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Abstract. Generating sequences of random numbers or bits is a necessity in many situations (cryp-
tography, modeling, simulations, etc. . .). Those sequences must be random in the sense that their
behavior should be unpredictable. For example, the security of many cryptographic systems de-
pends on the generation of unpredictable values to be used as keys. Since randomness is related to
the unpredictable property, it can be described in probabilistic terms, studying the randomness of
a sequence by means of a hypothesis test. A new statistical test for randomness of bit sequences
is proposed in the paper. The created test is focused on determining the number of different fixed
length patterns that appear along the binary sequence. When ‘few’ distinct patterns appear in the
sequence, the hypothesis of randomness is rejected. On the contrary, when ‘many’ different patterns
appear in the sequence, the hypothesis of randomness is accepted.

The proposed can be used as a complement of other statistical tests included in suites to study
randomness. The exact distribution of the test statistic is derived and, therefore, it can be applied
to short and long sequences of bits. Simulation results showed the efficiency of the test to detect
deviation from randomness that other statistical tests are not able to detect. The test was also applied
to binary sequences obtained from some pseudorandom number generators providing results in
keeping with randomness. The proposed test distinguishes by fast computation when the critical
values are previously calculated.

Key words: randomness tests, cryptography, entropy, random bit generators.

1. Introduction and Problem Statement

The necessity of testing the randomness of a bit sequence arises in many fields, such as
modeling, simulations and cryptography.

For example, the security of many cryptographic systems depends on the generation
of unpredictable values to be used as keys, passwords, challenges or unique identifiers,
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see Koeune (2005), Eastlake et al. (2005), among others. Hence, the use of appropriate
random number (bit) generators becomes a necessity. While there are many techniques
to generate random bit sequences, in the context of cryptography the quality of each gen-
erator should be measured by means of different statistical tests. “Passing statistical tests
is a necessary condition, since any statistical defect can be used by an attacker to gain
information about the future output”, as it is stated in Koeune (2005).

The importance of providing randomness statistical tests is also pointed out in some re-
cents reports, such as Killmann and Schindler (2011) by the Federal Office for Informatic
Security (BSI, Germany) and CCN-STIC-807 (2011) by the National Intelligence Centre
(CNI, Spain). The former states that “many security mechanisms need secrets, e.g., cryp-
tographic keys or authentication data. Unpredictable random numbers are ideal secrets for
IT security applications”. The latter states that “in cryptography, it is imperative to subject
the generated pseudorandom sequence to all possible statistical tests before accepting it
for cryptographic applications”.

Generators of random sequences can be classified in two groups: random number
generators and pseudorandom number generators. The first type uses a non-deterministic
source together with some processing function to produce randomness. Some examples of
the entropy source are the elapsed time between keystrokes or mouse movement, and the
noise in an electrical circuit. The second type uses one or various seeds and a deterministic
function to generate the sequence. There are many papers dealing with the design of ran-
dom bit generators, see Jakobsson et al. (1998), Nasir (2009), Patidar et al. (2009), Peris-
Lopez et al. (2010), Schindler (2009), among others.

In both cases, randomness statistical tests are required. When a random number gener-
ator is used, it is necessary to test the randomness of the outputs in order to determine that
the physical source is really random. On the other hand, when a pseudorandom number
generator is used, it is necessary to test that the sequence is forward unpredictable. Also,
it should be back unpredictable since each value of the sequence is reproducible from
its seed. This topic is tackled in Maurer (1992), Menezes et al. (1996), Rukhin (2000),
Ryabko (2004), Doganaksoy (2006), Colbeck and Kent (2011), Hernández et al. (2004),
Alani (2010) and Hamano and Yamamoto (2010).

Various statistical test suites have been developed to study the randomness of a se-
quence, such as Diehard, Crypt-XS and NIST. The Diehard suite was developed by Pro-
fessor George Marsaglia (1995), the Crypt-XS suite was developed by researchers at the
Information Security Research Center at Queensland University of Technology in Aus-
tralia (Crypt-XS, 1998) and the NIST suite is the result of collaborations between the
Computer Security Division and the Statistical Engineering Division at NIST (2010). All
of them have been used to evaluate random and pseudorandom number generators for
cryptographic applications.

It is important to emphasize that it is impossible to prove whether a generator is indeed
a random bit (number) generator. Each test determines whether a sample sequence verifies
a probability property that a truly random sequence would have. For example, a random bit
sequence should have approximately the same number of ones and zeroes. However, there
are non-random bit sequences with the same number of ones and zeroes (a sequence of
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size n with the first n
2

values equal to one and the rest n
2

values equal to zero, with n even).
Separately, each test included in a test suite (for example NIST) is not highly efficient,
but all tests together are a useful tool (but not infallible) to study the randomness of a
sequence. In other words, given a non-random sequence, some statistical tests included in
the test suite can indicate randomness (so these test have failed) whereas the rest of tests
indicate non-randomness. Therefore, each randomness statistical test has its strengths and
weaknesses.

As we mentioned above, randomness is related to the unpredictable property and it can
be described in probabilistic terms. Generally, the study of the randomness of a sequence
is performed by means of a hypothesis test (the null hypothesis assumes that the sequence
is random), and it can be summarized as follows. Under the assumption that the sequence
is random, the exact or approximate distribution of the test statistic is determined.Decision
in the hypothesis test is taken through the p-value, which is computed using the theoretical
distribution of the test statistic. If the p-value is less than the significance level α, then the
sequence is considered non-random. Common values of α in cryptography are about 0.01
(99% confidence level).

In this paper, a new statistical randomness test (that we call the Topological Binary
Test, TBT) is proposed for bit sequences. It can be considered as a complement of other
statistical tests to detect deviation from randomness, so it helps to detect some weakness
the generator may have. Its main strengths are the knowledge of the exact distribution for
the test statistic, fast computing and that it can be applied to short or long sequences of
bits.

The rest of the paper is organized as follows. In Section 2, the new statistical test
is defined and its exact distribution is given. In Section 3, the simulation results of the
proposed test are compared to those tests included in NIST. Finally, in Section 4 some
conclusions are given.

2. Topological Binary Test

This section describes the proposed test (TBT), gives the exact distribution of the test
statistic and points out some similarities and differences with other statistical randomness
tests included in the NIST suite.

The statistical test suite NIST (version sts-2.1.1, August 2010) consists of 15 tests, each
of them evaluating a necessary condition for the randomness in probabilistic terms. For
instance, the frequency (monobit) test determines whether the number of ones and zeroes
in a sequence are about the same. The frequency test within a block determines whether the
frequency of ones in a m-bit block is approximately m/2. The run test evaluates whether
the number of runs of ones and zeroes are as expected for a random sequence. These are
necessary but not sufficient conditions to test randomness of a bit sequence.

As an example, let us consider a bit sequence of length n = 10 × 2
10 = 10 240 as

follows:

{0,0,1,1,0,0, . . .,0,0,1,1} (1)
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with 5120 ones, 5120 zeroes and 5120 runs. Hence, the bit sequence is clearly non-random
but monobit, frequency within a block and run tests would lead to accept the null hypoth-
esis of randomness.

A set of five tests included in NIST are related to searching for m-bit patterns. For
instance, the aim of the non-overlapping and overlapping template matching tests is the
number of occurrences of pre-defined target substrings, whereas the Maurer’s universal
test focusses on the number of bits between matching patterns. For these three tests, ap-
proximate distributions of the test statistics are used and long sequences of bits are re-
quired. On the other hand, serial and approximate entropy tests focus on the frequency of
every overlapping m-bit pattern.

The focus of the TBT is the number of distinct non-overlapping m-bit patterns across
the entire sequence, where m represents the non-overlapping block length or pattern size.
The test performance can be summarized as follows:

• Step 1: For a given sequence of bits of length n, {xt}nt=1
, select the size of the non-

overlapping blocks m.
• Step 2: Partition the sequence into k = [ n

m
] non-overlapping blocks of length m and

discard the rest of the bits.
• Step 3: Consider the 2

m possible patterns of length m and determine the number of
different m-bit patterns that appear across all the k blocks.

• Step 4: Compute the p-value or the critical value of the test using the exact distri-
bution of the test statistic.

Clearly, a random bit sequence should contain “many” different m-bit patterns, so bit
sequences with “few” distinct m-bit patterns must be non-random. Using the exact distri-
bution of the test statistic, we can compute the critical value for each selection of block
length, m, and number of blocks, k. That is, the minimum number of different m-bit pat-
terns that should appear along the bit sequence to accept the null hypothesis of random-
ness.

Next example illustrates the performance of the TBT test. Let us consider again the bit
sequence given in (1)

{0,0,1,1,0,0, . . .,0,0,1,1}

• Step 1: Let us select m = 10 the non-overlapping block length.

• Step 2: The bit sequence is then partitioned into k = [ 10×2
10

10
] = 2

10 = 1024 non-
overlapping blocks of length 10, as follows:

Block 1 → [0,0,1,1,0,0,1,1,0,0],
Block 2 → [1,1,0,0,1,1,0,0,1,1],
Block 3 → [0,0,1,1,0,0,1,1,0,0],

...
...

Block 1024 → [1,1,0,0,1,1,0,0,1,1],

• Step 3: There are only 2 different 10-bit patterns across all the blocks,
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Pattern type 1 → [0,0,1,1,0,0,1,1,0,0],
Pattern type 2 → [1,1,0,0,1,1,0,0,1,1],

• Step 4: The critical value or the p-value of the test can be computed using the exact
distribution of the test statistic. In this case, the critical value of the test for m = 10

and k = 2
10 is cv = 624 (see Table 1). Then, we have that:

number of different patterns minimum number of different patterns,
found along the sequence < to accept randomness (critical value),

↓ ↓
2 < 624

and therefore the TBT test strongly conclude that the binary sequence given in (1)
is not random, whereas some other statistical tests would accept randomness (for
example, the monobit, block-frecuency, run tests and CumulativeSums included in
NIST). This fact shows the utility of the TBT test to complement other statistical
tests included in the suites.

The next results show the theoretical grounding of the proposed test and how to com-
pute the critical value needed in Step 4.

Result 1. Let {xt }nt=1
be a binary sequence of length n, let m be the selected block length

or pattern size and k the number of non-overlapping blocks of length m in the se-
quence. Let W be the number of different m-bit patterns found along the k non-
overlapping blocks. Then, the discrete probability function of W under the assump-
tion of randomness is given by:

P(W = j) =
(2m)!

(2m − j)!
· S2(k, j) ·

(

1

2m

)k

(2)

for j = 1,2, . . . ,min(k,2
m), where S2(k, j) denotes the Stirling number of second

type.
Proof. When randomness is assumed, each m-bit pattern has the same probability to ap-

pear along the sequence. For the fixed block length, m, the number of possible m-bit
patterns is 2

m:

Position 1 Position 2 . . . Position m

Block of size m: ↓ ↓ ↓
2 posibilities 2 posibilities 2 posibilities.

Then, under the assumption of randomness, each m-bit pattern has probability 1

2m

to appear.
As the sequence has been partitioned into k non-overlapping blocks of length m:

Block 1 [x1, x2, . . . , xm] → Probab to appear = 1

2m ,

Block 2 [xm+1, xm+2, . . . , x2m] → Probab to appear = 1

2m ,
...

Block k [xn−m+1, xn−m+2, . . . , xn] → Probab to appear = 1

2m ,
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the probability of finding j different patterns across all the k blocks is given by:

P(W = j) =
C

∑

i=1

(

1

2m

)

·
(

1

2m

)

· · ·
(

1

2m

)

= C ·
(

1

2m

)k

,

where C denotes the number of ways to put exactly j different m-bit patterns into
the k blocks.
On the one hand, there are

(

2
m

j

)

ways to select j distinct patterns among the 2
m

possible m-bit patterns. On the other hand, there are j ! · S2(k, j) ways to find the
selected j different patterns across the k blocks.
Therefore, C is given by:

C =
(

2
m

j

)

· j ! · S2(k, j) =
(2m)!

(2m − j)!
· S2(k, j),

where S2(k, j) is the Stirling number of second type, see (Canovas and Guillamon,
2009) for more details.

Result 2. The exact distribution function of W under the assumption of randomness is
given by:

FW (x) = P(W 6 x)

=











0, if x < 1,
∑[x]

j=1

(

(2m)!
(2m−j)! · S2(k, j) ·

(

1

2m

)k)
, if 1 6 x < min(k,2

m),

1, if x > min(k,2
m).

(3)

Proof. The proof is straightforward using Result 1 and that the distribution function of a
discrete randomvariable can be obtained by adding the discrete probability function.

The TBT determines whether the number of different m-bit patterns found along the k

non-overlapping blocks is as high as expected for truly random sequences. Thus, when
few different patterns appear, the test will reject the null hypothesis of randomness. The
p-value of the test is computed by:

p-value = FW (x0) = P(W 6 x0),

where x0 is the number of different patterns found for the given bit sequence. If
p-value < α (significance level), the test concludes that the sequence is non-random be-
cause the number of different m-bit patterns found is lower than the expected for a random
sequence (the critical value).

Tables 1 and 2 show the evolution of the critical value (cv) for different choices of m

and k, with significance level α = 0.01. When m = 16 or greater, some terms in (3) are
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Table 1
Critical values of TBT test for k = 2

m.

m cv 2
m Proportion

8 150 2
8 = 256 0.586

9 307 2
9 = 512 0.600

10 624 2
10 = 1 024 0.609

11 1262 2
11 = 2 048 0.616

12 2543 2
12 = 4 096 0.621

13 5113 2
13 = 8 192 0.624

14 10264 2
14 = 16 384 0.626

15 20582 2
15 = 32 768 0.628

16 41241 2
16 = 65 536 0.629

Fig. 1. Proportion of different m-bit pattern which corresponds to each critical value.

hard to compute (specially the Stirling numbers) and symbolic calculus is required. Hence,
computation of the critical value for m = 16 was performed by a special computer with a
high capacity cluster of 152 cores (Hipatia, 2011) under Mathematica 7.0. In Table 1, the
number of non-overlapping m-blocks in the sequence (k) coincides with the number of
possible m-bit patterns (2m), whereas in Table 2 greater values of k are considered. If the
number of different patterns found in the sequence is lower that the critical value, the TBT
concludes that the sequence is non-random. Figure 1 shows (for each pattern size m) the
proportion of different m-bit pattern which corresponds to each critical value. Note that
this proportion increases when m get greater and we could guess an asymptotic behavior
for m > 16 around the proportion 0.63. Therefore, a good approximation of the critical
values for m > 17 could be 0.63 · 2

m. Figure 2 shows the proportions corresponding to
each critical value for different number of non-overlapping blocks (k) proportional to 2

m.
The graph reveals a similar behavior for different m values.
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Table 2
Critical values of TBT test for greater k.

m\k k = 2
m k = 2 · 2

m k = 3 · 2
m k = 4 · 2

m Possible m-patterns

m = 8 cv = 150 cv = 211 cv = 239 cv = 246 256

p = 0.586 p = 0.828 p = 0.934 p = 0.961

m = 10 cv = 624 cv = 864 cv = 958 cv = 995 1024

p = 0.609 p = 0.844 p = 0.936 p = 0.972

m = 12 cv = 2543 cv = 3499 cv = 3862 cv = 4001 4096

p = 0.621 p = 0.854 p = 0.943 p = 0.977

Fig. 2. Proportions corresponding to each critical value for non-overlapping blocks (k) proportional to 2
m.

3. Simulation Results

The proposed test (TBT) and those included in NIST were applied to 20 different pseudo-
random number generators. Ten of the selected generators are recommended for simula-
tion proposes because they have extremely long periods, low correlation and the strongest
proof of randomness. They belong to the so-called second-generation ranlux generators
and they are included in the Random Number Generator part of the GSL library (GSL Li-
brary, 2010). The rest of the selected generators belong to the set of unix random number
generators (also implemented in GSL) and they are considered quite acceptable in spite
of not producing high-quality randomness.

Fifty million values were generated with each pseudorandom number generator. Then,
it was transformed into a sequence of bits by a parity criterion (the evenness or oddness of
the number of bits with value one within a given set of bits), yielding 0 for even parity and 1

for odd parity. The same seed was used with all generators (the first nine decimal digits of√
2 ) in order to provide reproducible sequences. Using a unique seed is not appropriate

to test the efficiency of a pseudorandom number generator. However, this is not the aim
of the paper, the real aim is to show that the performance of the proposed test is as good
as other tests used for cryptographic applications.
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Table 3
Block length (m) used in each statistical test (NIST and TBT) for different stream sizes (n).

n = n = n = n = n = n = n = n =
491 520 229 376 106 496 49 152 22 528 10 240 4 608 2 048

BlockFreq 5000 2500 1100 500 250 110 50 21
Appr.Entrop 13 12 11 10 9 8 7 6
Serial test 16 15 14 13 12 11 10 9
TBT 15 14 13 12 11 10 9 8

Table 4
Block length (m) used in each statistical test (NIST and TBT) for length of the stream = 1 048 576.

Block length BlockFreq Non overlaping Overlaping Appr.Entrop
10500 10 10 14

Block length Serial test Linear complexity TBT
17 1000 16

Different stream sizes and several number of streams were selected in order to compare
results. Each bit stream size was of the formn = m ·2m with m = 8,9, . . . ,16, where n rep-
resents the length of the stream. The number of selected streams were 47 samples (when
m = 16), 100 (when m = 15), 200 (when m = 14), 400 (when m = 13), and 500 samples
(when m = 12, 11, 10, 9, or 8). Therefore, the number of non-overlapping blocks of length
m when using TBT coincides with the number of possible m-bit patterns (k = 2

m).
Recall that six of the statistical randomness tests included in NIST require a long se-

quence of bits to be applied (sequence length > 10
6 bits), whereas the rest of the tests

(also TBT) can be used with shorter sequences. Thus, all tests were applied to the longest
stream size and only some tests were applied to shorter stream sizes.

Tables 3 and 4 show the block length (m) and the bit stream size (n) selected for each
statistical test according to NIST recommendations.

In all simulations the percentage of acceptance of the randomness hypothesis is com-
puted, using the standard significance level α = 0.01 (99% confidence level). Although
the tests were applied to twenty different random number generators, the results of only
three of them (ranlux, mrg and rand48) are included in the paper in order to simplify the
writing.

Table 5 shows the results for the longest bit stream size, n = 16 · 2
16 = 1 048 576,

with 47 samples. Remark that the TBT test provides a similar percentage of randomness
acceptance than the other statistical tests.

Regarding computation time, notice that TBT is quite fast if the critical values have
been previously calculated.

Tables 6, 7 and 8 contain the results for shorter bit stream sizes, where only some tests
can be applied.

All tables reveal that the TBT test provides similar results than the other randomness
statistical tests.

On the other hand, the statistical randomness tests were also applied to the sequences
obtained as the binary expansion of the irrational numbers

√
2, e and π . For these cases,
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Table 5
Results for a long bit stream size (n = 1 048 576).

ranlux mrg rand48

Frequency 1.000 0.979 1.000
BlockFrequency 1.000 1.000 0.979
CumulativeSums (f) 1.000 0.979 1.000
CumulativeSums (b) 1.000 0.957 0.979
Runs 1.000 0.957 1.000
LongestRun 1.000 1.000 0.979
Rank 1.000 1.000 1.000
FFT 0.979 1.000 0.957
NonOverlappingTemplate 0.979 1.000 0.979
OverlappingTemplate 0.979 1.000 0.979
Universal 0.979 1.000 1.000
Appr.Entrop 0.979 0.915 0.957
RandomExcursions 0.941 0.968 1.000
RandomExcursionsVariant 1.000 1.000 1.000
Serial (∇1) 1.000 0.957 1.000
Serial (∇2) 1.000 1.000 1.000
LinearComplexity 1.000 0.957 0.957

TBT 0.979 1.000 1.000

Table 6
Results for ranlux using different bit stream sizes (n).

Statistical test n = n = n = n = n = n = n = n =
491 520 229 376 106 496 49 152 22 528 10 240 4 608 2 048

Frequency 0.990 0.980 0.988 0.992 0.996 0.998 0.992 0.996
BlockFreq 1.000 0.995 0.990 0.984 0.984 0.998 0.996 0.992
CumSums (f) 0.980 0.980 0.993 0.994 0.996 1.000 0.994 0.992
CumSums (b) 0.990 0.985 0.990 0.996 0.996 1.000 0.994 0.996
Runs 1.000 1.000 0.998 0.994 1.000 0.994 0.998 0.996
LongestRun 0.990 0.985 0.993 0.990 0.998 0.992 0.986 0.994
Rank 1.000 0.990 0.993 0.986 0.996 0.982 0.984 0.970
FFT 1.000 0.990 0.968 0.986 0.986 0.990 0.988 0.984
Appr.Entrop 0.990 0.980 0.988 0.982 0.990 0.976 0.992 0.990
Serial (∇1) 0.990 0.990 0.998 0.988 0.998 0.988 0.994 0.996
Serial (∇2) 1.000 0.990 0.993 0.984 0.994 0.986 0.996 0.994

TBT 1.000 1.000 0.983 0.992 0.998 0.990 0.990 0.996

the sequences of 10
6 bits included in NIST package were considered and stream sizes

of n = 8 · 2
8, n = 9 · 2

9 and n = 10 · 2
10 were selected with 400, 200 and 90 samples

respectively.
NIST also contains a data file corresponding to a random bit sequence generated by

Blum Blum Shub (BBS) pseudorandom number generator. The length of this bit sequence
allows to apply all the statistical tests with parameters given in Tables 3 and 4.

Tables 9, 10, 11, 12 and 13 summarize the percentage of randomness acceptance for
each statistical test and each stream size. Again, the TBT test provides similar results to
the other statistical tests.
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Table 7
Results for mrg using different bit stream sizes (n).

Statistical test n = n = n = n = n = n = n = n =
491 520 22 9376 106 496 49 152 22 528 10 240 4 608 2 048

Frequency 0.990 0.995 0.980 0.992 1.000 0.998 0.982 0.990
BlockFreq 0.990 0.990 0.995 0.994 0.994 0.994 0.996 0.992
CumSums (f) 0.990 0.995 0.988 0.992 0.998 0.998 0.986 0.984
CumSums (b) 0.990 0.985 0.990 0.996 1.000 0.998 0.982 0.990
Runs 0.970 0.985 0.993 0.984 0.996 1.000 0.988 0.982
LongestRun 0.990 0.995 1.000 0.990 1.000 0.994 0.990 0.988
Rank 1.000 1.000 0.995 0.994 0.996 0.998 0.980 0.982
FFT 1.000 0.995 0.995 0.984 0.980 0.986 0.998 0.988
Appr.Entrop 0.970 0.965 0.973 0.978 0.994 0.996 0.996 0.980
Serial (∇1) 0.990 0.970 0.988 0.986 0.994 0.998 0.990 0.984
Serial (∇2) 0.990 0.985 0.985 0.988 0.994 0.998 0.988 0.984

TBT 0.980 1.000 0.998 0.996 0.992 0.996 0.990 0.992

Table 8
Results for rand48 using different bit stream sizes (n).

Statistical test n = n = n = n = n = n = n = n =
491 520 229 376 106 496 49 152 22 528 10 240 4 608 2 048

Frequency 1.000 0.990 0.995 0.992 0.996 0.992 0.990 0.996
BlockFreq 0.980 0.995 0.985 0.990 0.994 0.988 0.994 0.990
CumSums (f) 1.000 0.985 0.993 0.992 0.996 0.992 0.994 0.988
CumSums (b) 1.000 0.990 0.993 0.992 0.992 0.994 0.988 0.992
Runs 0.990 0.995 0.985 0.984 0.992 0.984 0.988 0.986
LongestRun 1.000 0.985 0.990 0.992 0.990 0.990 0.990 0.988
Rank 1.000 0.985 0.988 0.990 0.990 0.984 0.986 0.986
FFT 0.980 0.995 0.983 0.986 0.988 0.992 0.992 0.994
Appr.Entrop 0.970 0.965 0.978 0.984 0.972 0.990 0.990 0.980
Serial (∇1) 1.000 0.980 0.993 0.992 0.994 0.990 0.988 0.990
Serial (∇2) 1.000 0.990 0.990 0.988 0.990 0.982 0.980 0.988

TBT 0.990 1.000 0.985 0.980 0.996 0.992 0.988 0.992

Table 9
Results for the binary expansion of

√
2.

Statistical test n = 2 048 n = 4 608 n = 10 240

Smp = 400 Smp = 200 Smp = 90

Frequency 0.985 0.990 0.989
BlockFrequency 0.987 0.995 0.989
CumulativeSums (forward) 0.990 0.990 0.989
CumulativeSums (backward) 0.987 0.990 1.000
Runs 0.9875 0.990 1.000
LongestRun 0.9825 0.995 0.989
Rank 0.970 0.990 0.989
FFT 0.982 0.990 1.000
ApproximateEntropy 0.985 0.990 0.989
Serial (∇1) 0.985 0.995 1.000
Serial (∇2) 0.990 1.000 0.989

TBT 0.990 0.995 0.989
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Table 10
Results for the binary expansion of e.

Statistical test n = 2 048 n = 4 608 n = 10 240

Smp = 400 Smp = 200 Smp = 90

Frequency 0.995 0.995 0.989
BlockFrequency 0.985 0.970 1.000
CumulativeSums (forward) 0.995 1.000 0.989
CumulativeSums (backward) 0.997 0.995 0.989
Runs 0.995 1.000 1.000
LongestRun 0.985 0.975 0.989
Rank 0.990 0.980 1.000
FFT 0.997 0.995 0.967
ApproximateEntropy 0.990 0.995 0.989
Serial (∇1) 0.992 0.990 0.989
Serial (∇2) 0.992 0.985 0.989

TBT 0.997 0.995 1.000

Table 11
Results for the binary expansion of π .

Statistical test n = 2 048 n = 4 608 n = 10 240

Smp =400 Smp = 200 Smp = 90

Frequency 0.992 0.995 1.000
BlockFrequency 0.990 0.995 0.989
CumulativeSums (forward) 0.985 0.990 0.989
CumulativeSums (backward) 0.990 0.995 1.000
Runs 0.997 1.000 0.978
LongestRun 0.990 0.975 1.000
Rank 0.982 0.980 0.978
FFT 0.995 0.980 0.956
ApproximateEntropy 0.982 0.995 1.000
Serial (∇1) 0.985 0.990 1.000
Serial (∇2) 0.992 0.995 1.000

TBT 0.992 0.985 0.989

Finally, the efficiency of the TBT test was analyzed for non-random sequences con-
taining short period cycles.

On the one hand, let us consider a bit sequence consisting of 10 240 random bits (gener-
ated by taus) and repeated 100 times (L = 10 240 = 10 ·2

10 represents the period length).
Certainly, all statistical tests will fail if the bit stream size is n = 10 · 2

10, but we may
wonder about what will happen for greater stream lengths.

Concerning the TBT test, we point out two possibilities to detect non-randomness:
increasing m (pattern size) and n (stream size) simultaneously or just increasing n for a
fixed m. In previous results, only bit stream sizes of the form n = m · 2

m where used, and
for the TBT test, the number of non-overlapping blocks were given by k = 2

m. However,
other values of k are possible and could be useful to detect short period cycles.

Table 14 shows the percentage of the randomness acceptance for different values of
the bit stream size (n) and the bit pattern size (m). Results reveal the importance of those
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Table 12
Results for a long bit stream size (n = 1048 576) for BBS data.

Statistical test n = 1 048 576

Frequency 0.979
BlockFrequency 1.000
CumulativeSums (f) 0.979
CumulativeSums (b) 0.979
Runs 0.979
LongestRun 1.000
Rank 0.979
FFT 0.957
NonOverlappingTemplate 1.000
OverlappingTemplate 0.957
Universal 1.000
Appr.Entrop 0.957
RandomExcursions 1.000
RandomExcursionsVariant 1.000
Serial (∇1) 1.000
Serial (∇2) 1.000
LinearComplexity 1.000

TBT 1.000

Table 13
Results for BBS using different bit stream sizes (n).

Statistical test n = n = n = n = n = n = n = n =
491 520 229 376 106 496 49 152 22 528 10 240 4 608 2 048

Frequency 0.990 0.995 0.988 0.994 0.986 0.988 0.982 0.986
BlockFreq 0.990 1.000 0.988 0.994 0.986 0.994 0.996 0.992
CumSums (f) 0.990 0.995 0.988 0.996 0.990 0.988 0.980 0.982
CumSums (b) 0.980 0.995 0.990 0.994 0.990 0.988 0.974 0.984
Runs 0.990 1.000 0.995 0.980 0.990 0.992 0.992 0.996
LongestRun 1.000 1.000 0.998 0.986 0.998 0.992 0.994 0.988
Rank 0.980 1.000 0.998 0.982 0.998 0.998 0.986 0.982
FFT 0.990 0.980 0.988 0.984 0.982 0.984 0.986 0.974
Appr.Entrop 0.990 0.995 0.978 0.974 0.978 0.974 0.986 0.988
Serial (∇1) 1.000 0.995 0.988 0.992 0.990 0.986 0.992 0.994
Serial (∇2) 0.990 1.000 0.990 0.992 0.992 0.988 0.984 0.992

TBT 1.000 1.000 0.995 0.998 0.996 0.992 0.990 0.992

measures in determining non-randomness. Note that the TBT test requires m = 12 and
n = 49 152 to detect the cycles. Nevertheless, six of the statistical tests still conclude ran-
domness even for n = 49 152.

The cycles can also be detected by the TBT test increasing the bit stream size n and
keeping m fixed. For example, if m = 10 and n = 20 480, then 652 different 10-bit patterns
were found in the sequence whose corresponding critical value is 864 (see Table 2). There-
fore, the TBT concludes that the sequence is non-random for m = 10 and n = 20 480.
Likewise, the same conclusion is obtained for m = 10 and greater n.

On the other hand, let us consider some bit sequences obtained using a congruen-
tial generator with no-maximal period. The sequences were generated by the following
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Table 14
Results for a non-random bit sequence with many cycles.

Statistical test n = 10 240 n = 22 528 n = 49 152

Smp = 100 Smp = 45 Smp = 20

Frequency 1.000 1.000 1.000
BlockFrequency 1.000 1.000 1.000
CumulativeSums (forward) 1.000 1.000 1.000
CumulativeSums (backward) 1.000 1.000 1.000
Runs 1.000 1.000 1.000
LongestRun 1.000 0.000 0.000
Rank 1.000 1.000 1.000
FFT 1.000 0.000 0.000
ApproximateEntropy 1.000 0.000 0.000
Serial (∇1) 1.000 0.000 0.000
Serial (∇2) 1.000 0.000 0.000

TBT 1.000 1.000 0.000

Table 15
Results for non-random sequences with a part of a cycle.

Statistical test n = 106 496 n = 49 152

a = 53, c = 6 a = 25, c = 10

Period_Cycle = 53 248 Period_Cycle = 24 576

Frequency Random Random
BlockFrequency Random Random
CumulativeSums (forward) Random Random
CumulativeSums (backward) Random Random
Runs Random Non-Random

LongestRun Random Non-Random

Rank Random Random
FFT Non-Random Non-Random

ApproximateEntropy Non-Random Non-Random

Serial (∇1) Non-Random Non-Random

Serial (∇2) Non-Random Non-Random

TBT Non-Random Non-Random

equation:

xn+1 = (a · xn + c) mod L

using different values of the parameters. Note that the selection of appropriate parameters
provides random bit sequences (maximal period). However, for L = 106 496, the selection
of a = 53 and c = 6 provides a cycle of period 53 248, and for L = 49 152, the selection
of a = 25 and c = 10 provides a cycle of period 24 576. The results of each test for the
two non-random bit sequences are given in Table 15. These two bit sequences are of size
106 496 and 49 152 respectively, so that only one sample was tested in each case.

Note that the TBT test concludes that both sequences are non-random whereas some
other statistical tests fail.
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4. Conclusions

It is well known that random and pseudorandom number generators are incorporated in
many IT products and play an important role in numerous cryptographic applications.
For example, the security of many cryptographic systems depends on the generation of
unpredictable values. The quantities generated must be of sufficient size and be random
in the sense that the probability of any particular value being selected must be sufficiently
small to avoid that an adversary could gain advantage through optimizing a search strategy
based on such probability.

It is impossible to give a mathematical proof that a generator is indeed a random bit
generator. Each test determines whether a sample sequence verifies a probability property
that a truly random sequence would have, so they help detect certain kinds of weaknesses
the generator may have. Passing the statistical tests is a necessary but not sufficient condi-
tion for a sequence to be random. In other words, the quality of each generator should be
measured by means of different statistical tests, since any statistical defect can be used by
an attacker to gain information about the future output. Therefore, it is necessary to subject
the generated sequence to all possible statistical tests before accepting it for cryptographic
applications.

Some examples of statistical test suites that have been developed to study the random-
ness of a sequence are Diehard, Crypt-XS and NIST, among others. They include a wide
range of statistical tests that have been used to evaluate random and pseudorandomnumber
generators for cryptographic applications.

In this paper, a new statistical test (called TBT) for randomness of bit sequences is
proposed. The TBT test can be used as a complement of other statistical tests included in
suites to study randomness, as we mentioned above.

The test developed in this paper is based on determining the number of different m-
bit patterns that appear in the sequence, for a fixed value m. When ‘few’ distinct m-bit
patterns are found along the sequence the hypothesis of randomness is rejected, whereas
’many’ different patterns appearing in the sequence lead to the acceptance of randomness.

Basic notions on probability allow to get the exact distribution of the test statistic and
to determine the minimum number of different m-bit patterns that should appear along
the bit sequence to accept the null hypothesis of randomness. The proposed test provided
results in agreement with randomness when it was applied to binary sequences obtained
from some standard pseudorandom number generators. On the other hand, simulation
results showed the efficiency of the test to detect deviation from randomness that other
statistical tests (implemented in some widely used suites) are not able to detect.

The main strengths of the created test are that it can be applied to short and long
sequences of bits and its fast computationwhen the critical value are previously calculated.
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Naujas binarinių sekų atsitiktinumo testas

Pedro María ALCOVER, Antonio GUILLAMÓN, María del Carmen RUIZ

Atsitiktinių sekų generavimas yra reikalingas daugelyje sričių (kriptografijoje, modeliavime ir
pan.). Tos sekos turi būti atsitiktinės ta prasme, kad jų elgesys turėtų būti nenuspėjamas. Pavyz-
džiui, daugelio kriptografinių sistemų saugumas priklauso nuo nenuspėjamų reikšmių, naudojamų
kriptografiniams raktams, generavimo. Kadangi atsitiktinumas yra susijęs su nenuspėjamumo sa-
vybe, jis gali būti aprašytas tikimybinėmis sąvokomis, tiriant sekų atsitiktinumą statistiniais testais.
Straipsnyje pasiūlytas naujas atsitiktinumo testas. Sudarytas testas naudojasi fiksuoto ilgio šablo-
nais, kurie pasitaiko binarinėje sekoje. Jei tik keli skirtingi šablonai pasitaiko sekoje, atsitiktinumo
hipotezė atmetama. Kitaip, jei sekoje yra daug skirtingų šablonų, atsitiktinumo hipotezė yra priima-
ma. Šis testas gali būti panaudojamas kaip papildomas standartiniams statistiniams testams. Tikslus
statistikos skirstinys yra išvestas, ir todėl jis gali būti taikomas trumpoms bei ilgoms sekoms. Mo-
deliavimo rezultatai parodė, kad testo efektyvumas nustatant atsitiktinumą yra aukštesnis negu kitų
testų. Testas buvo tiriamas testuojant pseudoatsitiktines sekas. Be to, šis testas yra labai greitai skai-
čiuojamas, jei kritinės reikšmės yra suskaičiuotos iš anksto.


