each other in times of departure from vertices belonging to these

paths. Both paths are non-dominated solutions if we change once at least in these paths.

Proof. If we do not a change in pvs ,ve and p′
vs ,ve

, it follows that departure time from vs

are different in these paths and departure times from all vertices belonging to these paths
are different, too. For that reason T (pvs ,ve) 6= T (p′

vs ,ve
) and one of them is a dominated

solution.
Let these paths consist of sequence of vertices and arcs:

pvs ,ve = p′
vs ,ve

= 〈vs , . . . , ej , vj , ek, . . . , ek, vk, ei , . . . , ve〉

where vj and vk are vertices where we change. Let the arrival times at vj and vk are equal
Taj , Tak , and Tdj , Tdk be departure times from vj and vk , and the time of waiting for a
change at vk equals δtk = Tdk −Tak . If it is possible to leave vj at time T ′

dj > Tdj in p′
vs ,ve

,
where T ′

dj − Tdj 6 δtk , then it is possible to leave vk at time Tdk , and it does not increase
the total time of travel from vs to ve in the path p′

vs ,ve
, i.e., T (pvs ,ve) = T (p′

vs ,ve
). �
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Table 4
Timetables of the routes from vs = 6 to ve = 10, where the time of starting travel equals Ts = 8:00.

Vertex Arrival times Departure times Line

6 8:00 8:00 8:00 8:10 8:25 8:40 4
7 8:15 8:30 8:45 8:15 8:30 8:45 4
8 8:25 8:40 8:55 9:00 9:00 9:00 5
9 9:05 9:05 9:05 9:05 9:05 9:05 5

10 9:10 9:10 9:10

Fig. 4. The route of the bus line l1 represented by the graphs G, Ga and Gar .

Lemma 2 is illustrated in Table 4, where a sample routes from vs = 6 to ve = 10 are
presented. There are three routes with the same time and cost of travel which contain the
same sequence of vertices and arcs, but departure times from vertex vs = 6 are differ-
ent.

3. The Algorithm to Solving the BRP

In this section we present an algorithm for finding all routes from the start vertex vs to
the final vertex ve , belonging to the set of non-dominated solutions. The algorithm be-
longs to a group of label correcting algorithms with storing partial solutions and current
elimination of dominated solutions. The algorithm is presented in the form of the proce-
dure FindRoutes (Fig. 5). The bus network is represented by the graph G = (V ,E) and
additionally it is represented by other graphs: Ga = (V ,Ea), Gar = (V ,Ear). We create
the graph Ga by adding into the set E additional arcs for each bus line according to the
following principles. Let the route of i-th bus line is described by (2). For each vertices
vi
j (j = 0, . . . , k − 2) and vi

u (u = j + 2, . . . , k) we add arc (vi
j , v

i
u). For example, let us

consider the bus network represented by the graph G where buses of the bus line l1 are run
(Fig. 4a). The graph Ga (Fig. 4b) is obtained by adding arcs (1,3), (1,4) and (2,4) into
the set E. The graph Gar is created by reversing all arcs of Ea to the opposite direction
(Fig. 4c).

During the process of finding the solutions the following data structures are used: S,
PS and Q. The S structure is a list of final solutions formed as the set of non-dominated
solutions. Each solution represents the path from vs to ve , where the time of starting travel
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Fig. 5. The algorithm for finding all routes from the start vertex vs to the final vertex ve belonging to the set of
non-dominated solutions.

at vs equals Ts . For each vertex vj ∈ V the PS[vj ] structure contains a list of partial
solutions from vs to vj and for ve it contains a list of final solutions and it constitute
the set of non-dominated solutions. The partial and the final solutions are described by a
record (lj , tsj , csj , dsj ,LP), where:
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Fig. 6. A sample bus network represented by the graphs G and Ga .

• lj – the bus line by which we travel to vj from a vertex which precedes vj in the
path,

• tsj , csj – the time and the cost of travel from vs to vj (for vs they equal 0),
• dsj – the length of the path from vs to vj ,
• LP – a list of records (vi , Ti,∗Pi), where:

– vi – the vertex which precedes the vertex vj in the path,
– Ti – time of departure from vi towards vj (for vs it equals the time of starting

travel Ts ),
– ∗Pi – a pointer to the partial solution for the vertex vi .

The Q structure is a queue containing vertices for which the partial solutions have been
determined.

The initial part of the algorithm (lines 2–8) contains finding the paths of the minimal
time and the minimal cost of travel and the minimal length from vs to ve in the graph Ga .
These paths are stored in Pt , Pc and Pd , and they are computed by the PathMinT (line 2),
the PathMinC (line 3) and the PathMinD procedures (line 4), where the first two pro-
cedures implement the Dijkstra algorithm and the last implements Breadth-First-Search
method (Jungnickel, 1989). We can prove that it is not possible to find the path of the
minimal cost of travel in the graph G using shortest paths algorithms like the Dijkstra or
the Bellman–Ford. Let us consider the graph G representing the bus network where we
want to determine the path of the minimal cost of travel from vs = 1 to ve = 5 (Fig. 6a).
If we assume that all vertices belong to the same zone except for vertices 2 and 3, then
1 → 4 → 5 is the path of the minimal cost of travel determined in the graph G by the
Dijkstra or the Bellman–Ford algorithm and it has cost 4.0 units. This path is incorrect
because the path of minimal cost of travel has form 1 → 2 → 3 → 4 → 5 and its cost
equals 2.6 units. This path is determined by the Dijkstra or the Bellman–Ford algorithm
in the graph Ga .

The Dijkstra algorithm is also used in the procedures MinT (line 2) and MinC (line 3)
for determining minimal costs and times of travel from all vertices to the final vertex ve .
Determined values are stored in arrays ce

m and t
e
m, where ce

m[vj ] and t
e
m[vj ] stores ade-

quately the minimal cost and time of travel from vj to ve. The last array d
e

m[vj ] stores
minimal lengths of paths from all vertices to the final vertex ve . It is determined by the
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Fig. 7. The vertices which precede the vertex vj in the route.

procedure MinD (line 4), which implements Breadth-First-Search method. For each ver-
tex vi 6= vs the PS[vi ] structure is initialised by the empty list (lines 5–7). The PS[vs ]

structure of the start vertex vs is initialised by a record representing an initial solution
from which the algorithm starts determining all solutions and vs is inserted into the queue
(line 8).

In the while-loop (lines 9–33) all non-dominated paths are computed by visiting the
vertices of the graph Ga using a modified Breadth-First-Search method. We do not com-
pute paths which differ from each other only in times of departure from vertices, because
these paths are computed (line 34) based on the paths computed in the while-loop.

A single iteration contains following operations. The first vertex vi is taken from the
queue Q (line 10) and all its outgoing arcs (vi , vj ) are analysed (lines 11–32). For arc
(vi , vj ) we try to extend each the solution P belonging the list PS[vi] and create a new
solution for the vertex vj (lines 12–31). The new solution represents a path from vs to vj

where vj is preceded by vi in the path. During the process of finding the solutions the
graph Ga containing additional arcs is used and it allows to examine all reachable vertices
from vi by the bus of the bus line lj . For that reason only vertices where we change are
added to the path. Thus, we extend the solution P if all conditions are satisfied:

• the solution P has not been analysed yet (checking in the line 12),
• the vertex vj does not belong to the path represented by the solution P (it is checked

by the procedure BelongsToPath in the line 13),
• the bus is changed at vi (checking in the line 13).

If all mentioned conditions are satisfied, the time of departure from vi , the length of the
route, the time and the cost of travel from vs to vj are determined for the extended solution
(lines 14–16). In the next, the procedure NotDom is used to determine if it is possible to
obtain a non-dominated final solution from the extended solution (line 17). When the
estimation is positive, we try to add the extended solution to the list PS[vj ].

The vertex vj can be reached from many vertices by the bus of line lj (Fig. 7). In the
Fig. 7, there are three ways to travel to vj and each of the cases represents a different path
from vs to vj . For that reason, there may exist many paths with the same length, time and
cost of travel where we run to vj by bus of the same bus line. In this case the list PS[vj ]

contains only a single record which represents all these paths. It reduces the number of
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stored and analysed solutions. Thus, before creating a new record representing the path
we check using the procedure CheckSolution if the record Pj , where the time and the
cost of travel are equal tsj and csj , the length of the route equals dsj and where we run
to vj by bus of the line lj , exists in the list PS[vj ] (line 18). If Pj exists we only add a
record (vi , Ti,&P) to the list Pj ·LP stored in Pj (line 20). Otherwise, a new record P ′ is
created (line 22) and it is added to PS[vj ] (lines 24, 26). If P ′ is created for the final vertex
ve , there is used the procedure AddToFinalList (line 24) which add P ′ to the list PS[vj ]

and removes dominated solutions. Otherwise, there is used the procedure AddToList and
vj is added to the queue Q (line 26). We finish the computation in the while–loop when
the queue Q is empty and it means that we have searched a space of solutions.

In the last part of the algorithm we use the procedure CreateFullPaths to deter-
mine full routes for all computed solutions represented by records stored in the list PS[ve]

(line 34). The full route is determined based on the values stored in the record, i.e. the
vertex vi which precedes the vertex ve in the path and the pointer ∗Pi to the partial so-
lution for vi . In the last step of the algorithm the paths, that differ from each other only
in times of departure from all vertices belonging to the path, are determined using the
procedure PathsDifferTimes. In the procedure all paths belonging to the S list are anal-
ysed (line 34). Let us consider the path P ∈ S containing a sequence vertices of changes:
v0 = vs , v1, . . . , vk−1, vk = ve , where times of departure from these vertices are equal re-
spectively: T0, T1, . . . , Tk−1. A new solution P ′ is created and added to the list S if one
can leave vi (0 6 i < k − 1) at any time later than Ti and arrive to ve at the same time as
in P . The solution P ′ differs from P only in times of departure from vertices belonging
to the path, and as a consequence differs in times of waiting for changes, but total times
of waiting in both paths are equal.

The extended solution represents a path from vs to vj , its length equals dsj , the time
and the cost of travel equal tsj and csj and it is estimated if it is possible to obtain a non-
dominated final solution from it. The estimation is made on the basis of determined paths
Pt , Pc, Pd and values ce

m[vj ], t
e
m[vj ], d

e

m[vj ] using the procedure NotDom (line 17). Let
tmax equals the maximal time, cmax equals the maximal cost of travel and dmax equals the
maximal length from among paths Pt , Pc and Pd , what is described by (17)–(19).

tmax = max
{

T (Pt ), T (Pc), T (Pd )
}

, (17)

cmax = max
{

C(Pt ),C(Pc),C(Pd )
}

, (18)

dmax = max
{

D(Pt ),D(Pc),D(Pd )
}

. (19)

The minimal time of travel from vj to ve equals t
e
m[vj ], for that reason the value of the

time of travel tse the final solution obtained from the extended solution is defined by (20).
In the same way are defined the cost of travel cse and the length of the path dse (21), (22).

tse > tsj + t
e
m[vj ], (20)

cse > csj + ce
m[vj ], (21)

dse > dsj + d
e

m[vj ]. (22)
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It is not possible to obtain a non-dominated final solution from the extended solution if
one of conditions (23)–(25) is satisfied. These conditions are checked in the procedure
NotDom. Additionally, there is checked if paths Pt , Pc , Pd dominate the final solution
obtained from the extended solution. It is checked by comparing values tsj + t

e
m[vj ], csj +

ce
m[vj ] and dsj + d

e

m[vj ] with the time and the cost of travel and the length of paths Pt ,
Pc , Pd using Definition 1.

tsj + t
e
m[vj ] > tmax ∧ csj + ce

m[vj ] > cmax ∧ dsj + d
e

m[vj ] > dmax, (23)

tsj + t
e
m[vj ] > tmax ∧ csj + ce

m[vj ] > cmax ∧ dsj + d
e

m[vj ] > dmax, (24)

tsj + t
e
m[vj ] > tmax ∧ csj + ce

m[vj ] > cmax ∧ dsj + d
e

m[vj ] > dmax. (25)

The procedure AddToList adds the record P ′ representing the path p′
vs ,vj

to the list
PS[vj ] (line 26) and estimates it based on already existing records. It is possible to deter-
mine whether the final solution p′

vs ,ve
obtained from P ′ is dominated. Let P ′′ is already

existing record belonging to PS[vj ] and it represents the path p′′
vs ,vj

. If (26) is satisfied,
it is possible to obtain the final solution p′′

vs ,ve
from p′′

vs ,vj
, where the time of departure

from vj is the same as in p′
vs ,ve

and it follows that the time of travel meets (27).

T
(

p′
vs ,vj

)

= T
(

p′′
vs ,vj

)

, (26)

T
(

p′
vs ,ve

)

= T
(

p′′
vs ,ve

)

. (27)

The relationships between the lengths of the paths p′
vs ,vj

and p′′
vs ,vj

and the lengths of
obtained the final solutions p′

vs ,ve
and p′′

vs ,ve
are described by (28)–(30).

D
(

p′
vs ,vj

)

> D
(

p′′
vs ,vj

)

⇒ D
(

p′
vs ,ve

)

> D
(

p′′
vs ,ve

)

, (28)

D
(

p′
vs ,vj

)

= D
(

p′′
vs ,vj

)

⇒ D
(

p′
vs ,ve

)

= D
(

p′′
vs ,ve

)

, (29)

D
(

p′
vs ,vj

)

< D
(

p′′
vs ,vj

)

⇒ D
(

p′
vs ,ve

)

< D
(

p′′
vs ,ve

)

. (30)

If the costs of travel meet (31) then (32) is satisfied and if (28) or (29) is satisfied then
P ′ is not added to the list PS[vj ] because the final solution p′

vs ,ve
obtained from P ′ is

dominated by p′′
vs ,ve

. Otherwise, i.e. if (33) is satisfied, it is not possible to determine the
relationship between C(p′

vs ,ve
) and C(p′′

vs ,ve
) and P ′ is added to PS[vj ].

C
(

p′
vs ,vj

)

> C
(

p′′
vs ,vj

)

, (31)

C
(

p′
vs ,ve

)

> C
(

p′′
vs ,ve

)

, (32)

C
(

p′
vs ,vj

)

6 C
(

p′′
vs ,vj

)

. (33)

If (34) is satisfied, then (35) is also satisfied and we do not add P ′ to PS[vj ] only when
(28) or (29) occur and additionally (36) occurs. If (28) or (29) and (36) are satisfied then
p′′

vs ,ve
dominates p′

vs ,ve
.
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T
(

p′
vs ,vj

)

> T
(

p′′
vs ,vj

)

, (34)

T
(

p′
vs ,ve

)

> T
(

p′′
vs ,ve

)

, (35)

C
(

p′
vs ,vj

)

> C
(

p′′
vs ,vj

)

. (36)

In the last case, (37) occurs and it follows that (38) is satisfied. In the case when it is
not possible to determine the relationship between C(p′

vs ,ve
) and C(p′′

vs ,ve
), we have to

add P ′ to the list PS[vj ].

T
(

p′
vs ,vj

)

< T
(

p′′
vs ,vj

)

, (37)

T
(

p′
vs ,ve

)

6 T
(

p′′
vs ,ve

)

. (38)

To sum up, the record P ′ is not added to the list PS[vj ] when (39) are satisfied and
these conditions are used in the procedure AddToList.

T
(

p′
vs ,vj

)

> T
(

p′′
vs ,vj

)

∧ C
(

p′
vs ,vj

)

> C
(

p′′
vs ,vj

)

∧ D
(

p′
vs ,vj

)

> D
(

p′′
vs ,vj

)

. (39)

If (40) and (41) are satisfied, then P ′ is dominated by P ′′ but it is added to the list
PS[vj ]. Thus, the list PS[vj ] of the vertex vj 6= ve can contains records being dominated
solutions and a non-dominated final solution for the final vertex ve can be obtained from
a dominated partial solution for vj 6= ve . This is an important property of a graph with
variable weight and it is not satisfied in a graph with constant weight. It has been shown,
that it is not possibly to obtain a non-dominated final solution from a dominated partial
solution if weights are constant (Azevedo and Martins, 1991; Martins et al., 1999; Mote
et al., 1991).

T
(

p′
vs ,vj

)

> T
(

p′′
vs ,vj

)

∧ C
(

p′
vs ,vj

)

= C
(

p′′
vs ,vj

)

∧ D
(

p′
vs ,vj

)

> D
(

p′′
vs ,vj

)

, (40)

T
(

p′
vs ,vj

)

> T
(

p′′
vs ,vj

)

∧ C
(

p′
vs ,vj

)

= C
(

p′′
vs ,vj

)

∧ D
(

p′
vs ,vj

)

> D
(

p′′
vs ,vj

)

. (41)

A time complexity of the algorithm FindRoutes depends on a number of paths belong-
ing to the set of non-dominated solutions. The MSP problem is known to be NP-complete
and it has been shown that the number of non-dominated solutions is exponential at least
in the worst case which implies that any deterministic algorithm that attempts to solve it is
also exponential in terms of pessimistic time complexity. The maximum number of non-
dominated solutions equals gn−1, where n is a number of vertices and g is a maximum
out-degree of a vertex in the graph (Skriver and Andersen, 2000b). A time complexity of
the algorithm is clearly dominated by execution of the while-loop (lines 9–33). Each of
computed paths can contain at most n vertices. In the line 10 the vertex vi is taken from
the queue Q and gi arcs are examined, where gi is the out-degree of the vertex vi . Thus, in
the worst case it is necessary to examine

∏n−1

i=1
di arcs and the pessimistic time complexity

equals O(dn), where g = maxi=1,...,n−1{di}.



Solving the Bus Routing Problem 477

Table 5
Parameters of the graphs representing the bus network.

G Ga , Gar

Number of vertices 1211 1211

Number of arcs 5549 35 610
Max. in-degree of vertex 13 122

Max. out-degree of vertex 13 122

Min. in-degree of vertex 1 6

Min. out-degree of vertex 1 6

Max. degree of vertex 26 244

Min. degree of vertex 2 13

4. Experimental results

The procedure FindRoutes (Fig. 5) has been implemented in C++ and the test exper-
iments were carried out on 2.66 GHz Pentium-IV computer with 1 GB of RAM, run-
ning under Windows Server 2003 Enterprise Edition. In addition we have adapted the
Brumbaugh-Smith (Brumbaugh-Smith and Shier, 1989) and the Skriver (Skriver and An-
dersen, 2000b) algorithms to variable weights and both algorithms have been implemented
in C++. In the tests we used a bus network consisting of 1211 stops divided into 26 zones
where buses of 500 bus lines are run. The longest length of the route of the bus line equals
29 and the shortest length equals 6. The network is represented by graphs G, Ga , Gar and
their parameters are described in Table 5.

The main goal of the experimental tests was to compare the computation time using the
tested algorithms and it depends on the number of computed partial solutions, therefore it
was counted in the tests. The second goal of the tests was to investigate an impact of the
number of criterion functions on the computation time and the number of computed partial
solutions. For this purpose, implemented algorithms have been modified to solve the BRP
where only two criterion functions are used, i.e. the time and the cost of travel. In addition
we have modified a record stored in the list PS[vj ] and the record (lj , tsj , csj , vi , Ti,∗Pi)

was used. The modified record does not contain the list LP, instead, it contains the pointer
∗Pi to the partial solution for the vertex vi and when the estimation is positive (line 17) we
create a new record and add it to PS[vj ]. Thus, each path from vs to vj is represented by
separate record in PS[vj ]. It increases the number of stored and analysed solutions. The
goal of this modification was testing an impact of the form of the record representing the
solution on the computation time and the number of computed partial solutions.

We have carried out 1371616 tests using the procedure FindRoutes in both versions
and 673719 tests using the Skriver algorithm, where two criterion functions are consid-
ered, and 220425 tests for version with three criterion functions. It was not possible to
carry out the same number of tests for the Skriver algorithm as to the procedure Find-

Routes and the same number of tests for the both versions of Skriver algorithm due to out
of memory. For the same reason, all tests have failed for the Brumbaugh-Smith algorithm,
which determines all existing routes from vs to ve . The aim of a single test was finding all
routes belonging to the set of non-dominated solutions for the given pairs of vertices vs
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Table 6
The number of all computed non-dominated solutions using the FindRoutes and the Skriver algorithms

depending on the number of changes.

Number of Criterion functions: T , C Criterion functions: T , C, D

changes FindRoutes Skriver FindRoutes Skriver

0 64771 61169 66060 53513
1 553605 503427 596898 221679
2 12217636 1771642 2783846 365116
3 5774482 3136625 8509761 440584
4 13311829 3328943 23268867 436417
5 27485412 1405485 57994949 269344
6 24613443 197354 112657304 197415
7 2965135 41990 170024075 108229
8 00521063 10783 275566765 62240
9 195336 1086 362479435 10745

10 65372 162 481644186 2308
11 14350 680149204
12 754155025
13 708535381
14 694029918
15 641701731
16 573463728
17 335616072
18 162101575
19 63804321
20 13519427
21 914334

and ve and the time of starting travel Ts . We present all results depending on the length of
the route and the number of changes in the route.

The results of test experiments using the procedure FindRoutes and the Skriver al-
gorithm have been presented in Table 6–11. We have shown the number of all computed
non-dominated solutions during all experiments (Table 6 and Table 9), the maximal num-
ber of computed partial solutions during a single experiment (Table 7 and Table 10) and a
maximal computation time in hrs:mins:secs format (Table 8 and Table 11). The results of
tests using the procedure FindRoutes presented in Section 3 and the Skriver algorithm,
where three criterion functions are considered, are denoted by “criterion functions: T ,
C, D” and “criterion functions: T , C” denotes results of tests using modified algorithms
where only two criterion functions are considered. All records stored in the lists PS[vj ]

are treated as computed partial solutions. The results, where the partial solution is repre-
sented by a record containing the list LP, have been denoted by LP and the results, where
the modified record has been used, have been denoted by ∗P .

In both cases, i.e. solving the BRP where two and three criterion functions are used,
the maximal number of partial solutions was computed using the Skriver algorithm. In
the first case, it is about 419 times more than the maximal number of computed partial
solutions by the procedure FindRoutes, where the modified record has been used and
it is about 5295 times more if the record containing the list LP was used. In the second
case, these values are equal respectively to 315 and 1468. The Skriver algorithm does
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Table 7
The maximal number of computed partial solutions in a single experiment using the FindRoutes and the

Skriver algorithms depending on the number of changes.

Number
of
changes

Criterion functions: T , C Criterion functions: T , C, D

FindRoutes Skriver FindRoutes Skriver

∗P LP ∗P LP

0 1491 794 18957108 1073 814 43614321
1 7582 2143 3011897 7015 2884 44384030
2 19113 4217 47126308 19231 8233 44389232
3 56434 5919 51243332 64751 16505 44389232
4 71417 9211 52400859 74420 20146 44389232
5 105666 9708 52546673 111912 26447 44384030
6 107024 9924 52546673 140716 30240 44384030
7 107024 9924 52546673 140716 30240 44244484
8 107024 9924 51630198 140716 30240 44384030
9 95361 9924 50734519 140716 30240 42006160

10 105666 9924 694076 140716 30240 35940676
11 73423 9924 140716 30240
12 61973 8233 140716 30240
13 24838 6281 140716 30240
14 140716 30240
15 140716 29533
16 140716 28261
17 140385 26346
18 137378 26511
19 140716 26511
20 140716 24793
21 57428 21288

not apply conditions for estimation of the partial solutions that are applied by the proce-
dure FindRoutes. Therefore, a larger space of solutions by the Skriver algorithm than
by the procedure FindRoutes is searched and the Skriver algorithm computes a larger
number of partial solutions. For that reason, the Skriver algorithm has a larger memory
complexity and it was not possible to carry out the same number of experiments as to the
procedure FindRoutes. The computation time depends on a searched space of solutions
by the algorithm, therefore the computation time is larger for the Skriver algorithm.

With the increase of the length of the route and the number of changes, a searched
space of solutions grows. For that reason, the number of computed partial solutions is
growing with the increase of the number of changes and the length of the route. In the
first case, i.e. in the BRP where two criterion functions are used, using the record with the
list LP in the procedure FindRoutes decreases about 10 times the number of computed
partial solutions and it decreases the computation time. In the second case, the number of
computed solutions is decreased 5 times.

Additionally, there was tested an influence of the number of criterion functions on the
computation time and the number of computed partial solutions. Let us consider solution
P1 and P2 for which T (P1) > T (P2), C(P1) > C(P2) and D(P1) < D(P2) are satisfied.
In the first case, when only two criterion functions T and C are taken into account then P2

dominates P1. In the second case, when in addition the third criterion function D is taken
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Table 8
The maximal computation time in a single experiment using the FindRoutes and the Skriver algorithms

depending on the number of changes, the unit of the time is [hrs:mins:secs].

Number
of
changes

Criterion functions: T , C Criterion functions: T , C, D

FindRoutes Skriver FindRoutes Skriver

∗P LP ∗P LP

0 0:00:00 0:00:00 0:02:35 0:00:00 0:00:00 0:41:30
1 0:00:00 0:00:00 0:00:14 0:00:02 0:00:01 1:19:48
2 0:01:00 0:00:00 0:59:49 0:00:15 0:00:07 1:26:29
3 0:00:00 0:00:00 3:26:19 0:01:53 0:00:57 1:26:29
4 0:00:00 0:00:00 5:44:07 0:02:24 0:00:59 1:26:29
5 0:00:00 0:00:00 5:44:07 0:02:33 0:00:59 1:26:29
6 0:00:32 0:00:09 5:44:07 0:02:43 0:00:59 1:26:29
7 0:00:32 0:00:09 3:51:26 0:02:43 0:00:59 1:02:09
8 0:00:06 0:00:04 3:51:26 0:02:43 0:00:59 1:09:44
9 0:00:06 0:00:04 3:51:26 0:02:43 0:00:59 0:46:02

10 0:00:00 0:00:00 0:00:04 0:02:43 0:00:59 0:18:28
11 0:00:00 0:00:00 0:02:43 0:00:59
12 0:00:00 0:00:00 0:02:43 0:00:59
13 0:00:00 0:00:00 0:02:43 0:00:59
14 0:02:43 0:00:59
15 0:02:43 0:00:59
16 0:02:43 0:00:59
17 0:02:32 0:00:59
18 0:02:24 0:00:57
19 0:02:24 0:00:57
20 0:02:11 0:00:51
21 0:01:52 0:00:51

Table 9
The number of all computed non-dominated solutions using the FindRoutes and the Skriver algorithms

depending on the length of the route.

Length of Criterion functions: T , C Criterion functions: T , C, D

the route FindRoutes Skriver FindRoutes Skriver

1–5 153204 139158 173746 110206
6–10 517938 461066 1731971 552477

11–15 2217636 841915 7420803 919132
16–20 1740571 1265327 25055825 563973
21–25 2756929 1607326 85607310 21801
26–30 4075188 1649887 358860843 1
31–35 5503521 1539983 931244636
36–40 7258514 1276342 2126130693
41–45 9772586 905702 2165955723
46–50 11845671 461975 399262866
51–55 13029210 199495 15438041
56–60 9471339 71627 4577491
61–65 6262071 30175 1720131
66–70 3096544 7763 355638
71–75 1006427 890 43505
76–80 249627 14 3434
81–85 26952 206
86–90 2226
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Table 10
The maximal number of computed partial solutions in a single experiment using the FindRoutes and the

Skriver algorithms depending on the length of the route.

Length
of the
route

Criterion functions: T , C Criterion functions: T , C, D

FindRoutes Skriver FindRoutes Skriver

∗P LP ∗P LP

1–5 1097 701 90169 764 611 341385
6–10 4229 1210 1496675 2681 1835 33140590

11–15 8801 2118 26578616 6544 3401 44169271
16–20 21273 3589 26578616 18174 7496 44389232
21–25 33918 5071 50138560 24757 10451 44389232
26–30 48616 7644 52400859 47360 18770 2050394
31–35 70023 9211 52546673 89688 24000
36–40 88899 9708 52546673 137378 27774
41–45 92482 9708 52546673 140716 30240
46–50 95361 9924 52546673 140716 30240
51–55 98962 9924 52546673 140716 30240
56–60 107024 9924 52546673 140716 30240
61–65 107024 9924 52546673 140716 30240
66–70 107024 9924 49217090 140716 30240
71–75 107024 9924 49217090 134626 30240
76–80 84174 9924 6982760 83661 27959
81–85 81987 9924 79517 24352
86–90 55883 7405

Table 11
The maximal computation time in a single experiment using the FindRoutes and the Skriver algorithms

depending on the length of the route, the unit of the time is [hrs:mins:secs].

Length
of the
route

Criterion functions: T , C Criterion functions: T , C, D

FindRoutes Skriver FindRoutes Skriver

∗P LP ∗P LP

1–5 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:11
6–10 0:00:00 0:00:00 0:00:06 0:00:00 0:00:00 0:14:57

11–15 0:01:00 0:00:00 0:04:50 0:00:01 0:00:00 0:57:26
16–20 0:00:00 0:00:00 0:04:50 0:00:07 0:00:01 1:26:29
21–25 0:00:00 0:00:00 3:14:12 0:00:20 0:00:08 1:26:29
26–30 0:00:00 0:00:00 3:26:19 0:02:31 0:00:54
31–35 0:00:00 0:00:00 3:45:59 0:02:31 0:00:59
36–40 0:00:06 0:00:03 4:39:16 0:02:31 0:00:59
41–45 0:00:32 0:00:09 5:44:07 0:02:43 0:00:59
46–50 0:00:32 0:00:09 5:44:07 0:02:43 0:00:59
51–55 0:00:32 0:00:09 4:39:16 0:02:43 0:00:59
56–60 0:00:32 0:00:09 3:51:26 0:02:43 0:00:59
61–65 0:00:32 0:00:09 3:51:26 0:02:43 0:00:59
66–70 0:00:01 0:00:01 3:51:26 0:02:24 0:00:59
71–75 0:00:01 0:00:01 3:51:26 0:02:32 0:00:54
76–80 0:00:00 0:00:00 0:01:57 0:02:06 0:00:43
81–85 0:00:00 0:00:00 0:00:08 0:00:07
86–90 0:00:00 0:00:00
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into account then P1 and P2 are non-dominated solutions. For that reason, the number of
computed partial solution in the second case is greater than in the first and it increases the
computation time. This was the reason why the different number of tests was carried out
by the Skriver algorithm in both cases. It was not possible to carry out the same number
of tests due to out of memory. Adding the third criterion function increases about 3 times
the number of computed partial solutions by the procedure FindRoutes where the record
with the list LP is used. For the second version of the procedure it increases the number
of computed partial solutions about 1.5 times.

The number of criterion functions increases the number of non-dominatedsolutions. In
the first case, i.e. in the BRP where two criterion functions are used, the maximal number
of non-dominated solutions in the single test was 461440 but only 385 solutions differ
from each other in the path, other solutions were the same path and differ from each other
only in the times of departure. In the second case, these values are equal 3162693 and 66

respectively. Thus adding the length of the route as the third criterion function increases
about 7 times the number of non-dominated solutions.

5. Conclusions

In this paper we considered the bus routing problem (BRP), in particular, we analysed the
problem and properties of a route. The goal of the problem is to find a route from the given
start stop to the given final stop minimizing the time and the cost of travel and the length
of the route, where the time of starting travel at the start stop is given additionally. The
BRP is an example of the multicriteria shortest path (MSP) problem with variable weights
which the solution is the set of non-dominated solutions. The MSP problem has already
been considered in the literature and several algorithms have been proposed, however,
these algorithms assume constant weights. We have analysed differences between the MSP
problem with variable and constant weights. Additionally, the results of solving the BRP
where the goal is to minimize only the time and the cost of travel are presented.

In the paper we proposed a label correcting algorithm with storing partial solutions for
solving the BRP. The algorithm makes it possible to find all routes belonging to the set
of non-dominated solutions. As shown, the MSP is known to be NP-complete and in the
worst case, the number of non-dominated solutions grows exponentially with the n value.
The pessimistic time complexity of the algorithm is determined by the maximal number
of non-dominated solutions and it equals O(dn), where n equals a number of vertices in
the graph representing the bus network and g equals a maximum out-degree of a vertex
in the graph.

On the basis of the results of experimental tests we found that presented algorithm
exhibits a reasonable execution time for the bus network containing about 1200 stops.
Additionally, the results demonstrate that the number of non-dominated solutions is not
exponential in practice. In the algorithm we take into consideration only three criterion
functions representing the time and the cost of travel and the length of the route but it is
possible to add other criterion functions.
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Autobusų maršrutų sudarymo algoritmas pagrįstas žymeklio korega-
vimu ir dalinių sprendinių įsiminimu

Jacek WIDUCH

Straipsnyje aprašytas autobusų maršrutų sudarymo (BRP) algoritmas, kurio tikslas surasti
maršrutą nuo pradinės iki galinės stotelės minimizuojant laiką, kelionės kainą ir ilgį. Kelionės
pradžios laikas pradinėje stotelėje yra duotas. Išanalizavus uždavinį pateiktos maršrutų savybės.
BRP yra daugiakriterės optimizacijos uždavinys, kurio sprendiniais yra nedominuojami sprendiniai.
Šiame straipsnyje pasiūlytas žymeklio koregavimo algoritmas išsaugantis dalinius sprendinius. Al-
goritmu randami visi maršrutai priklausantys nedominuojamų sprendinių aibei. Taip pat pateikti
eksperimentinio testavimo rezultatai. Gauti rezultatai palyginti su BRP użdavinio sprendimo rezul-
tatais, kai minimizuojamas tik laikas, ar tik kaina, ar tik maršruto ilgis.


